Academic literature on the topic 'Stochastic analysis'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Stochastic analysis.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Stochastic analysis"
PE and P. Malliavin. "Stochastic Analysis." Journal of the American Statistical Association 93, no. 441 (March 1998): 411. http://dx.doi.org/10.2307/2669659.
Full textHu, Peng, and Chengming Huang. "The StochasticΘ-Method for Nonlinear Stochastic Volterra Integro-Differential Equations." Abstract and Applied Analysis 2014 (2014): 1–13. http://dx.doi.org/10.1155/2014/583930.
Full textMarkus, L., and A. Weerasinghe. "Stochastic oscillators." Journal of Differential Equations 71, no. 2 (February 1988): 288–314. http://dx.doi.org/10.1016/0022-0396(88)90029-0.
Full textSankar, T. S., S. A. Ramu, and R. Ganesan. "Stochastic Finite Element Analysis for High Speed Rotors." Journal of Vibration and Acoustics 115, no. 1 (January 1, 1993): 59–64. http://dx.doi.org/10.1115/1.2930315.
Full textOcone, Daniel. "Stochastic calculus of variations for stochastic partial differential equations." Journal of Functional Analysis 79, no. 2 (August 1988): 288–331. http://dx.doi.org/10.1016/0022-1236(88)90015-8.
Full textSihotang, Hengki Tamando, Syahril Efendi, Muhammad Zarlis, and Herman Mawengkang. "Data driven approach for stochastic data envelopment analysis." Bulletin of Electrical Engineering and Informatics 11, no. 3 (June 1, 2022): 1497–504. http://dx.doi.org/10.11591/eei.v11i3.3660.
Full textZhao, Wenqiang, and Yangrong Li. "Existence of Random Attractors for ap-Laplacian-Type Equation with Additive Noise." Abstract and Applied Analysis 2011 (2011): 1–21. http://dx.doi.org/10.1155/2011/616451.
Full textIMKELLER, PETER, and ADAM HUGH MONAHAN. "CONCEPTUAL STOCHASTIC CLIMATE MODELS." Stochastics and Dynamics 02, no. 03 (September 2002): 311–26. http://dx.doi.org/10.1142/s0219493702000443.
Full textOGURA, Yukio. "Stochastic Fuzzy Analysis." Journal of Japan Society for Fuzzy Theory and Systems 10, no. 6 (1998): 1012–19. http://dx.doi.org/10.3156/jfuzzy.10.6_1012.
Full textSchmidt, Peter. "Stochastic Frontier Analysis." Economic Journal 112, no. 477 (February 1, 2002): F156—F158. http://dx.doi.org/10.1111/1468-0297.0688l.
Full textDissertations / Theses on the topic "Stochastic analysis"
Yang, Weiye. "Stochastic analysis and stochastic PDEs on fractals." Thesis, University of Oxford, 2018. http://ora.ox.ac.uk/objects/uuid:43a7af74-c531-424a-9f3d-4277138affbb.
Full textOzkan, Pelin. "Analysis Of Stochastic And Non-stochastic Volatility Models." Master's thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/3/12605421/index.pdf.
Full textBinotto, Giulia. "Contributions to stochastic analysis." Doctoral thesis, Universitat de Barcelona, 2018. http://hdl.handle.net/10803/565571.
Full textL’objectiu d’aquesta tesi és presentar alguns resultats innovadors en el camp de l’anàlisi estocàstica. Proposem tres treballs que tracten amb dos processos Gaussians: el moviment Brownià i el moviment Brownià fraccionari amb paràmetre de Hurst menor que 1/2. En el primer treball, construïm una família de processos, a partir d’un procés de Poisson i d’una seqüència de variables aleatòries independents amb distribució de Bernoulli, que convergeix en llei cap a un moviment Brownià complex. Trobem realitzacions d’aquests processos que convergeixen quasi segurament a un moviment Brownià complex, uniformement a l’interval de temps unitat. En derivem també la velocitat de convergència. En el segon treball, determinem la convergència feble, en la topologia de l’espai de Skorohod, de les sumes de Riemann simètriques per funcionals del moviment Brownià fraccionari quan el paràmetre de Hurst pren un valor crític que depèn de la mesura considerada. Com a conseqüència, derivem una fórmula de canvi de variable en distribució, on el terme de correcció és una integral estocàstica amb respecte a un moviment Brownià independent del moviment Brownià fraccionari. En l’últim treball demostrem que, quan el retard tendeix a zero, la solució d’equacions diferencials amb retard dirigides per una funció Hölder contínua amb ordre a (1/3,1/2) convergeix en la norma del suprem a la solució d’equacions sense retard.
Davies, M. J. "Topics in stochastic analysis." Thesis, Swansea University, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.636421.
Full textNadakuditi, Rajesh Rao. "Applied stochastic Eigen-analysis." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/38538.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Also issued in pages. Barker Engineering Library copy: issued in pages.
Includes bibliographical references (leaves 193-[201]).
The first part of the dissertation investigates the application of the theory of large random matrices to high-dimensional inference problems when the samples are drawn from a multivariate normal distribution. A longstanding problem in sensor array processing is addressed by designing an estimator for the number of signals in white noise that dramatically outperforms that proposed by Wax and Kailath. This methodology is extended to develop new parametric techniques for testing and estimation. Unlike techniques found in the literature, these exhibit robustness to high-dimensionality, sample size constraints and eigenvector misspecification. By interpreting the eigenvalues of the sample covariance matrix as an interacting particle system, the existence of a phase transition phenomenon in the largest ("signal") eigenvalue is derived using heuristic arguments. This exposes a fundamental limit on the identifiability of low-level signals due to sample size constraints when using the sample eigenvalues alone. The analysis is extended to address a problem in sensor array processing, posed by Baggeroer and Cox, on the distribution of the outputs of the Capon-MVDR beamformer when the sample covariance matrix is diagonally loaded.
(cont.) The second part of the dissertation investigates the limiting distribution of the eigenvalues and eigenvectors of a broader class of random matrices. A powerful method is proposed that expands the reach of the theory beyond the special cases of matrices with Gaussian entries; this simultaneously establishes a framework for computational (non-commutative) "free probability" theory. The class of "algebraic" random matrices is defined and the generators of this class are specified. Algebraicity of a random matrix sequence is shown to act as a certificate of the computability of the limiting eigenvalue distribution and, for a subclass, the limiting conditional "eigenvector distribution." The limiting moments of algebraic random matrix sequences, when they exist, are shown to satisfy a finite depth linear recursion so that they may often be efficiently enumerated in closed form. The method is applied to predict the deterioration in the quality of the sample eigenvectors of large algebraic empirical covariance matrices due to sample size constraints.
by Rajesh Rao Nadakuditi.
Ph.D.
Liu, Xuan. "Some contribution to analysis and stochastic analysis." Thesis, University of Oxford, 2018. http://ora.ox.ac.uk/objects/uuid:485474c0-2501-4ef0-a0bc-492e5c6c9d62.
Full textJohannessen, Knut. "Stochastic analysis of Workover Risers." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for marin teknikk, 2010. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-11550.
Full textYoussef, Nataly. "Stochastic analysis via robust optimization." Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/103246.
Full textCataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 167-174).
To evaluate the performance and optimize systems under uncertainty, two main avenues have been suggested in the literature: stochastic analysis and optimization describing the uncertainty probabilistically and robust optimization describing the uncertainty deterministically. Instead, we propose a novel paradigm which leverages the conclusions of probability theory and the tractability of the robust optimization approach to approximate and optimize the expected behavior in a given system. Our framework models the uncertainty via polyhedral sets inspired by the limit laws of probability. We characterize the uncertainty sets by variability parameters that we treat as random variables. We then devise a methodology to approximate and optimize the average performance of the system via a robust optimization formulation. Our framework (a) avoids the challenges of fitting probability distributions to the uncertain variables, (b) eliminates the need to generate scenarios to describe the states of randomness, and (c) demonstrates the use of robust optimization to evaluate and optimize expected performance. We illustrate the applicability of our methodology to analyze the performance of queueing networks and optimize the inventory policy for supply chain networks. In Part I, we study the case of a single queue. We develop a robust theory to study multi-server queues with possibly heavy-tailed primitives. Our methodology (a) provides approximations that match the diffusion approximations for light-tailed queues in heavy traffic, and (b) extends the framework to analyze the transient behavior of heavy-tailed queues. In Part II, we study the case of a network of queues. Our methodology provides accurate approximations of (a) the expected steady-state behavior in generalized queueing networks, and (b) the expected transient behavior in feedforward queueing networks. Our approach achieves significant computational tractability and provides accurate approximations relative to simulated values. In Part III, we study the case of a supply chain network. Our methodology (a) obtains optimal base-stock levels that match the optimal solutions obtained via stochastic optimization, (b) yields optimal affine policies which oftentimes exhibit better results compared to optimal base-stock policies, and (c) provides optimal policies that consistently outperform the solutions obtained via the traditional robust optimization approach.
by Nataly Youssef.
Ph. D.
Whiteside, M. B. "Stochastic analysis of composite materials." Thesis, Imperial College London, 2012. http://hdl.handle.net/10044/1/9986.
Full textGüngör, Mesut Savacı Ferit Acar. "Analysis of Stochastic Dynamical Systems/." [s.l.]: [s.n.], 2007. http://library.iyte.edu.tr/tezler/master/elektrikveelektronikmuh/T000630.pdf.
Full textBooks on the topic "Stochastic analysis"
Métivier, Michel, and Shinzo Watanabe, eds. Stochastic Analysis. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/bfb0077861.
Full textCranston, Michael, and Mark Pinsky, eds. Stochastic Analysis. Providence, Rhode Island: American Mathematical Society, 1994. http://dx.doi.org/10.1090/pspum/057.
Full textKusuoka, Shigeo. Stochastic Analysis. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-8864-8.
Full textMalliavin, Paul. Stochastic Analysis. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-15074-6.
Full textMalliavin, Paul. Stochastic analysis. Berlin: Springer, 1997.
Find full textKaratzas, Ioannis, and Daniel Ocone, eds. Applied Stochastic Analysis. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/bfb0007043.
Full textCrisan, Dan, ed. Stochastic Analysis 2010. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-15358-7.
Full textA, Davis M. H., and Elliott Robert J. 1940-, eds. Applied stochastic analysis. New York: Gordon and Breach Science Publishers, 1991.
Find full textA, Davis M. H., and Elliott R. J, eds. Applied stochastic analysis. New York: Gordon and Breach, 1990.
Find full textservice), SpringerLink (Online, ed. Stochastic Analysis 2010. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2011.
Find full textBook chapters on the topic "Stochastic analysis"
Osswald, Horst. "Stochastic Analysis." In Nonstandard Analysis for the Working Mathematician, 233–319. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-7327-0_7.
Full textHacιsalihzade, Selim S. "Stochastic Analysis." In Control Engineering and Finance, 139–80. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-64492-9_5.
Full textNatale, Marco Di, Haibo Zeng, Paolo Giusto, and Arkadeb Ghosal. "Stochastic Analysis." In Understanding and Using the Controller Area Network Communication Protocol, 67–88. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-0314-2_4.
Full textGanguli, Ranjan, Sondipon Adhikari, Souvik Chakraborty, and Mrittika Ganguli. "Stochastic Analysis." In Digital Twin, 83–90. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003268048-4.
Full textKarim, Md Rezaul, and M. Ataharul Islam. "Stochastic Models." In Reliability and Survival Analysis, 197–218. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-9776-9_11.
Full textHu, Shouchuan, and Nikolas S. Papageorgiou. "Stochastic Games." In Handbook of Multivalued Analysis, 705–90. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-4665-8_7.
Full textWen, Meilin. "Stochastic DEA." In Uncertain Data Envelopment Analysis, 61–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-43802-2_3.
Full textSöderström, T. "Analysis." In Discrete-time Stochastic Systems, 59–122. London: Springer London, 2002. http://dx.doi.org/10.1007/978-1-4471-0101-7_4.
Full textJacob, Christian. "Stochastic Search Methods." In Intelligent Data Analysis, 299–350. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-03969-4_9.
Full textAu, Siu-Kui. "Stochastic Structural Dynamics." In Operational Modal Analysis, 179–204. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4118-1_5.
Full textConference papers on the topic "Stochastic analysis"
Jiang, Shanshan, Lijin Wang, and Jialin Hong. "Stochastic multisymplectic integrator for stochastic KdV equation." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2012: International Conference of Numerical Analysis and Applied Mathematics. AIP, 2012. http://dx.doi.org/10.1063/1.4756515.
Full text"Stochastic analysis." In Proceedings of the 7th International ISAAC Congress. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814313179_others10.
Full textKanniainen, Juho. "Cause of Stock Return Stochastic Volatility: Query by Way of Stochastic Calculus." In Recent Advances in Stochastic Modeling and Data Analysis. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812709691_0003.
Full textEkhaguere, G. O. S. "Contemporary Stochastic Analysis." In International Conference on Contemporary Problems in Stochastic Analysis and its Applications. WORLD SCIENTIFIC, 1991. http://dx.doi.org/10.1142/9789814538756.
Full textNegrea, Romeo. "On a class of backward stochastic differential equations and applications to the stochastic resonance." In Recent Advances in Stochastic Modeling and Data Analysis. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812709691_0004.
Full textHong, Jialin, and Lihai Ji. "Stochastic multi-symplectic wavelet collocation method for stochastic Hamiltonian Maxwell's equations." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2012: International Conference of Numerical Analysis and Applied Mathematics. AIP, 2012. http://dx.doi.org/10.1063/1.4756514.
Full textP., Spanos, Pirrotta A., Marino F., and Robledo Ricardo L. A. "Stochastic Analysis of Motorcycle Dynamics." In 6th International Conference on Computational Stochastic Mechanics. Singapore: Research Publishing Services, 2011. http://dx.doi.org/10.3850/978-981-08-7619-7_p056.
Full textJuuti, Mika, Francesco Corona, and Juha Karhunen. "Stochastic Discriminant Analysis." In 2015 International Joint Conference on Neural Networks (IJCNN). IEEE, 2015. http://dx.doi.org/10.1109/ijcnn.2015.7280609.
Full textPettere, Gaida. "Stochastic Risk Capital Model for Insurance Company." In Recent Advances in Stochastic Modeling and Data Analysis. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812709691_0014.
Full textWisniewski, Rafael, and Manuela L. Bujorianu. "Stochastic safety analysis of stochastic hybrid systems." In 2017 IEEE 56th Annual Conference on Decision and Control (CDC). IEEE, 2017. http://dx.doi.org/10.1109/cdc.2017.8263999.
Full textReports on the topic "Stochastic analysis"
Cawlfield, J. D. Stochastic analysis of contaminant transport. Office of Scientific and Technical Information (OSTI), February 1992. http://dx.doi.org/10.2172/5827751.
Full textBudhiraja, Amarjit. Stochastic Analysis and Applied Probability(3.3.1): Topics in the Theory and Applications of Stochastic Analysis. Fort Belvoir, VA: Defense Technical Information Center, July 2015. http://dx.doi.org/10.21236/ada625850.
Full textHEY, B. E. Stochastic Consequence Analysis for Waste Leaks. Office of Scientific and Technical Information (OSTI), May 2000. http://dx.doi.org/10.2172/803657.
Full textJohnson, Ralph. Stochastic Simulation Analysis - 2005 (SSA-05). Fort Belvoir, VA: Defense Technical Information Center, July 1997. http://dx.doi.org/10.21236/ada329429.
Full textMathew, George A., and Alessandro Pinto. Stochastic Analysis and Design of Systems. Fort Belvoir, VA: Defense Technical Information Center, September 2011. http://dx.doi.org/10.21236/ada552645.
Full textHeifets, Samuel A. Quantum-mechanical Analysis of Optical Stochastic Cooling. Office of Scientific and Technical Information (OSTI), November 2000. http://dx.doi.org/10.2172/784790.
Full textHeifets, Samuel A. Quantum-mechanical Analysis of Optical Stochastic Cooling. Office of Scientific and Technical Information (OSTI), November 2000. http://dx.doi.org/10.2172/784820.
Full textDshalalow, Jewgeni H. Random Walk Analysis in Antagonistic Stochastic Games. Fort Belvoir, VA: Defense Technical Information Center, July 2010. http://dx.doi.org/10.21236/ada533481.
Full textFoes, Chamberlain. A study an analysis of stochastic linear programming. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.821.
Full textGhassemi, Ahmad. Geomechanics-Based Stochastic Analysis of Injection- Induced Seismicity. Office of Scientific and Technical Information (OSTI), August 2017. http://dx.doi.org/10.2172/1375732.
Full text