Academic literature on the topic 'Sterile insect technique'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Sterile insect technique.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Sterile insect technique"
Benedict, Mark Q. "Sterile Insect Technique: Lessons From the Past." Journal of Medical Entomology 58, no. 5 (February 25, 2021): 1974–79. http://dx.doi.org/10.1093/jme/tjab024.
Full textSuckling, D. M. "Applying the sterile insect technique for biosecurity benefits and constraints." New Zealand Plant Protection 56 (August 1, 2003): 21–26. http://dx.doi.org/10.30843/nzpp.2003.56.6026.
Full textBen Dhahbi, Anis, Yassine Chargui, Salah Mahmoud Boulaaras, Sana Ben Khalifa, Waleed Koko, and Faisal Alresheedi. "Mathematical Modelling of the Sterile Insect Technique Using Different Release Strategies." Mathematical Problems in Engineering 2020 (November 6, 2020): 1–9. http://dx.doi.org/10.1155/2020/8896566.
Full textBen Dhahbi, Anis, Yassine Chargui, Salah Mahmoud Boulaaras, and Sana Ben Khalifa. "A One-Sided Competition Mathematical Model for the Sterile Insect Technique." Complexity 2020 (July 30, 2020): 1–12. http://dx.doi.org/10.1155/2020/6246808.
Full textKarthikeyan, Lekha. "STERILE INSECT TECHNIQUE TO COMBAT DENGUE." LIFE: International Journal of Health and Life-Sciences 2, no. 1 (March 15, 2016): 16–23. http://dx.doi.org/10.20319/lijhls.2016.21.1623.
Full textAlphey, Luke. "Re-engineering the sterile insect technique." Insect Biochemistry and Molecular Biology 32, no. 10 (October 2002): 1243–47. http://dx.doi.org/10.1016/s0965-1748(02)00087-5.
Full textChinnathambi, Rajivganthi, and Fathalla A. Rihan. "Analysis and control of Aedes Aegypti mosquitoes using sterile-insect techniques with Wolbachia." Mathematical Biosciences and Engineering 19, no. 11 (2022): 11154–71. http://dx.doi.org/10.3934/mbe.2022520.
Full textParker, Andrew, and Kishor Mehta. "STERILE INSECT TECHNIQUE: A MODEL FOR DOSE OPTIMIZATION FOR IMPROVED STERILE INSECT QUALITY." Florida Entomologist 90, no. 1 (March 2007): 88–95. http://dx.doi.org/10.1653/0015-4040(2007)90[88:sitamf]2.0.co;2.
Full textENKERLIN, W. R., and R. PEREIRA. "The sterile insect technique: an international framework to facilitate transboundary shipments of sterile insects." Revue Scientifique et Technique de l'OIE 41, no. 1 (May 1, 2022): 66–74. http://dx.doi.org/10.20506/rst.41.1.3303.
Full textBourtzis, Kostas, and Marc J. B. Vreysen. "Sterile Insect Technique (SIT) and Its Applications." Insects 12, no. 7 (July 13, 2021): 638. http://dx.doi.org/10.3390/insects12070638.
Full textDissertations / Theses on the topic "Sterile insect technique"
Benton, Jason Paul. "Transgenic sterile insect technique in Anopheles mosquitos." Thesis, Imperial College London, 2007. http://hdl.handle.net/10044/1/8079.
Full textAndresasen, Morten Holst. "Genetic studies related to the sterile insect technique for Anopheles mosquitoes." Thesis, London School of Hygiene and Tropical Medicine (University of London), 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.405758.
Full textWagenaar, Gideon Daniel. "Dispersal of sterile false codling moth, Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae), for a sterile insect technique programme on citrus." Thesis, Nelson Mandela Metropolitan University, 2015. http://hdl.handle.net/10948/4977.
Full textWalker, Catherine. "The application of sterile insect technique against the tomato leafminer Liriomyza bryoniae." Thesis, Imperial College London, 2013. http://hdl.handle.net/10044/1/11133.
Full textMakee, H. "Studies on the sterile male technique for the control of the tropical warehouse moth, Ephestia cautella." Thesis, University of Reading, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.234668.
Full textPotgieter, Linke. "A mathematical model for the control of Eldana saccharina Walker using the sterile insect technique." Thesis, Stellenbosch : Stellenbosch University, 2013. http://hdl.handle.net/10019.1/85865.
Full textENGLISH ABSTRACT: Two mathematical models are formulated in this dissertation for the population growth of an Eldana saccharina Walker infestation of sugarcane under the influence of partially sterile released insects. The first model describes the population growth of and interaction between normal and sterile E. saccharina moths in a temporally variable, but spatially homogeneous environment. The model consists of a deterministic system of difference equations subject to strictly positive initial data. The primary objective of this model is to determine suitable parameters in terms of which the above population growth and interaction may be quantified and according to which E. saccharina infestation levels and the associated sugarcane damage may be measured. The second model describes this growth and interaction under the influence of partially sterile insects which are released in a temporally variable and spatially heterogeneous environment. The model consists of a discretized reaction-diffusion system with variable diffusion coefficients, subject to strictly positive initial data and zero-flux Neumann boundary conditions on a bounded spatial domain. The primary objectives in this case are to establish a model which may be used within an area-wide integrated pest management programme for E. saccharina in order to investigate the efficiency of different sterile moth release strategies in various scenarios without having to conduct formal field experiments, and to present guidelines by which release ratios, frequencies and distributions may be estimated that are expected to lead to suppression of the pest. In addition to the mathematical models formulated, two practical applications of the models are described. The first application is the development of a user-friendly simulation tool for simulating E. saccharina infestation under the influence of sterile insect releases over differently shaped spatial domains. This tool provides the reader with a deeper understanding as to what is involved in applying mathematical models, such as the two described in this dissertation, to real-life scenarios. In the second application, an optimal diversification of sugarcane habitats is considered as an option for minimising average E. saccharina infestation levels, and as a further consequence, improving the cost-efficiency of sterile insect releases. Although many special cases of the above model classes have been used to model the sterile insect technique in the past, few of these models describe the technique for Lepidopteran species with more than one life stage and where F1-sterility is relevant. In addition, none of these models consider the technique when fully sterile females and partially sterile males are being released. The models formulated in this dissertation are also the first to describe the technique applied specifically to E. saccharina, and to consider the economic viability of applying the technique to this species. Furthermore, very few examples exist of such models which go beyond a theoretical description and analysis towards practical, real-life applications as illustrated in this dissertation.
AFRIKAANSE OPSOMMING: Twee wiskundige modelle word in hierdie proefskrif vir die populasiegroei van ’n Eldana saccha- rina Walker infestasie van suikerriet onder die invloed van gedeeltelik steriele, vrygelate insekte daargestel. Die eerste model beskryf die populasiegroei van en -interaksie tussen normale en steriele E. saccharina motte in ’n dinamiese, maar ruimtelik-homogene omgewing. Die model is ’n stelsel deterministiese verskilvergelykings onderhewig aan streng positiewe aanvangswaardes. Die primˆere doelstelling met hierdie model is om geskikte parameters te bepaal in terme waarvan die bogenoemde groei en interaksie gekwantifiseer kan word, en waarvolgens E. saccharina infestasievlakke en die gepaardgaande suikerrietskade gemeet kan word. Die tweede model beskryf hierdie groei en interaksie onder die invloed van gedeeltelik steriele insekte wat in ’n dinamiese en ruimtelik-heterogene omgewing vrygelaat word. Die model is ’n gediskretiseerde stelsel reaksie-diffusievergelykings met veranderlike diffusieko¨effisi¨ente onderhewig aan streng positiewe aanvangswaardes en zero-vloei Neumann-randwaardes op ’n begrensde ruimtelike gebied. Die primˆere doelstellings in hierdie geval is om ’n model tot stand te bring wat in ’n area-wye, ge¨ıntegreerde pesbestrydingsprogram vir E. saccharina gebruik kan word om die doeltreffendheid van verskillende steriele motvrylatingstrategie¨e te bepaal sonder om daadwerklik veldeksperimente uit te voer, en om riglyne daar te stel waarvolgens vrylatingsverhoudings, -frekwensies en -verspreidings bepaal kan word wat na verwagting na ’n onderdrukking van die pes sal lei. Bykomend tot die wiskundige modelle in hierdie proefskrif, word twee praktiese toepassings van die modelle ook beskryf. In die eerste toepassing word ’n gebruikersvriendelike simulasie hulpmiddel ontwikkel om E. saccharina infestasie onder die invloed van steriele insekvrylatings in verskillende ruimtelike gebiede te simuleer. Hierdie toepassing fasiliteer ’n dieper begrip van wat ter sprake is in die toepassing van wiskundige modelle, soos die twee modelle in hierdie tesis, tot werklike scenario’s. In die tweede toepassing word ’n optimale diversifisering van suikerriet habitats as ’n opsie vir die vermindering van die gemiddelde E. saccharina infestasie vlakke beskou, en gevolglik word die verbetering van die koste-doeltreffendheid van steriele insekvrylatings afgeskat. Alhoewel verskeie spesiale gevalle van die bogenoemde twee klasse van modelle reeds in die verlede gebruik is om die doeltreffendheid van die steriele-insektegniek te modelleer, beskryf weinig van hierdie modelle die tegniek vir Lepidopteriese spesies met meer as een lewensfase en waar F1-steriliteit ter sprake is. Verder beskryf geen van hierdie modelle die tegniek waar algeheel steriele wyfies en gedeeltelik steriele mannetjies vrygelaat word nie. Die modelle in hierdie tesis is ook die eerste waar die tegniek spesifiek op E.saccharina toegepas word, en waar die ekonomiese lewensvatbaarheid van die tegniek vir hierdie spesie oorweeg word. Verder bestaan daar min voorbeelde van soortgelyke modelle wat verder gaan as ’n teoretiese beskrywing en wiskundige ontleding na praktiese, werklike toepassings, soos in hierdie proefskrif ge¨ıllustreer.
Bilski, Michal Mamert. "Engineered genetic sterility of pest insects." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:0d2bc7dd-7388-4418-a614-c7d77d8c905d.
Full textHaddad, Gianni Queiroz. "Perspectiva de utilização da técnica do inseto estéril para lagarta da maçã Heliothis virescens (Lepidoptera: Noctuidae) e lagarta do velho mundo Helicoverpa armigera (Lepidoptera: Noctuidae) na cultura do algodoeiro como um método alternativo de controle." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/64/64134/tde-19052017-153520/.
Full textSince the 1950s, scientists have used ionizing radiation to sterilize insects, which are released in nature to mate, but without any progeny. Known as the sterile insect technique (TIE), this method of insect control has traditionally used ionizing radiation to sterilize insects, a technique that does not generate residues, and can act in synergy with the other techniques within integrated pest management. For several years, Brazil has been fighting against the increase of pests, introducing new tactics and techniques within the IPM programs, to overcome the resistance of chemical products, such as: reducing the residues of agrochemicals; For some important crops of our country, we have a wide spectrum of pests occurring from the beginning to the end of the harvest, one of them is the cotton crop and among the key pests of this crop, we have some extremely important caterpillars, among them Heliothis virescens and Helicoverpa armigera These species are morphologically similar, the second being identified a few years ago in Brazil. There are still no studies in Brazil using TIE as an additional tool for Lepidoptera, therefore the purpose of this study was to evaluate the effect of doses of gamma radiation in the different phases of the evolutionary cycle of Heliothis virescens and Helicoverpa armigera, as well as to evaluate the sterility in generation P And the ability of insects to irradiate with non-irradiated insects. The pupal phase presented the best result because 75 Gy achieved sterility in Heliothis virecens and 100 Gy sterilized Helicoverpa armigera, therefore it contemplated the phase and dose chosen to evaluate the competition between the irradiated insects and the normal insects of both species. Both Heliothis virecens and Helicoverpa armigera presented a satisfactory result, as the irradiated insects managed to significantly reduce the viability of the eggs in a ratio of 9: 1: 1
Bonizzoni, Mariangela. "Population dynamics, sexual behavior and endogenous transposable elements for the improvement of the sterile insect technique against Ceratitis capitata (Diptera, Tephritidae)." Paris 11, 2004. http://www.theses.fr/2004PA112002.
Full textThe medfly, Ceratitis capitata, is a pest species with a long history of invasion success. The major environmentally benign method of pest control is the Sterile Insect Technique. SIT relies on the periodic release into the field of mass-reared sterile flies, preferentially males that should compete with wild males in mating with females. SIT improvement requires knowledge of population dynamics and bioclimatology to program fly releases and knowledge of sexual behavior to have competitive sterile male. My PhD research activity was mainly focused on medfly and covered three fields: population dynamics, sexual behavior and transposable elements. Specifically: 1. Medfly population dynamics: what is the status of medfly in California? 2. Sexual behavior: do medfly females remate in the wild? Does the frequency of remating vary with the varying of ecological condi1ions and population sizes? 3. On genome. Medfly was the first non-drosophilid insect to be genetically modified by transposable elements. Nowadays, the most promising transformation system is based on the element piggyBac. As the presence, in the host species, of endogenous piggyBac-like elements could influence transgene stability, I analysed the presence of piggyBac-like elements in medfly genome. The analysis was extended to other 13 tephritid species. The answers to some of these questions have already been submitted to the attention of the international scientific community, consequently the corresponding papers are included in this thesis after a general introduction of the discussed subject
Nepgen, Eugene Stephan. "A study on the application technology of the sterile insect technique, with focus on false codling moth, Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae), a pest of citrus in South Africa." Thesis, Rhodes University, 2014. http://hdl.handle.net/10962/d1013199.
Full textBooks on the topic "Sterile insect technique"
Dyck, V. A., J. Hendrichs, and A. S. Robinson, eds. Sterile Insect Technique. Berlin/Heidelberg: Springer-Verlag, 2005. http://dx.doi.org/10.1007/1-4020-4051-2.
Full textDyck, Victor Arnold. Rearing codling moth for the sterile insect technique. Rome: Food and Agriculture Organization of the United Nations, 2010.
Find full textJ, Hendrichs, ed. Integrating the sterile insect technique as a key component of area-wide tsetse and trypanosomiasis intervention. Rome: Food and Agriculture Organization of the United Nations, 2001.
Find full textJoint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture., ed. Sterile insect technique for tsetse control and eradication: Proceedings of the final research co-ordination meeting. Vienna: International Atomic Energy Agency, 1990.
Find full textFAO/IAEA International Conference on Area-Wide Control of Insect Pests Integrating the Sterile Insect and Related Nuclear and Other Techniques (1998 Penang, Malaysia). FAO/IAEA International Conference on Area-Wide Control of Insect Pests Integrating the Sterile Insect and Related Nuclear and Other Techniques: Penang, Malaysia, 28 May - 2 June 1998 : programme : book of abstracts. [Vienna, Austria?: International Atomic Energy Agency, 1998.
Find full textRobinson, A. S., J. Hendrichs, and Victor Arnold Dyck. Sterile Insect Technique. Taylor & Francis Group, 2021.
Find full textDyck, V. A., J. Hendrichs, and A. S. Robinson, eds. Sterile Insect Technique. CRC Press, 2020. http://dx.doi.org/10.1201/9781003035572.
Full textCalkins, Carrol O. Fruit Flies and the Sterile Insect Technique. Taylor & Francis Group, 2019.
Find full textO, Calkins Carrol, Klassen Waldemar, Liedo Palbo, and International Congress of Entomology (1992 : Beijing, China), eds. Fruit flies and the sterile insect technique. Boca Raton, FL: CRC Press, 1994.
Find full textCalkins, Carrol O. Fruit Flies and the Sterile Insect Technique. Taylor & Francis Group, 2017.
Find full textBook chapters on the topic "Sterile insect technique"
Heppner, John B., David B. Richman, Steven E. Naranjo, Dale Habeck, Christopher Asaro, Jean-Luc Boevé, Johann Baumgärtner, et al. "Sterile Insect Technique." In Encyclopedia of Entomology, 3541–63. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-6359-6_4389.
Full textSchetelig, Marc F., and Ernst A. Wimmer. "Insect Transgenesis and the Sterile Insect Technique." In Insect Biotechnology, 169–94. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-9641-8_9.
Full textPlant, Richard E. "The Sterile Insect Technique: A Theoretical Perspective." In Pest Control: Operations and Systems Analysis in Fruit Fly Management, 361–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-70883-1_23.
Full textOliva, Clelia, Laurence Mouton, Hervé Colinet, Allan Debelle, Patricia Gibert, and Simon Fellous. "Sterile Insect Technique: Principles, Deployment and Prospects." In Extended Biocontrol, 55–67. Dordrecht: Springer Netherlands, 2022. http://dx.doi.org/10.1007/978-94-024-2150-7_5.
Full textSassù, Fabiana, Katerina Nikolouli, Christian Stauffer, Kostas Bourtzis, and Carlos Cáceres. "Sterile Insect Technique and Incompatible Insect Technique for the Integrated Drosophila suzukii Management." In Drosophila suzukii Management, 169–94. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-62692-1_9.
Full textNazni, Wasi Ahmad, Guat-Ney Teoh, Shaikh Ismail Shaikh Norman Hakimi, Mohd Azam Muhammad Arif, Maheswaran Tanusshni, Mohd Adnan Nuradila, Achim Nurfarahin Hanini, et al. "Aedes Control Using Sterile Insect Technique (SIT) in Malaysia." In Genetically Modified and other Innovative Vector Control Technologies, 143–62. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2964-8_8.
Full textBarnes, Brian N. "Sterile Insect Technique (SIT) for Fruit Fly Control – The South African Experience." In Fruit Fly Research and Development in Africa - Towards a Sustainable Management Strategy to Improve Horticulture, 435–64. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-43226-7_19.
Full textBhatia, Sumit Kaur, Sudipa Chauhan, and Priyanka Arora. "Effect of Sterile Insect Technique on Dynamics of Stage-Structured Model Under Immigration." In Springer Proceedings in Mathematics & Statistics, 75–86. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-1157-8_7.
Full textChoo, Amanda, Elisabeth Fung, Thu N. M. Nguyen, Anzu Okada, and Peter Crisp. "CRISPR/Cas9 Mutagenesis to Generate Novel Traits in Bactrocera tryoni for Sterile Insect Technique." In Methods in Molecular Biology, 151–71. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2301-5_9.
Full textDilani, P. V. D., Y. I. N. S. Gunawardene, and R. S. Dassanayake. "Genetic Improvements to the Sterile Insect Technique (SIT) for the Control of Mosquito Population." In Genetically Modified and other Innovative Vector Control Technologies, 43–65. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2964-8_3.
Full textConference papers on the topic "Sterile insect technique"
Ovadia, Yaniv, Yoni Halpern, Dilip Krishnan, Josh Livni, Daniel Newburger, Ryan Poplin, Tiantian Zha, and D. Sculley. "Learning to Count Mosquitoes for the Sterile Insect Technique." In KDD '17: The 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3097983.3098204.
Full text"Area-wide management guidelines for Sterile Insect Technique developed through interdisciplinary modelling research." In 23rd International Congress on Modelling and Simulation (MODSIM2019). Modelling and Simulation Society of Australia and New Zealand, 2019. http://dx.doi.org/10.36334/modsim.2019.g3.parry.
Full textThomé, Roberto Carlos Antunes, Claudia Mazza Dias, Edilson Fernandes Arruda, Dayse Haime Pastore, and Hyun Mo Yang. "Optimal Control of Aedes Aegypti Mosquitoes by Sterile Insect Technique, Insecticide and Larvicide." In XXXVI Iberian Latin American Congress on Computational Methods in Engineering. Rio de Janeiro, Brazil: ABMEC Brazilian Association of Computational Methods in Engineering, 2015. http://dx.doi.org/10.20906/cps/cilamce2015-0072.
Full textKumano, Norikuni. "Sperm marking using the trace element rubidium to improve the monitoring of the sterile sperm usage in the sterile insect technique." In 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.108801.
Full textLanouette, Geneviève. "Preliminary results of radiation dose responses ofDrosophila suzukii(Matsumura) for use in the Sterile Insect Technique (SIT)." In 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.115560.
Full textGilles, Jeremie R. L. "R&D activities of the Joint FAO/IAEA Insect Pest Control Laboratory toward sterile insect technique (SIT)-based population control of mosquito species." In 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.93281.
Full textAkter, Humayra. "Raspberry ketone as a promising pre-release supplement for Sterile Insect Technique programs of Queensland fruit fly,Bactrocera tryoni." In 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.108192.
Full textMoses-Gonzales, Nathan J. "Sterile Insect Technique (SIT) and Unmanned Aircraft Systems (UAS): Applications and limitations in Area-Wide Integrated Pest Management (AW-IPM)." In 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.109992.
Full textSim, Sheina. "QTL mapping of white pupae in a genetic sexing strain of melon fly, Bactroceracucurbitae (Coquillett) (Diptera: Tephritidae), and applications for Sterile Insect Technique." In 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.113014.
Full textHaraguchi, Dai. "Eradication of the sweetpotato weevil,Cylas formicarius(Coleoptera: Curculionidae), from Kume Island, Okinawa, Japan by using a combination of the sterile insect technique and the male annihilation technique." In 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.112272.
Full textReports on the topic "Sterile insect technique"
Yuval, Boaz, and Todd E. Shelly. Lek Behavior of Mediterranean Fruit Flies: An Experimental Analysis. United States Department of Agriculture, July 2000. http://dx.doi.org/10.32747/2000.7575272.bard.
Full textIAEA/FAO interregional training course on use of radiation in insect control and entomology with special emphasis on the sterile insect technique. Final report, May 4--June 15, 1994. Office of Scientific and Technical Information (OSTI), December 1994. http://dx.doi.org/10.2172/638183.
Full text