Academic literature on the topic 'Stiffness arteriosa'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Stiffness arteriosa.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Stiffness arteriosa"
Gherardini, Rachele. "P35 ARTERIAL STIFFNESS AND CHRONIC STRESS: ROLE OF GENDER – RIGIDITà ARTERIOSA E STRESS CRONICO: RUOLO DEL GENERE." Artery Research 24, no. C (2018): 89. http://dx.doi.org/10.1016/j.artres.2018.10.088.
Full textIkemura, Tsukasa, Nobuhiro Nakamura, and Naoyuki Hayashi. "Impact of acute dynamic exercise on vascular stiffness in the retinal arteriole in healthy subjects." Journal of Applied Physiology 132, no. 2 (February 1, 2022): 459–68. http://dx.doi.org/10.1152/japplphysiol.00507.2021.
Full textJahn, Linda A., Lee Hartline, Nagashree Rao, Brent Logan, Justin J. Kim, Kevin Aylor, Li-Ming Gan, Helena U. Westergren, and Eugene J. Barrett. "Insulin Enhances Endothelial Function Throughout the Arterial Tree in Healthy But Not Metabolic Syndrome Subjects." Journal of Clinical Endocrinology & Metabolism 101, no. 3 (March 1, 2016): 1198–206. http://dx.doi.org/10.1210/jc.2015-3293.
Full textSander, Ruth. "Swollen arteries and stiffness." Nursing Older People 23, no. 7 (September 2011): 11. http://dx.doi.org/10.7748/nop.23.7.11.s8.
Full textEiken, O., A. Elia, H. Sköldefors, P. Sundblad, M. E. Keramidas, and R. Kölegård. "Adaptation to 5 weeks of intermittent local vascular pressure increments; mechanisms to be considered in the development of primary hypertension?" American Journal of Physiology-Heart and Circulatory Physiology 320, no. 4 (April 1, 2021): H1303—H1312. http://dx.doi.org/10.1152/ajpheart.00763.2020.
Full textMorales-Quinones, Mariana, Francisco I. Ramirez-Perez, Christopher A. Foote, Thaysa Ghiarone, Larissa Ferreira-Santos, Maria Bloksgaard, Nicole Spencer, et al. "LIMK (LIM Kinase) Inhibition Prevents Vasoconstriction- and Hypertension-Induced Arterial Stiffening and Remodeling." Hypertension 76, no. 2 (August 2020): 393–403. http://dx.doi.org/10.1161/hypertensionaha.120.15203.
Full textPannier, Bruno, Alain P. Guérin, Sylvain J. Marchais, Michel E. Safar, and Gérard M. London. "Stiffness of Capacitive and Conduit Arteries." Hypertension 45, no. 4 (April 2005): 592–96. http://dx.doi.org/10.1161/01.hyp.0000159190.71253.c3.
Full textObeid, Hasan, Catherine Fortier, Charles-Antoine Garneau, Mathilde Pare, Pierre Boutouyrie, Rosa Maria Bruno, Hakim Khettab, Rémi Goupil, and Mohsen Agharazii. "Radial-digital pulse wave velocity: a noninvasive method for assessing stiffness of small conduit arteries." American Journal of Physiology-Heart and Circulatory Physiology 320, no. 4 (April 1, 2021): H1361—H1369. http://dx.doi.org/10.1152/ajpheart.00551.2020.
Full textHanna, Mina A., Curtis R. Taylor, Bei Chen, Hae-Sun La, Joshua J. Maraj, Cody R. Kilar, Bradley J. Behnke, Michael D. Delp, and Judy M. Muller-Delp. "Structural remodeling of coronary resistance arteries: effects of age and exercise training." Journal of Applied Physiology 117, no. 6 (September 15, 2014): 616–23. http://dx.doi.org/10.1152/japplphysiol.01296.2013.
Full textSafar, Michel E., and P. Lacolley. "Disturbance of macro- and microcirculation: relations with pulse pressure and cardiac organ damage." American Journal of Physiology-Heart and Circulatory Physiology 293, no. 1 (July 2007): H1—H7. http://dx.doi.org/10.1152/ajpheart.00063.2007.
Full textDissertations / Theses on the topic "Stiffness arteriosa"
Rastelli, Stefania. "Struttura e funzione arteriosa nelle malattie infiammatorie croniche intestinali." Doctoral thesis, Università di Catania, 2015. http://hdl.handle.net/10761/4023.
Full textBIANCHI, FRANCESCA CARLA MARIA. "Effetti della terapia antiretrovirale sulla struttura e funzionalità arteriosa in una popolazione affetta da HIV." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2014. http://hdl.handle.net/10281/83623.
Full textVedam, Hima. "Short-term hypoxia and arterial stiffness." Thesis, The University of Sydney, 2007. https://hdl.handle.net/2123/28093.
Full textButlin, Mark Graduate School of Biomedical Engineering Faculty of Engineering UNSW. "Structural and functional effects on large artery stiffness: an in-vivo experimental investigation." Awarded by:University of New South Wales. Graduate School of Biomedical Engineering, 2007. http://handle.unsw.edu.au/1959.4/29479.
Full textBerry, Karen L. (Karen Louise) 1972. "The structural basis of arterial stiffness and its relationship to cardiovascular outcome." Monash University, Dept. of Medicine, 2003. http://arrow.monash.edu.au/hdl/1959.1/7919.
Full textWalton, Lucy Anne. "From molecules to tissues : characterising the relationship between structure and function in ageing arteries." Thesis, University of Manchester, 2015. https://www.research.manchester.ac.uk/portal/en/theses/from-molecules-to-tissues-characterising-the-relationship-between-structure-and-function-in-ageing-arteries(b06aab9a-6845-41d2-ac97-0aac85e71e1a).html.
Full textXie, Bingjiao, and 謝冰姣. "Association of arterial stiffness and blood pressure variability with silent brain lesions in healthy hypertensive elderly Chinese." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2015. http://hdl.handle.net/10722/212629.
Full textKölegård, Roger. "Distensibility in Arteries, Arterioles and Veins in Humans : Adaptation to Intermittent or Prolonged Change in Regional Intravascular Pressure." Doctoral thesis, KTH, Omgivningsfysiologi, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-25965.
Full textmedicine doktorsexamen QC 20101109
Chen, Hay-son Robin, and 陳羲舜. "Left ventricular contractile reserve and stiffness of the neoaorta after arterial switch operation for complete transposition of thegreat arteries: a stress echocardiographystudy." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2012. http://hub.hku.hk/bib/B48333578.
Full textAdamopoulos, Dionysios. "Environmental determinants of arterial stiffness and wave reflection: pathophysiological mechanisms and clinical implications." Doctoral thesis, Universite Libre de Bruxelles, 2012. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209744.
Full textStudy 1: Effects of cold exposure on central and peripheral vascular tone. Our first study explored the effects of cold exposure on aortic stiffness and peripheral microvascular tone. We observed that cold exposure, in addition to its chronotropic effects, provoked an increase in aortic stiffness, as assessed by aortic pulse wave velocity, as well as significant vasoconstriction of peripheral arterioles in the microcirculation. Moreover, we explored the magnitude of this effect in a different population (Black subjects of African origin), which is traditionally characterized by exaggerated reactions to adrenergic stimuli. We noted that the vascular reactions, in terms of both aortic stiffness and microvascular vasoconstriction, were more profound in Black Africans than in age-matched Caucasian-Whites. These results argue for a direct effect of cold exposure on arterial stiffness and peripheral vascular tone, probably through activation of the orthosympathetic system.
Study 2: Exposure to ambient particulate matter and arterial stiffness. We explored the effects of acute exposure to outdoor particulate matter on aortic stiffness and aortic wave reflection. We studied the relationship between central hemodynamic parameters and ambient concentration of particulate matter in a population of patients who attended the Hypertension Clinics of Athens University. After statistical correction for a number of potential confounders, we did not observe an association between ambient concentrations of particulate matter and aortic stiffness. However, in men, particulate matter concentration was related to the amplitude of the reflected wave reaching the aorta from the periphery. These results suggest a direct acute interaction between particulate matter concentration and vascular tone, leading to an enhanced arterial wave reflection.
Study 3: The role of nicotine on the vascular effects of environmental tobacco smoke. Environmental tobacco smoke is considered as the most important source of particulate matter in the indoor environment. We recently demonstrated that exposure to tobacco smoke augmented wave reflection, an effect that was not seen after equivalent exposure to the smoke of non-tobacco, herbal cigarettes. We also noticed that the increased wave reflection was proportional to the plasma concentrations of nicotine. However, a direct causal effect between nicotine, arterial wave reflection and aortic stiffness has never been clearly demonstrated. We observed that increasing nicotine plasma concentration to levels comparable to those seen after extensive exposure to environmental tobacco smoke, provoked an increase in both aortic stiffness and arterial wave reflection after correction for heart rate and blood pressure changes. These results confirm the significant participation of nicotine in the vascular effects of passive smoking.
Conclusions. Globally, our results reveal the deleterious effects of cold, particulate matter exposure, and nicotinic stimulation on arterial stiffness, peripheral microcirculation and aortic wave reflection. The hemodynamic modifications associated with these effects may at least partially explain the causal relation between cold exposure, ambient air pollution and cardiovascular mortality.
Introduction-Objectifs. Le système cardiovasculaire est en relation directe et constante avec l’environnement. L’exposition au froid, la pollution atmosphérique et le tabagisme passif sont associés à des événements cardiovasculaires aigus graves et même fatals. La rigidification des artères et l’intensification de la réflexion de l’onde de pouls au niveau de l’aorte accompagnent le vieillissement et prédisent un risque cardiovasculaire accru. Nous avons testés l’hypothèse que les effets cardiovasculaires délétères des facteurs environnementaux comportent une altération des propriétés élastiques artérielles. Ceci pourrait être un des mécanismes physiopathologiques qui lie la mortalité cardiovasculaire aux variables environnementales.
Étude 1 :Exposition au froid ;effets centraux et périphériques. Notre première étude portait sur l’effet de l’exposition au froid sur la rigidité aortique et le tonus vasculaire des artérioles périphériques. Nous avons démontré que l’exposition au froid, hormis ses effets chronotropes, provoquait une augmentation de la rigidité artérielle – mesuré par la vitesse de l’onde de pouls au niveau de l’aorte - ainsi qu’une vasoconstriction importante au niveau des artérioles de la microcirculation. Nous avons ensuite déterminé l’amplitude de cet effet dans une autre population (sujets Africains-Noirs) qui se caractérise par des réactions plus prononcées aux différentes stimulations adrénergiques. Nous avons observé que les réactions vasculaires, tant au niveau de la rigidité aortique qu’au niveau de la microcirculation, étaient plus marquées chez les Africains-Noirs que chez les Caucasiens. Ces résultats révèlent un effet délétère de l’exposition au froid sur la rigidité aortique et le tonus vasculaire des artères périphériques, probablement via une activation du système orthosympathique.
Étude 2 :Exposition aux microparticules atmosphériques et rigidité artérielle. Nous avons ensuite investigué les effets de la pollution atmosphérique sur la rigidité artérielle et la réflexion de l’onde de pouls vers l’aorte. Nous avons étudié la relation entre les paramètres hémodynamiques centraux et la concentration atmosphérique de microparticules dans une population de patients qui ont consulté la Clinique Universitaire d’Hypertension Artérielle d’Athènes. Après correction statistique pour les facteurs confondants, nous n’avons pas observé de corrélation entre la rigidité artérielle et le taux de microparticules atmosphériques dans l’ensemble de la population investiguée. Par contre, si on restreint l’analyse aux résultats obtenus chez les sujets masculins, on s’aperçoit que la concentration atmosphérique de microparticules était associée de façon significative avec l’amplitude de l’onde réfléchie par la périphérie vers l’aorte et la pression pulsée aortique. Ces résultants suggèrent un effet direct des microparticules au niveau de la microcirculation. L’augmentation de l’amplitude de l’onde réfléchie consécutive à une vasoconstriction périphérique, modifie vraisemblablement les pressions au niveau de l’aorte chez le sujet masculin lors de pics de pollution.
Etude 3 :Le rôle de la nicotine dans les effets vasculaires du tabagisme passif. Le tabagisme passif est considéré comme la source la plus importante d’émission de microparticules au niveau domestique. Cependant, la composition chimique des particules semble jouer un rôle essentiel sur les ondes de réflexion. Nous avons démontré récemment que l’exposition passive à la fumée des cigarettes du tabac augmente l’intensité de la réflexion de l’onde de pouls. Ceci n’a pas été observé avec l’exposition à la fumée des cigarettes non tabagiques, en dépit d’une concentration ambiante tout à fait comparable de microparticules. Par ailleurs, nous avons observé que l’augmentation de l’incidence de l’onde de pouls au niveau de l’aorte était fortement associée à la concentration plasmatique de la nicotine. Un lien causal entre la nicotine, réflexion de l’onde de pouls et rigidité artérielle n’avait jamais clairement été établi. Nous avons testé cette hypothèse en administrant la nicotine pure chez des sujets sains. Nous avons observé que l’augmentation des taux plasmatiques de la nicotine à des valeurs comparables à celles qui surviennent après une exposition intensive au tabagisme passif, intensifiait la réflexion de l’onde de pouls et augmentait la rigidité artérielle. La correction statistique pour l’augmentation de la fréquence cardiaque et l’augmentation de la pression artérielle en réponse à la nicotine ne modifiait pas ces conclusions. Nos résultats démontrent ainsi les effets cardiovasculaires importants de faibles concentrations de nicotine, similaires à ceux qui sont atteints en cas d’exposition à un tabagisme passif.
Conclusions. Nos résultats révèlent les effets néfastes de l’exposition au froid et aux microparticules atmosphériques sur la rigidité artérielle, la microcirculation périphérique et la réflexion de l’onde de pouls. Nous avons pu également démontrer le rôle de la stimulation nicotinique dans les effets vasculaires aigus du tabagisme passif, comme en témoigne l’augmentation de la réflexion de l’onde de pouls au niveau aortique. Ces modifications hémodynamiques favorisent l’ischémie myocardique, et constituent un des mécanismes par lesquels l’exposition au froid et à la pollution atmosphérique favorisent la pathologie cardiovasculaire.
Doctorat en Sciences médicales
info:eu-repo/semantics/nonPublished
Books on the topic "Stiffness arteriosa"
Fleenor, Bradley S., and Adam J. Berrones. Arterial Stiffness: Implications and Interventions. Springer London, Limited, 2015.
Find full textFleenor, Bradley S. S., and Adam J. Berrones. Arterial Stiffness: Implications and Interventions. Springer, 2015.
Find full textArterial stiffness in hypertension. Edinburgh: Elsevier, 2006.
Find full textSafar, Michel, and Michael F. O'Rourke. Arterial Stiffness in Hypertension: Handbook of Hypertension Series (Handbook of Hypertension). Elsevier, 2006.
Find full textMontgomery, Hugh, and Rónan Astin. Normal physiology of the cardiovascular system. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199600830.003.0128.
Full textRaggi, Paolo, and Luis D’Marco. Imaging for detection of vascular disease in chronic kidney disease patients. Edited by David J. Goldsmith. Oxford University Press, 2015. http://dx.doi.org/10.1093/med/9780199592548.003.0116.
Full textBhopal, Raj S. Epidemic of Cardiovascular Disease and Diabetes. Oxford University Press, 2019. http://dx.doi.org/10.1093/med/9780198833246.001.0001.
Full textBook chapters on the topic "Stiffness arteriosa"
Fleenor, Bradley S., and Adam J. Berrones. "Interventions to Destiffen Arteries." In Arterial Stiffness, 43–57. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-24844-8_4.
Full textDíez, Javier. "Arterial Stiffness and Extracellular Matrix." In Atherosclerosis, Large Arteries and Cardiovascular Risk, 76–95. Basel: KARGER, 2006. http://dx.doi.org/10.1159/000096722.
Full textAtkinson, Jeffrey. "Animal Models of Arterial Stiffness." In Atherosclerosis, Large Arteries and Cardiovascular Risk, 96–116. Basel: KARGER, 2006. http://dx.doi.org/10.1159/000096723.
Full textMackey, Rachel H., Lakshmi Venkitachalam, and Kim Sutton-Tyrrell. "Calcifications, Arterial Stiffness and Atherosclerosis." In Atherosclerosis, Large Arteries and Cardiovascular Risk, 234–44. Basel: KARGER, 2006. http://dx.doi.org/10.1159/000096744.
Full textWilkinson, Ian, and John R. Cockcroft. "Cholesterol, Lipids and Arterial Stiffness." In Atherosclerosis, Large Arteries and Cardiovascular Risk, 261–77. Basel: KARGER, 2006. http://dx.doi.org/10.1159/000096747.
Full textKingwell, Bronwyn A., and Anna A. Ahimastos. "Arterial Stiffness and Coronary Ischemic Disease." In Atherosclerosis, Large Arteries and Cardiovascular Risk, 125–38. Basel: KARGER, 2006. http://dx.doi.org/10.1159/000096725.
Full textSafar, Michel E. "Arterial Stiffness and Peripheral Arterial Disease." In Atherosclerosis, Large Arteries and Cardiovascular Risk, 199–211. Basel: KARGER, 2006. http://dx.doi.org/10.1159/000096731.
Full textMcEniery, Carmel M., and John R. Cockcroft. "Does Arterial Stiffness Predict Atherosclerotic Coronary Events?" In Atherosclerosis, Large Arteries and Cardiovascular Risk, 160–72. Basel: KARGER, 2006. http://dx.doi.org/10.1159/000096728.
Full textAgabiti-Rosei, Enrico, and Maria Lorenza Muiesan. "Carotid Atherosclerosis, Arterial Stiffness and Stroke Events." In Atherosclerosis, Large Arteries and Cardiovascular Risk, 173–86. Basel: KARGER, 2006. http://dx.doi.org/10.1159/000096729.
Full textYki-Järvinen, Hannele, and Jukka Westerbacka. "Insulin Resistance, Arterial Stiffness and Wave Reflection." In Atherosclerosis, Large Arteries and Cardiovascular Risk, 252–60. Basel: KARGER, 2006. http://dx.doi.org/10.1159/000096746.
Full textConference papers on the topic "Stiffness arteriosa"
Kiran, V. Raj, Abhidev V.V., Nabeel P.M., Jayaraj Joseph, Mohanasankar Sivaprakasam, and Malay Ilesh Shah. "Arterial Stiffness in Elastic and Muscular Arteries: Measurement using ARTSENS Pen." In 2019 IEEE International Symposium on Medical Measurements and Applications (MeMeA). IEEE, 2019. http://dx.doi.org/10.1109/memea.2019.8802225.
Full textOta, Shinichiro, Toshitaka Yasuda, and Takashi Saito. "Quantification of Arterial Stiffness Reduced Effect of Vessel Geometry." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-67086.
Full textStephen, Beth, Theresa A. Good, and L. D. Timmie Topoleski. "Change in Mechanical Response of Arterial Elastin due to Glycation." In ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80087.
Full textHoffman, Allen H., Zhongzhao Teng, Calvin Mui, Jie Zheng, Pamela K. Woodard, and Dalin Tang. "Stiffness Comparisons Between Adventitia, Media and Full Thickness Specimens From Human Atherosclerotic Carotid Arteries." In ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-206401.
Full textBennetts, Craig J., Ahmet Erdemir, and Melissa Young. "Surface Stiffness of Patient-Specific Arterial Segments With Varying Plaque Compositions." In ASME 2013 Conference on Frontiers in Medical Devices: Applications of Computer Modeling and Simulation. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/fmd2013-16132.
Full textEspinosa, Gabriela, Lisa Bennett, William Gardner, and Jessica Wagenseil. "The Effects of Extracellular Matrix Protein Insufficiency and Treatment on the Stiffness of Arterial Smooth Muscle Cells." In ASME 2013 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/sbc2013-14131.
Full textZhang, Xiaoming, and James F. Greenleaf. "Measurement of the Propagation Velocity of Pulse Wave Generated by Ultrasound in Arteries." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-79619.
Full textForsblad-d’Elia, Helena, Lucy Law, Karin Bengtsson, Stefan Söderberg, and Per Lindqvist. "SAT0325 REDUCED STRAIN AND INCREASED STIFFNESS OF COMMON CAROTID ARTERIES IN PATIENTS WITH ANKYLOSING SPONDYLITIS." In Annual European Congress of Rheumatology, EULAR 2019, Madrid, 12–15 June 2019. BMJ Publishing Group Ltd and European League Against Rheumatism, 2019. http://dx.doi.org/10.1136/annrheumdis-2019-eular.4587.
Full textCanton, Gador, Dalin Tang, Daniel S. Hippe, and Chun Yuan. "Distensibility of the Atherosclerotic Carotid Artery: Relationship With Plaque Burden and Composition?" In ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80845.
Full textYu, Mei, and Ian Grosse. "Prediction of Mechanical Behavior of Balloon-Expandable Stents." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-59455.
Full text