Academic literature on the topic 'STM'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'STM.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "STM"

1

Anders, M., M. Mück, and C. Heiden. "SEM/STM combination for STM tip guidance." Ultramicroscopy 25, no. 2 (January 1988): 123–28. http://dx.doi.org/10.1016/0304-3991(88)90219-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Makovicka, C., G. Gärtner, A. Hardt, W. Hermann, and D. U. Wiechert. "Impregnated cathode surface investigations by SFM/STM and SEM/EDX." Applied Surface Science 111 (February 1997): 70–75. http://dx.doi.org/10.1016/s0169-4332(96)00725-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

ICHINOKAWA, Takeo. "Combination of STM with SEM." Journal of the Japan Society for Precision Engineering 53, no. 12 (1987): 1835–40. http://dx.doi.org/10.2493/jjspe.53.1835.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Marti, Othmar, Matthias Amrein, and David P. Allison. "STM and SFM in Biology." Physics Today 47, no. 7 (July 1994): 64. http://dx.doi.org/10.1063/1.2808574.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Allen, Terence D. "STM and SFM in biology." Trends in Cell Biology 4, no. 5 (May 1994): 187. http://dx.doi.org/10.1016/0962-8924(94)90206-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Cox, Guy. "STM and SFM in biology." Micron 25, no. 5 (January 1994): 493. http://dx.doi.org/10.1016/0968-4328(94)90046-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ermakov, A. V., and E. L. Garfunkel. "A novel AFM/STM/SEM system." Review of Scientific Instruments 65, no. 9 (September 1994): 2853–54. http://dx.doi.org/10.1063/1.1144627.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Venables, John A., David J. Smith, and John M. Cowley. "HREM, STEM, REM, SEM — And STM." Surface Science Letters 181, no. 1-2 (March 1987): A93. http://dx.doi.org/10.1016/0167-2584(87)90731-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Venables, John A., David J. Smith, and John M. Cowley. "HREM, STEM, REM, SEM — and STM." Surface Science 181, no. 1-2 (March 1987): 235–49. http://dx.doi.org/10.1016/0039-6028(87)90164-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Golubok, Alexander O., and Vladimir A. Timofeev. "STM combined with SEM without SEM capability limitations." Ultramicroscopy 42-44 (July 1992): 1558–63. http://dx.doi.org/10.1016/0304-3991(92)90483-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "STM"

1

ABREU, FERNANDA DE MELLO. "TIME-DOMAIN OPTICAL MULTIPLEXING IN STM-16, STM-64 AND STM-256 SYSTEMS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2001. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=2361@1.

Full text
Abstract:
PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO
ALCATEL TELECOMUNICAÇÕES
Este trabalho tem como foco o up-grade da taxa de bits em enlaces ópticos através da tecnologia OTDM. Os sistemas analisados contemplam os up-grades das taxas de 2,48 Gbps para 10 Gbps e também da taxa de 10 Gbps para 40 Gbps. Para tal, foram introduzidos módulos de transmissão e recepção, capazes de utilizar arquiteturas quase totalmente ópticas. É avaliado então, através de simulações, o comportamento da arquitetura proposta em infra-estruturas de enlaces já instalados no Brasil, destacando os pontos mais críticos. No que se refere ao up-grade de 10 Gbps para 40 Gbps, foi dado enfoque especial para as penalidades relativas à PMD (Polarization Mode Dispersion).
This work aims at up grading the bit rate of optical links through the OTDM technology. The analyzed up-grades change the bit rate of 2,48 Gbps up to 10 Gbps and also from the bit rate of 10 Gbps up to 40 Gbps. To reach these objectives, transmission and reception modules were introduced, using all optical networks topologies. The performance of the proposed architecture was simulated using a infrastructure of links already installed in Brazil. The most critical issues were pointed out. Concerning the up-grade from 10 Gbps to 40 Gbps, a special focus was given to the penalties due to PMD (Polarization Mode Dispersion).
APA, Harvard, Vancouver, ISO, and other styles
2

Celis, Retana Arlensiú Eréndira. "Gap en graphène sur des surfaces nanostructurées de SiC et des surfaces vicinales de métaux nobles." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS417/document.

Full text
Abstract:
L'électronique basée sur le graphène fait face à un verrou technologique, qui est l'absence d'une bande interdite (gap) permettant une commutation entre les états logiques allumé et éteint. Les nano-rubans de graphène rendent possible l'obtention de ce gap mais il est difficile de produire de tels rubans avec une largeur précise à l'échelle atomique et des bords bien ordonnés. Le confinement électronique est une façon élégante d'ouvrir un gap et peut en principe être réglé en ajustant la largeur des nano-rubans. Cette thèse est consacrée à la compréhension de l'ouverture du gap par nano-structuration. Nous avons suivi deux approches: l'introduction d'un potentiel super-périodique sur le graphène par des substrats vicinaux de métaux nobles et le confinement électronique dans des nano-rubans sur des facettes artificielles du SiC. Des potentiels super-périodiques ont été introduits avec deux substrats nano-structurés: l'Ir(332) et un cristal courbé de Pt(111) multi-vicinale. Le graphène modifie les marches initiales des substrats et les transforme en une succession de terrasses (111) et de régions d'accumulation de marches, observés par STM. La nano-structuration du substrat induit alors un potentiel super-périodique dans le graphène entraînant l'ouverture de gaps sur la bande π du graphène observée par ARPES, ce qui est cohérent avec la périodicité structurale observé par STM et LEED. Les gaps peuvent être convenablement expliqués par un modèle de type hamiltonien de Dirac; ce dernier nous permet de retrouver la force du potentiel à la jonction entre les terrasses (111) et la région d'accumulation des marches. La force du potentiel dépend du substrat, de la périodicité associée à la surface et du type de bord des marches (soit type A ou B). Nous avons aussi changé le potentiel de surface en intercalant du Cu sur l'Ir(332), qui reste préférentiellement au niveau de l'accumulation des marches. La surface présente des régions dopées n alors que les régions non-intercalées restent dopées p, conduisant à une succession de rubans dopés n et p pour une même couche de graphène continue. La seconde approche pour contrôler le gap est par confinement électronique dans des nanorubans de graphène synthétisés sur du SiC. Ces rubans sont obtenus sur des facettes du SiC ordonnées périodiquement. Comme l'ouverture d'un gap d'origine inconnue avait été observée par ARPES, nous avons réalisé les premières études atomiquement résolues par STM. Nous démontrons la régularité et la chiralité des bords, nous localisons précisément les nanorubans de graphène sur les facettes et nous identifions des mini-facettes sur du SiC. Afin de comprendre le couplage entre le graphène et le substrat, nous avons étudié une coupe transversale par STEM/EELS, en complément des études par ARPES et STM/STS. Nous observons que la facette (1-107) où le graphène se trouve présente un sub-facettage sur les extrémités haute et basse. Le sub-facettage comprend des mini-terrasses (0001) et des mini-facettes (1-105). Le graphène s'étend tout au long du la région sub-facettée, et est couplé au substrat dans les mini-terrasses (0001), ce qui le rend semi-conducteur. En revanche, le graphène au-dessus des mini-facettes (1-105) est découplé du substrat mais présente un gap observé par EELS, et compatible avec les observations faites par ARPES. L'origine du gap est expliquée par le confinement électronique sur des nano-rubans de graphène de 1 - 2 nm de largeur localisés sur ces mini-facettes (1-105)
The major challenge for graphene-based electronic applications is the absence of the band-gap necessary to switch between on and off logic states. Graphene nanoribbons provide a route to open a band-gap, though it is challenging to produce atomically precise nanoribbon widths and well-ordered edges. A particularly elegant method to open a band-gap is by electronic confinement, which can in principle be tuned by adjusting the nanoribbon width. This thesis is dedicated to understanding the ways of opening band-gaps by nanostructuration. We have used two approaches: the introduction of a superperiodic potential in graphene on vicinal noble metal substrates and the electronic confinement in artificially patterned nanoribbons on SiC. Superperiodic potentials on graphene have been introduced by two nanostructured substrates, Ir(332) and a multivicinal curved Pt(111) substrate. The growth of graphene modifies the original steps of the pristine substrates and transforms them into an array of (111) terraces and step bunching areas, as observed by STM. This nanostructuration of the underlying substrate induces the superperiodic potential on graphene that opens mini-gaps on the π band as observed by ARPES and consistent with the structural periodicity observed in STM and LEED. The mini-gaps are satisfactorily explained by a Dirac-hamiltonian model, that allows to retrieve the potential strength at the junctions between the (111) terraces and the step bunching. The potential strength depends on the substrate, the surface periodicity and the type of step-edge (A or B type). The surface potential has also been modified by intercalating Cu on Ir(332), that remains preferentially on the step bunching areas, producing there n-doped ribbons, while the non-intercalated areas remain p-doped, giving rise to an array of n- and p- doped nanoribbons on a single continuous layer. In the second approach to control the gap, we have studied the gap opening by electronic confinement in graphene nanoribbons grown on SiC. These ribbons are grown on an array of stabilized sidewalls on SiC. As a band-gap opening with unclear atomic origin had been observed by ARPES, we carried-out a correlated study of the atomic and electronic structure to identify the band gap origin. We performed the first atomically resolved study by STM, demonstrating the smoothness and chirality of the edges, finding the precise location of the metallic graphene nanoribbon on the sidewalls and identifying an unexpected mini-faceting on the substrate. To understand the coupling of graphene to the substrate, we performed a cross-sectional study by STEM/EELS, complementary of our ARPES and STM/STS studies. We observe that the (1-107) SiC sidewall facet is sub-faceted both at its top and bottom edges. The subfacetting consists of a series of (0001) miniterraces and (1-105) minifacets. Graphene is continuous on the whole subfacetting region, but it is coupled to the substrate on top of the (0001) miniterraces, rendering it there semiconducting. On the contrary, graphene is decoupled on top of the (1-105) minifacets but exhibits a bandgap, observed by EELS and compatible with ARPES observations. Such bandgap is originated by electronic confinement in the 1 - 2 nm width graphene nanoribbons that are formed over the (1-105) minifacets
APA, Harvard, Vancouver, ISO, and other styles
3

Pavera, Michal. "Konstrukce nízkoteplotních ultravakuových rastrovacích sondových mikroskopů." Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2015. http://www.nusl.cz/ntk/nusl-234579.

Full text
Abstract:
This thesis deals with the development of scanning probe microscopes. Mechanical requirements for microscopes using measuring methods of scanning tunneling microscopy (STM) and atomic force microscopy (AFM) under enviroments of an ultrahigh vacuum (UHV) and variable temperatures are specified. Mechanical designs of two microscopes are discussed and their control electronics described. A special chapter is devoted to description of linear piezo manipulators and mechanical design of these prototypes.
APA, Harvard, Vancouver, ISO, and other styles
4

Müller, Thomas. "Imaging of DNA and DNA-RAP1 assembly by STM, TEM and SFM /." [S.l.] : [s.n.], 1994. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=10958.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Holl, Christian [Verfasser], Markus [Akademischer Betreuer] Morgenstern, and Samir [Akademischer Betreuer] Lounis. "High frequency STM and spin polarized STM on magnetic vortices / Christian Holl ; Markus Morgenstern, Samir Lounis." Aachen : Universitätsbibliothek der RWTH Aachen, 2018. http://d-nb.info/1192217926/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wiehlmann, Lutz. "Sequenzspezifizierte Transposonmutagenese (STM) in Pseudomonas aeruginosa." [S.l. : s.n.], 2001. http://deposit.ddb.de/cgi-bin/dokserv?idn=96511211X.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ruess, Frank Joachim Physics Faculty of Science UNSW. "Atomically controlled device fabrication using STM." Awarded by:University of New South Wales. Physics, 2006. http://handle.unsw.edu.au/1959.4/24855.

Full text
Abstract:
We present the development of a novel, UHV-compatible device fabrication strategy for the realisation of nano- and atomic-scale devices in silicon by harnessing the atomic-resolution capability of a scanning tunnelling microscope (STM). We develop etched registration markers in the silicon substrate in combination with a custom-designed STM/ molecular beam epitaxy system (MBE) to solve one of the key problems in STM device fabrication ??? connecting devices, fabricated in UHV, to the outside world. Using hydrogen-based STM lithography in combination with phosphine, as a dopant source, and silicon MBE, we then go on to fabricate several planar Si:P devices on one chip, including control devices that demonstrate the efficiency of each stage of the fabrication process. We demonstrate that we can perform four terminal magnetoconductance measurements at cryogenic temperatures after ex-situ alignment of metal contacts to the buried device. Using this process, we demonstrate the lateral confinement of P dopants in a delta-doped plane to a line of width 90nm; and observe the cross-over from 2D to 1D magnetotransport. These measurements enable us to extract the wire width which is in excellent agreement with STM images of the patterned wire. We then create STM-patterned Si:P wires with widths from 90nm to 8nm that show ohmic conduction and low resistivities of 1 to 20 micro Ohm-cm respectively ??? some of the highest conductivity wires reported in silicon. We study the dominant scattering mechanisms in the wires and find that temperature-dependent magnetoconductance can be described by a combination of both 1D weak localisation and 1D electron-electron interaction theories with a potential crossover to strong localisation at lower temperatures. We present results from STM-patterned tunnel junctions with gap sizes of 50nm and 17nm exhibiting clean, non-linear characteristics. We also present preliminary conductance results from a 70nm long and 90nm wide dot between source-drain leads which show evidence of Coulomb blockade behaviour. The thesis demonstrates the viability of using STM lithography to make devices in silicon down to atomic-scale dimensions. In particular, we show the enormous potential of this technology to directly correlate images of the doped regions with ex-situ electrical device characteristics.
APA, Harvard, Vancouver, ISO, and other styles
8

Deshpande, Aparna. "Atomistic interactions in STM atom manipulation." Ohio : Ohio University, 2007. http://www.ohiolink.edu/etd/view.cgi?ohiou169849272.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dixon, Richard. "STM studies of semiconducting metal oxides." Thesis, University of Oxford, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.365728.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Revenikiotis, Sackis (Athanasios). "Optimization of STM-tip preparation methods." Thesis, KTH, Materialfysik, MF (Stängd 20120101), 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-30873.

Full text
Abstract:
The Scanning Tunneling Microscope (STM) was invented by Gerd Binnig and Heinrich Rohrer and gave them the Nobel Prize in Physics 1986. STM can give us atomic resolution of a surface by applying a voltage between a very sharp tip (STM-tip) and the surface of a material that we want to examine. The STM-tip is moving over the surface and a computer is collecting the tunnel current in every single point to create a digital image. This diploma work is focused on the preparation of the STM-tip. The preparation method that is used is electrochemical etching of a tungsten wire. The sharper the STM-tip is the better resolution in the STM images we can get. With the purpose to get as sharp tip as possible and with a well-defined geometry, we prepared several tips by systematically varying the etching parameters such as voltage, current, concentration and wire length. A new method has been tested to minimize the oxidation on the surface and finally the tips were characterized with scanning electron microscope (SEM).
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "STM"

1

Othmar, Marti, and Amrein Matthias, eds. STM and SFM in biology. San Diego: Academic Press, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Purwadi, Agung. Studi pembiayaan STM negeri. Jakarta: Pusat Penelitian Kebijakan, Badan Penelitian dan Pengembangan, Departemen Pendidikan Nasional, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Katsirikou, Anthi, ed. Open Access to STM Information. Berlin, Boston: DE GRUYTER SAUR, 2011. http://dx.doi.org/10.1515/9783110263749.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yamagata, Yoriyuki. Interpretation of STM by CSP. Hyōgo-ken Amagasaki-shi: Sangyō Gijutsu Sōgō Kenkyūjo (Kumikomi Shisutemu Gijutsu Renkei Kenkyūtai), 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

E, Church Victor, and United States. National Aeronautics and Space Administration., eds. SSE Software Test Management STM capability: Using STM in the Ground Systems Development Environment (GSDE). [Houston, Tex.?]: Research Institute for Computing and Information Systems, University of Houston-Clear Lake, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Davidson, Fiona. Some effects of added stimuli on pigeon STM. Birmingham: University of Birmingham, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Delmonte, Clive. Advances in AFM & STM applied to thenucleic acids. Northampton: Clive Delmonte Publications, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

STM Study Group on Marketing. Meeting. STM seminar on Spain as a transfer channel of STM information between Europe and Ibero-America: [proceedings of the] STM Study Group on Marketing, thirty-eighth meeting, Barcelona, 25 September 1984. Amsterdam: International Group of Scientific Technical and Medical Publishers, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Subramaniam, Venkat. Programming concurrency on the JVM: Mastering synchronization, STM, and actors. Dallas, Tex. [u.a.]: Pragmatic Bookshelf, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Miller, Jimmie Andrew. From STM to nanomemory: A transfer of technology feasibility study. [s.l.]: typescript, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "STM"

1

Leung, Alexander K. C., Cham Pion Kao, Andrew L. Wong, Alexander K. C. Leung, Thomas Kolter, Ute Schepers, Konrad Sandhoff, et al. "STM." In Encyclopedia of Molecular Mechanisms of Disease, 1996. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-29676-8_6099.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Edkins, Stephen. "Spectroscopic-Imaging STM (SI-STM)." In Visualising the Charge and Cooper-Pair Density Waves in Cuprates, 23–49. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65975-6_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Auffan, Mélanie, Catherine Santaella, Alain Thiéry, Christine Paillès, Jérôme Rose, Wafa Achouak, Antoine Thill, et al. "EC-STM." In Encyclopedia of Nanotechnology, 645. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-90-481-9751-4_100203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Castroviejo, Ricardo. "Stromeyerite (stm)." In A Practical Guide to Ore Microscopy—Volume 1, 733–37. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-12654-3_121.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bast, Thomas, and Günter Krämer. "Sultiam (STM)." In Medikamenten-Pocket Epilepsie, 211–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 2024. http://dx.doi.org/10.1007/978-3-662-67716-2_35.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Siegenthaler, H. "STM in Electrochemistry." In Scanning Tunneling Microscopy II, 7–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-79366-0_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lu, Li, and Michael L. Scott. "Generic Multiversion STM." In Lecture Notes in Computer Science, 134–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-41527-2_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Michel, B. "STM in Biology." In NATO ASI Series, 549–72. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-3686-8_26.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Deyhle, Hans, Georg Schulz, Bert Müller, Roger H. French, Roger H. French, Meghan E. Samberg, Nancy A. Monteiro-Riviere, et al. "In-situ STM." In Encyclopedia of Nanotechnology, 1127. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-90-481-9751-4_100321.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kuk, Y. "STM on Metals." In Springer Series in Surface Sciences, 17–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-97343-7_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "STM"

1

Dolev, Shlomi, Danny Hendler, and Adi Suissa. "CAR-STM." In the twenty-seventh ACM symposium. New York, New York, USA: ACM Press, 2008. http://dx.doi.org/10.1145/1400751.1400769.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Saha, Bratin, Ali-Reza Adl-Tabatabai, Richard L. Hudson, Chi Cao Minh, and Benjamin Hertzberg. "McRT-STM." In the eleventh ACM SIGPLAN symposium. New York, New York, USA: ACM Press, 2006. http://dx.doi.org/10.1145/1122971.1123001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kim, Jihyun, and Youjip Won. "OpF-STM." In the 2018 International Conference. New York, New York, USA: ACM Press, 2018. http://dx.doi.org/10.1145/3193063.3193076.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gelashvili, Rati, Alexander Spiegelman, Zhuolun Xiang, George Danezis, Zekun Li, Dahlia Malkhi, Yu Xia, and Runtian Zhou. "Block-STM." In PPoPP '23: The 28th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming. New York, NY, USA: ACM, 2023. http://dx.doi.org/10.1145/3572848.3577524.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Eng, L. M., H. Fuchs, K. D. Jandt, and J. Petermann. "Imaging Poly (1-Butene) Films by SFM/STM." In Scanned probe microscopy. AIP, 1991. http://dx.doi.org/10.1063/1.41420.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lin, Shengle, Wangdong Yang, Haotian Wang, Qinyun Tsai, and Kenli Li. "STM-multifrontal QR." In SC '21: The International Conference for High Performance Computing, Networking, Storage and Analysis. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3458817.3476199.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hallam, Toby, Neil J. Curson, Lars Oberbeck, and Michelle Y. Simmons. "STM characterization of phosphine adsorption on STM-patterned H:Si(001)surfaces." In Smart Materials, Nano-, and Micro-Smart Systems, edited by Jung-Chih Chiao, David N. Jamieson, Lorenzo Faraone, and Andrew S. Dzurak. SPIE, 2005. http://dx.doi.org/10.1117/12.583316.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Dragojević, Aleksandar, and Tim Harris. "STM in the small." In the 7th ACM european conference. New York, New York, USA: ACM Press, 2012. http://dx.doi.org/10.1145/2168836.2168838.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Talmadge, S., T. K. Samec, and N. H. Lazar. "ICRF heating in STM." In AIP Conference Proceedings Volume 129. AIP, 1985. http://dx.doi.org/10.1063/1.35273.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

West, Paul E., and Sheila Henely. "Applications of STM Technologies." In 1989 Microlithography Conferences, edited by Kevin M. Monahan. SPIE, 1989. http://dx.doi.org/10.1117/12.953113.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "STM"

1

SARCOS RESEARCH CORP SALT LAKE CITY UT. STM-Based Hydrophone Sensors. Fort Belvoir, VA: Defense Technical Information Center, May 1991. http://dx.doi.org/10.21236/ada236361.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

SARCOS RESEARCH CORP SALT LAKE CITY UT. STM-Based Hydrophone Sensors. Fort Belvoir, VA: Defense Technical Information Center, July 1991. http://dx.doi.org/10.21236/ada239821.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sullivan, T. E., and P. H. Cutler. Laser Interactions in STM and STM-Like Devices: Applications to Infrared and Optical Detection. Fort Belvoir, VA: Defense Technical Information Center, April 1995. http://dx.doi.org/10.21236/ada299797.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Davis, J. C. STM Studies of Semiconductor Qubit Candidates. Fort Belvoir, VA: Defense Technical Information Center, November 2005. http://dx.doi.org/10.21236/ada455573.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hamers, R. J. Methods of Tunneling Spectroscopy With the STM. Fort Belvoir, VA: Defense Technical Information Center, June 1993. http://dx.doi.org/10.21236/ada266507.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Beaux, Miles Frank, Miguel A. Santiago Cordoba, Stephen Anthony Joyce, and Igor Olegovich Usov. AFM/STM Plutonium capability, research summary and future plans. Office of Scientific and Technical Information (OSTI), June 2016. http://dx.doi.org/10.2172/1259630.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Duran, R. S., W. Sigmund, T. Bailey, and M. Hara. Langmuir Blodgett and STM Investigations of Conducting Polymer Thin Films. Fort Belvoir, VA: Defense Technical Information Center, December 1993. http://dx.doi.org/10.21236/ada274512.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sarid, Dror. Novel Nanostructure Fabrication and Their Characterization by STM and AFM. Fort Belvoir, VA: Defense Technical Information Center, November 2000. http://dx.doi.org/10.21236/ada391137.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sibener, Steven J. AASERT-96 Augmentation Award for STM Studies of Corrosion Reactions. Fort Belvoir, VA: Defense Technical Information Center, October 2000. http://dx.doi.org/10.21236/ada383435.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Scott, Joachim H., and Henry S. White. Electric Field Induced Reconstructions in STM Experiments on Au(111) Surfaces. Fort Belvoir, VA: Defense Technical Information Center, February 1992. http://dx.doi.org/10.21236/ada246849.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography