Dissertations / Theses on the topic 'Stochastic Differential Algebraic Equations'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Stochastic Differential Algebraic Equations.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Curry, Charles. "Algebraic structures in stochastic differential equations." Thesis, Heriot-Watt University, 2014. http://hdl.handle.net/10399/2791.
Full textDabrowski, Yoann. "Free entropies, free Fisher information, free stochastic differential equations, with applications to Von Neumann algebras." Thesis, Paris Est, 2010. http://www.theses.fr/2010PEST1015.
Full textThis works extends our knowledge of free entropies, free Fisher information and free stochastic differential equations in three directions. First, we prove that if a $W^{*}$-probability space generated by more than 2 self-adjoints with finite non-microstates free Fisher information doesn't have property $Gamma$ of Murray and von Neumann (especially is not amenable). This is an analogue of a well-known result of Voiculescu for microstates free entropy. We also prove factoriality under finite non-microstates entropy. Second, we study a general free stochastic differential equation with unbounded coefficients (``stochastic PDE"), and prove stationarity of solutions in well-chosen cases. This leads to a computation of microstates free entropy dimension in case of Lipschitz conjugate variable. Finally, we introduce a non-commutative path space approach to solve general stationary free Stochastic differential equations. By defining tracial states on a non-commutative analogue of a path space, we construct Markov dilations for a class of conservative completely Markov semigroups on finite von Neumann algebras. This class includes all symmetric semigroups. For well chosen semigroups (for instance with generator any divergence form operator associated to a derivation valued in the coarse correspondence) those dilations give rise to stationary solutions of certain free SDEs. Among applications, we prove a non-commutative Talagrand inequality for non-microstate free entropy (relative to a subalgebra $B$ and a completely positive map $eta:Bto B$). We also use those new deformations in conjunction with Popa's deformation/rigidity techniques, to get absence of Cartan subalgebra results
Ding, Jie. "Structural and fluid analysis for large scale PEPA models, with applications to content adaptation systems." Thesis, University of Edinburgh, 2010. http://hdl.handle.net/1842/7975.
Full textTribastone, Mirco. "Scalable analysis of stochastic process algebra models." Thesis, University of Edinburgh, 2010. http://hdl.handle.net/1842/4629.
Full textBringuier, Hugo. "Marches quantiques ouvertes." Thesis, Toulouse 3, 2018. http://www.theses.fr/2018TOU30064/document.
Full textThis thesis is devoted to the study of stochastic models derived from open quantum systems. In particular, this work deals with open quantum walks that are the quantum analogues of classical random walks. The first part consists in giving a general presentation of open quantum walks. The mathematical tools necessary to study open quan- tum systems are presented, then the discrete and continuous time models of open quantum walks are exposed. These walks are respectively governed by quantum channels and Lindblad operators. The associated quantum trajectories are given by Markov chains and stochastic differential equations with jumps. The first part concludes with discussions over some of the research topics such as the Dirichlet problem for open quantum walks and the asymptotic theorems for quantum non demolition measurements. The second part collects the articles written within the framework of this thesis. These papers deal with the topics associated to the irreducibility, the recurrence-transience duality, the central limit theorem and the large deviations principle for continuous time open quantum walks
Trenn, Stephan. "Distributional differential algebraic equations." Ilmenau Univ.-Verl, 2009. http://d-nb.info/99693197X/04.
Full textBahar, Arifah. "Applications of stochastic differential equations and stochastic delay differential equations in population dynamics." Thesis, University of Strathclyde, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.415294.
Full textDareiotis, Anastasios Constantinos. "Stochastic partial differential and integro-differential equations." Thesis, University of Edinburgh, 2015. http://hdl.handle.net/1842/14186.
Full textAbourashchi, Niloufar. "Stability of stochastic differential equations." Thesis, University of Leeds, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.509828.
Full textZhang, Qi. "Stationary solutions of stochastic partial differential equations and infinite horizon backward doubly stochastic differential equations." Thesis, Loughborough University, 2008. https://dspace.lboro.ac.uk/2134/34040.
Full textTrenn, Stephan [Verfasser]. "Distributional differential algebraic equations / von Stephan Trenn." Ilmenau : Univ.-Verl, 2009. http://d-nb.info/998021652/34.
Full textMu, Tingshu. "Backward stochastic differential equations and applications : optimal switching, stochastic games, partial differential equations and mean-field." Thesis, Le Mans, 2020. http://www.theses.fr/2020LEMA1023.
Full textThis thesis is related to Doubly Reflected Backward Stochastic Differential Equations (DRBSDEs) with two obstacles and their applications in zero-sum stochastic switching games, systems of partial differential equations, mean-field problems.There are two parts in this thesis. The first part deals with optimal stochastic switching and is composed of two works. In the first work we prove the existence of the solution of a system of DRBSDEs with bilateral interconnected obstacles in a probabilistic framework. This problem is related to a zero-sum switching game. Then we tackle the problem of the uniqueness of the solution. Finally, we apply the obtained results and prove that, without the usual monotonicity condition, the associated PDE system has a unique solution in viscosity sense. In the second work, we also consider a system of DRBSDEs with bilateral interconnected obstacles in the markovian framework. The difference between this work and the first one lies in the fact that switching does not work in the same way. In this second framework, when switching is operated, the system is put in the following state regardless of which player decides to switch. This difference is fundamental and largely complicates the problem of the existence of the solution of the system. Nevertheless, in the Markovian framework we show this existence and give a uniqueness result by the Perron’s method. Later on, two particular switching games are analyzed.In the second part we study a one-dimensional Reflected BSDE with two obstacles of mean-field type. By the fixed point method, we show the existence and uniqueness of the solution in connection with the integrality of the data
Saravi, Masoud. "Numerical solution of linear ordinary differential equations and differential-algebraic equations by spectral methods." Thesis, Open University, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.446280.
Full textRassias, Stamatiki. "Stochastic functional differential equations and applications." Thesis, University of Strathclyde, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.486536.
Full textHofmanová, Martina. "Degenerate parabolic stochastic partial differential equations." Phd thesis, École normale supérieure de Cachan - ENS Cachan, 2013. http://tel.archives-ouvertes.fr/tel-00916580.
Full textRajotte, Matthew. "Stochastic Differential Equations and Numerical Applications." VCU Scholars Compass, 2014. http://scholarscompass.vcu.edu/etd/3383.
Full textNie, Tianyang. "Stochastic differential equations with constraints on the state : backward stochastic differential equations, variational inequalities and fractional viability." Thesis, Brest, 2012. http://www.theses.fr/2012BRES0047.
Full textThis PhD thesis is composed of three main topics: The first one studies the existence and the uniqueness for fully coupled forward-backward stochastic differential equations (SDEs) with subdifferential operators in both the forward and the backward equations, and it discusses also a new type of associated parabolic partial variational inequalities with two subdifferential operators, one acting over the state domain and the other over the co-domain. The second topic concerns the investigation of backward SDEs without as well as with subdifferential operator, both driven by a fractional Brownian motion with Hurst parameter H> 1/2. It extends in a rigorous manner the results of Hu and Peng (SICON, 2009) to backward stochastic variational inequalities. Finally, the third topic focuses on a deterministic characterisation of the viability for SDEs driven by a fractional Brownian motion. The three research topics mentioned above have in common to study SDEs with state constraints. The discussion of each of the three topics is based on a publication and on submitted manuscripts, respectively
Reich, Sebastian. "Differential-algebraic equations and applications in circuit theory." Universität Potsdam, 1992. http://opus.kobv.de/ubp/volltexte/2010/4664/.
Full textDie mathematische Modellierung technisch physikalischer Systeme wie elektrische Netzwerke, führt häufig auf ein System von Differentialgleichungen und nichtlinearen impliziten Gleichungen sogenannten Algebrodifferentialgleichungen (ADGL). Es zeigt sich, daß die numerischen und analytischen Eigenschaften von ADGL durch den Index des Problems charakterisiert werden können. Insbesondere können die bekannten Integrationsformeln von Gear im allgemeinen nur auf ADGL mit dem Index eins angewendet werden. In diesem Beitrag wird eine geometrische Interpretation von ADGL mit einem höheren Index gegeben sowie auf Probleme im Zusammenhang mit derartigen ADGL an Hand verschiedener Beispiele hingewiesen.
Reich, Sebastian. "On a geometrical interpretation of differential-algebraic equations." Universität Potsdam, 1990. http://opus.kobv.de/ubp/volltexte/2010/4668/.
Full textTidefelt, Henrik. "Differential-algebraic equations and matrix-valued singular perturbation." Doctoral thesis, Linköpings universitet, Reglerteknik, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-51653.
Full textWeickert, J. "Navier-Stokes equations as a differential-algebraic system." Universitätsbibliothek Chemnitz, 1998. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-199800942.
Full textHendriks, Peter Anne. "Algebraic aspects of linear differential and difference equations." [S.l. : [Groningen] : s.n.] ; [University Library Groningen] [Host], 1996. http://irs.ub.rug.nl/ppn/153769580.
Full textTidefelt, Henrik. "Structural algorithms and perturbations in differential-algebraic equations." Licentiate thesis, Linköping : Department of Electrical Engineering, Linköpings universitet, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-9011.
Full textWong, Kwok-kin, and 黃國堅. "Exact meromorphic solutions of complex algebraic differential equations." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2012. http://hub.hku.hk/bib/B48330218.
Full textpublished_or_final_version
Mathematics
Master
Master of Philosophy
Kashiwara, Masaki D'Agnolo Andrea Schneiders Jean-Pierre. "Algebraic study of systems of partial differential equations /." Marseille (BP 67, 13274 Cedex 9) ; [Paris] : Société mathématique de France, 1995. http://catalogue.bnf.fr/ark:/12148/cb37168718p.
Full textReiss, Markus. "Nonparametric estimation for stochastic delay differential equations." [S.l.] : [s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=964782480.
Full textYalman, Hatice. "Change Point Estimation for Stochastic Differential Equations." Thesis, Växjö University, School of Mathematics and Systems Engineering, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:vxu:diva-5748.
Full textA stochastic differential equationdriven by a Brownian motion where the dispersion is determined by a parameter is considered. The parameter undergoes a change at a certain time point. Estimates of the time change point and the parameter, before and after that time, is considered.The estimates were presented in Lacus 2008. Two cases are considered: (1) the drift is known, (2) the drift is unknown and the dispersion space-independent. Applications to Dow-Jones index 1971-1974 and Goldmann-Sachs closings 2005-- May 2009 are given.
Leng, Weng San. "Backward stochastic differential equations and option pricing." Thesis, University of Macau, 2003. http://umaclib3.umac.mo/record=b1447308.
Full textTunc, Vildan. "Two Studies On Backward Stochastic Differential Equations." Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614541/index.pdf.
Full texty(t)}
t is in [0
1]} with values in Rd and Rd×
k respectively, which solves an equation of the form: x(t) + int_t^1 f(s,x(s),y(s))ds + int_t^1 [g(s,x(s)) + y(s)]dWs = X. This dissertation studies this paper in detail and provides all the steps of the proofs that appear in this seminal paper. In addition, we review (Cvitanic and Karatzas, Hedging contingent claims with constrained portfolios. The annals of applied probability, 1993). In this paper, Cvitanic and Karatzas studied the following problem: the hedging of contingent claims with portfolios constrained to take values in a given closed, convex set K. Processes intimately linked to BSDEs naturally appear in the formulation of the constrained hedging problem. The analysis of Cvitanic and Karatzas is based on a dual control problem. One of the contributions of this thesis is an algorithm that numerically solves this control problem in the case of constant volatility. The algorithm is based on discretization of time. The convergence proof is also provided.
Zettervall, Niklas. "Multi-scale methods for stochastic differential equations." Thesis, Umeå universitet, Institutionen för fysik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-53704.
Full textStandard Monte Carlo metoder används flitigt för att lösa stokastiska differentialekvationer. Denna avhandling undersöker en Monte Carlo-metod (MC) kallad multilevel Monte Carlo som löser ekvationerna på flera olika rutsystem, var och en med ett specifikt antal punkter. Multilevel MC reducerar beräkningskomplexiteten jämfört med standard MC. För en fixerad beräkningskoplexitet kan variansen reduceras genom att multilevel MC-metoden används istället för standard MC-metoden. Diskretiserings- och statistiska felberäkningar görs också och möjligheten att evaluera de olika felen, kopplat med multilevel MC-metoden skapar ett kraftfullt verktyg för numerisk beräkning utav ekvationer. Genom att använda multilevel MC tillsammans med felberäkningar så är det möjligt att bestämma hur en utökad beräkningsbudget speneras så effektivt som möjligt.
Matetski, Kanstantsin. "Discretisations of rough stochastic partial differential equations." Thesis, University of Warwick, 2016. http://wrap.warwick.ac.uk/81460/.
Full textHashemi, Seyed Naser. "Singular perturbations in coupled stochastic differential equations." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/NQ65244.pdf.
Full textHollingsworth, Blane Jackson Schmidt Paul G. "Stochastic differential equations a dynamical systems approach /." Auburn, Ala, 2008. http://repo.lib.auburn.edu/EtdRoot/2008/SPRING/Mathematics_and_Statistics/Dissertation/Hollingsworth_Blane_43.pdf.
Full textMatsikis, Iakovos. "High gain control of stochastic differential equations." Thesis, University of Exeter, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.403248.
Full textAlthubiti, Saeed. "STOCHASTIC FUNCTIONAL DIFFERENTIAL EQUATIONS WITH INFINITE MEMORY." OpenSIUC, 2018. https://opensiuc.lib.siu.edu/dissertations/1544.
Full textSpantini, Alessio. "Preconditioning techniques for stochastic partial differential equations." Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/82507.
Full textThis thesis was scanned as part of an electronic thesis pilot project.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 149-155).
This thesis is about preconditioning techniques for time dependent stochastic Partial Differential Equations arising in the broader context of Uncertainty Quantification. State-of-the-art methods for an efficient integration of stochastic PDEs require the solution field to lie on a low dimensional linear manifold. In cases when there is not such an intrinsic low rank structure we must resort on expensive and time consuming simulations. We provide a preconditioning technique based on local time stretching capable to either push or keep the solution field on a low rank manifold with substantial reduction in the storage and the computational burden. As a by-product we end up addressing also classical issues related to long time integration of stochastic PDEs.
by Alessio Spantini.
S.M.
Kolli, Praveen C. "Topics in Rank-Based Stochastic Differential Equations." Research Showcase @ CMU, 2018. http://repository.cmu.edu/dissertations/1205.
Full textPrerapa, Surya Mohan. "Projection schemes for stochastic partial differential equations." Thesis, University of Southampton, 2009. https://eprints.soton.ac.uk/342800/.
Full textLiu, Ge. "Statistical Inference for Multivariate Stochastic Differential Equations." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1562966204796479.
Full textGauthier, Genevieve Carleton University Dissertation Mathematics and Statistics. "Multilevel bilinear system of stochastic differential equations." Ottawa, 1995.
Find full textZhang, Xiling. "On numerical approximations for stochastic differential equations." Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/28931.
Full textReiß, Markus. "Nonparametric estimation for stochastic delay differential equations." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2002. http://dx.doi.org/10.18452/14741.
Full textLet (X(t), t>= -r) be a stationary stochastic process solving the affine stochastic delay differential equation dX(t)=L(X(t+s))dt+sigma dW(t), t>= 0, with sigma>0, (W(t), t>=0) a standard one-dimensional Brownian motion and with a continuous linear functional L on the space of continuous functions on [-r,0], represented by a finite signed measure a. Assume that a trajectory (X(t), -r 0. This rate is worse than those obtained in many classical cases. However, we prove a lower bound, stating that no estimator can attain a better rate of convergence in a minimax sense. For discrete time observations of maximal distance Delta, the Galerkin estimator still attains the above asymptotic rate if Delta is roughly of order T^(-1/2). In contrast, we prove that for observation intervals Delta, with Delta independent of T, the rate must deteriorate significantly by providing the rate estimate T^(-s/(2s+6)) from below. Furthermore, we construct an adaptive estimator by applying wavelet thresholding techniques to the corresponding ill-posed inverse problem. This nonlinear estimator attains the above minimax rate even for more general classes of Besov spaces B^s_(p,infinity) with p>max(6/(2s+3),1). The restriction p >= 6/(2s+3) is shown to hold for any estimator, hence to be inherently associated with the estimation problem. Finally, a hypothesis test with a nonparametric alternative is constructed that could for instance serve to decide whether a trajectory has been generated by a stationary process with or without time delay. The test works for an L^2-separation rate between hypothesis and alternative of order T^(-s/(2s+2.5)). This rate is again shown to be optimal among all conceivable tests. For the proofs, the parameter dependence of the stationary solutions has to be studied in detail and the mapping properties of the associated covariance operators have to be determined exactly. Other results of general interest concern the mixing properties of the stationary solution, a case study for exponential weight functions and the approximation of the stationary process by discrete time autoregressive processes.
Nguyen, Cu Ngoc. "Stochastic differential equations with long-memory input." Thesis, Queensland University of Technology, 2001.
Find full textZangeneh, Bijan Z. "Semilinear stochastic evolution equations." Thesis, University of British Columbia, 1990. http://hdl.handle.net/2429/31117.
Full textScience, Faculty of
Mathematics, Department of
Graduate
Seufer, Ingo. "Generalized inverses of differential-algebraic equations and their discretization." [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=980230306.
Full textReich, Sebastian. "On the local qualitative behavior of differential-algebraic equations." Universität Potsdam, 1995. http://opus.kobv.de/ubp/volltexte/2010/4673/.
Full textPätz, Torben [Verfasser]. "Segmentation of Stochastic Images using Stochastic Partial Differential Equations / Torben Pätz." Bremen : IRC-Library, Information Resource Center der Jacobs University Bremen, 2012. http://d-nb.info/1035219735/34.
Full textMoon, Kyoung-Sook. "Adaptive Algorithms for Deterministic and Stochastic Differential Equations." Doctoral thesis, KTH, Numerical Analysis and Computer Science, NADA, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3586.
Full textGuillouzic, Steve. "Fokker-Planck approach to stochastic delay differential equations." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/NQ58279.pdf.
Full textSipiläinen, Eeva-Maria. "Pathwise view on solutions of stochastic differential equations." Thesis, University of Edinburgh, 1993. http://hdl.handle.net/1842/8202.
Full text