Academic literature on the topic 'Steiner problem'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Steiner problem.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Steiner problem"
Weng, Jia Feng. "Steiner polygons in the Steiner problem." Geometriae Dedicata 52, no. 2 (September 1994): 119–27. http://dx.doi.org/10.1007/bf01263600.
Full textSharma, Gokarna, and Costas Busch. "The Bursty Steiner Tree Problem." International Journal of Foundations of Computer Science 28, no. 07 (November 2017): 869–87. http://dx.doi.org/10.1142/s0129054117500290.
Full textVujosevic, Mirko, and Milan Stanojevic. "A bicriterion Steiner tree problem on graph." Yugoslav Journal of Operations Research 13, no. 1 (2003): 25–33. http://dx.doi.org/10.2298/yjor0301025v.
Full textChen, Yen Hung. "The Clustered Selected-Internal Steiner Tree Problem." International Journal of Foundations of Computer Science 33, no. 01 (November 30, 2021): 55–66. http://dx.doi.org/10.1142/s0129054121500362.
Full textGueron, Shay, and Ran Tessler. "The Fermat-Steiner Problem." American Mathematical Monthly 109, no. 5 (May 2002): 443. http://dx.doi.org/10.2307/2695644.
Full textImase, Makoto, and Bernard M. Waxman. "Dynamic Steiner Tree Problem." SIAM Journal on Discrete Mathematics 4, no. 3 (August 1991): 369–84. http://dx.doi.org/10.1137/0404033.
Full textBorndörfer, Ralf, Marika Karbstein, and Marc E. Pfetsch. "The Steiner connectivity problem." Mathematical Programming 142, no. 1-2 (June 8, 2012): 133–67. http://dx.doi.org/10.1007/s10107-012-0564-5.
Full textGueron, Shay, and Ran Tessler. "The Fermat-Steiner Problem." American Mathematical Monthly 109, no. 5 (May 2002): 443–51. http://dx.doi.org/10.1080/00029890.2002.11919871.
Full textvan Oudheusden, Dirk. "The Steiner tree problem." European Journal of Operational Research 81, no. 1 (February 1995): 221. http://dx.doi.org/10.1016/0377-2217(95)90155-8.
Full textWENG, J. F., I. MAREELS, and D. A. THOMAS. "COMPUTING STEINER POINTS AND PROBABILITY STEINER POINTS IN ℓ1 AND ℓ2 METRIC SPACES." Discrete Mathematics, Algorithms and Applications 01, no. 04 (December 2009): 541–54. http://dx.doi.org/10.1142/s1793830909000403.
Full textDissertations / Theses on the topic "Steiner problem"
Alex, Jerome. "The periodic Steiner problem." Phd thesis, Technische Universität Darmstadt, 2019. http://tuprints.ulb.tu-darmstadt.de/8538/1/AlexDiss.pdf.
Full textMinkoff, Maria 1976. "The Prize Collecting Steiner Tree problem." Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/86544.
Full textSwanepoel, Konrad Johann. "The local Steiner problem in Minkowski spaces." Doctoral thesis, Universitätsbibliothek Chemnitz, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-201000873.
Full textDas Thema dieser Habilitationsschrift kann als die lokalen Eigenschaften der geometrischen minimalen Steiner-Bäume in endlich-dimensionalen normierten Räumen beschrieben werden. Ein minimaler Steiner-Baum einer endlichen Punktmenge ist eine kürzeste zusammenhängende Menge die die Punktmenge verbindet. Kapitel 1 enthält eine kurze Einführung zu diesem Thema und einen Überblick über alle Ergebnisse dieser Arbeit. Die entsprechenden mathematischen Vorkenntnisse mit ihren Beweisen, die erforderlich sind die Ergebnisse zu verstehen, erscheinen in Kapitel 2. In Kapitel 3 führen wir das Fermat-Torricelli-Problem ein, das heißt, die Suche nach einem Punkt, der die Summe der Entfernungen der Punkte einer endlichen Punktmenge minimiert. Wir entwickeln nur den Teil der Theorie der Fermat-Torricelli-Punkte, der in späteren Kapiteln benötigt wird. Minimale Steiner-Bäume in endlich-dimensionalen normierten Räumen werden in Kapitel 4 eingeführt, und eine exakte Formulierung wird für das lokale Steiner-Problem gegeben. In Kapitel 5 lösen wir das lokale Steiner-Problem für alle zwei-dimensionalen Räume, und diese Lösung wird für eine bestimmte Klasse von höher-dimensionalen Räumen (den sog. CL-Räumen) verallgemeinert. Die zweidimensionale Lösung wird dann auf mehrere bestimmte Normen in Kapitel 6 angewandt. Kapitel 7 enthält eine abstrakte Lösung die in jeder Dimension gilt, die auf der Analysis von Subdifferentialen basiert. Diese Lösung wird auf zwei bestimmte höher-dimensionale Räume in Kapitel 8 angewandt. In Kapitel 9 führen wir einen alternativen Ansatz zur oberen Schranke des maximalen Grads eines minimalen Steiner-Baums ein, der auf dem Beleuchtungsproblem der kombinatorischen Konvexität basiert ist. Schließlich betrachten wir in Kapitel 10 die verwandten minimalen k-Steiner-Bäume. Diese sind die kürzesten Steiner-Bäume, in denen die Anzahl der Steiner-Punkte auf höchstens k beschränkt wird
Wang, Xinhui. "Exact algorithms for the Steiner tree problem." Enschede : University of Twente [Host], 2008. http://doc.utwente.nl/59035.
Full textSrinivasan, Sangeetha Rodger C. A. "Disjoint Intersection problem For Steiner triple systems." Auburn, Ala., 2007. http://repo.lib.auburn.edu/2007%20Fall%20Theses/Srinivasan_Sangeetha_36.pdf.
Full textVahdati-Daneshmand, Siavash. "Algorithmic approaches to the Steiner problem in networks." [S.l. : s.n.], 2004. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB11051778.
Full textMussafi, Noor Saif Muhammad. "Complexity and Approximation of the Rectilinear Steiner Tree Problem." Master's thesis, Universitätsbibliothek Chemnitz, 2009. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200901213.
Full textLogan, Andrew. "The Steiner Problem on Closed Surfaces of Constant Curvature." BYU ScholarsArchive, 2015. https://scholarsarchive.byu.edu/etd/4420.
Full textVan, Laarhoven Jon William. "Exact and heuristic algorithms for the Euclidean Steiner tree problem." Diss., University of Iowa, 2010. https://ir.uiowa.edu/etd/755.
Full textCinel, Sertac. "Sequential And Parallel Heuristic Algorithms For The Rectilinear Steiner Tree Problem." Master's thesis, METU, 2006. http://etd.lib.metu.edu.tr/upload/12607896/index.pdf.
Full textPhysical Design&rdquo
phase of the Very Large Scale Integrated (VLSI) Computer Aided Design (CAD) process. The Rectilinear Steiner Tree Problem asks for a minimum length tree that interconnects a given set of points by only horizontal and vertical line segments, enabling the use of extra points. There are various exact algorithms. However the problem is NP-complete hence approximation algorithms have to be used especially for large instances. In this thesis work, first a survey on heuristics for the Rectilinear Steiner Tree Problem is conducted and then two recently developed successful algorithms, BGA by Kahng et. al. and RST by Zhou have been studied and investigated deeply. Both algorithms have subproblems, most of which have individual backgrounds in literature. After an analysis of BGA and RST, the thesis proposes a modification on RST, which leads to a faster and non-recursive version. The efficiency of the modified algorithm has been validated by computational tests using both random and VLSI benchmark instances. A partially parallelized version of the modified algorithm is also proposed for distributed computing environments. It is implemented using MPI (message passing interface) middleware and the results of comparative tests conducted on a cluster of workstations are presented. The proposed distributed algorithm has also proved to be promising especially for large problem instances.
Books on the topic "Steiner problem"
Hwang, Frank. The Steiner tree problem. Amsterdam: North-Holland, 1992.
Find full textHwang, Frank K. The Steiner tree problem. London: North-Holland, 1992.
Find full textPrömel, Hans Jürgen, and Angelika Steger. The Steiner Tree Problem. Wiesbaden: Vieweg+Teubner Verlag, 2002. http://dx.doi.org/10.1007/978-3-322-80291-0.
Full textIvanov, A. O. Minimal networks: The Steiner problem and its generalizations. Boca Raton, Fla: CRC Press, 1994.
Find full textDror, Moshe. Directed Steiner tree problem on a graph: Models, relaxations, and algorithms. Monterey, Calif: Naval Postgraduate School, 1988.
Find full textVoss, Stefan. Steiner-Probleme in Graphen. Frankfurt am Main: Anton Hain, 1990.
Find full textXiaodong, Hu, ed. Steiner tree problems in computer communication networks. Hackensack, NJ: World Scientific, 2008.
Find full textEducation and beyond: Steiner and the problems of modern society. Edinburgh: Floris Books, 1996.
Find full textC, Menz Fredric, and Lipsey Richard G. 1928-, eds. Study guide and problems to accompany Economics, eighth edition, [by] Lipsey/Steiner/Purvis. New York: Harper & Row, 1987.
Find full textForbush, Dascomb Ramsey. Study guide and problems to accompany Economics, eighth edition, [by] Lipsey/Steiner/Purvis. New York: Harper & Row, 1987.
Find full textBook chapters on the topic "Steiner problem"
Lau, H. T. "Steiner Tree Problem." In Lecture Notes in Economics and Mathematical Systems, 81–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-61649-5_5.
Full textPrömel, Hans Jürgen, and Angelika Steger. "Geometric Steiner Problems." In The Steiner Tree Problem, 191–222. Wiesbaden: Vieweg+Teubner Verlag, 2002. http://dx.doi.org/10.1007/978-3-322-80291-0_10.
Full textPrömel, Hans Jürgen, and Angelika Steger. "Basics I: Graphs." In The Steiner Tree Problem, 1–22. Wiesbaden: Vieweg+Teubner Verlag, 2002. http://dx.doi.org/10.1007/978-3-322-80291-0_1.
Full textPrömel, Hans Jürgen, and Angelika Steger. "Basics II: Algorithms." In The Steiner Tree Problem, 23–40. Wiesbaden: Vieweg+Teubner Verlag, 2002. http://dx.doi.org/10.1007/978-3-322-80291-0_2.
Full textPrömel, Hans Jürgen, and Angelika Steger. "Basics III: Complexity." In The Steiner Tree Problem, 41–62. Wiesbaden: Vieweg+Teubner Verlag, 2002. http://dx.doi.org/10.1007/978-3-322-80291-0_3.
Full textPrömel, Hans Jürgen, and Angelika Steger. "Special Terminal Sets." In The Steiner Tree Problem, 63–74. Wiesbaden: Vieweg+Teubner Verlag, 2002. http://dx.doi.org/10.1007/978-3-322-80291-0_4.
Full textPrömel, Hans Jürgen, and Angelika Steger. "Exact Algorithms." In The Steiner Tree Problem, 75–86. Wiesbaden: Vieweg+Teubner Verlag, 2002. http://dx.doi.org/10.1007/978-3-322-80291-0_5.
Full textPrömel, Hans Jürgen, and Angelika Steger. "Approximation Algorithms." In The Steiner Tree Problem, 87–106. Wiesbaden: Vieweg+Teubner Verlag, 2002. http://dx.doi.org/10.1007/978-3-322-80291-0_6.
Full textPrömel, Hans Jürgen, and Angelika Steger. "More on Approximation Algorithms." In The Steiner Tree Problem, 107–32. Wiesbaden: Vieweg+Teubner Verlag, 2002. http://dx.doi.org/10.1007/978-3-322-80291-0_7.
Full textPrömel, Hans Jürgen, and Angelika Steger. "Randomness Helps." In The Steiner Tree Problem, 133–64. Wiesbaden: Vieweg+Teubner Verlag, 2002. http://dx.doi.org/10.1007/978-3-322-80291-0_8.
Full textConference papers on the topic "Steiner problem"
Oliveira, Andrey, Danilo Sanches, and Bruna Osti. "Hybrid greedy genetic algorithm for the Euclidean Steiner tree problem." In Encontro Nacional de Inteligência Artificial e Computacional. Sociedade Brasileira de Computação - SBC, 2019. http://dx.doi.org/10.5753/eniac.2019.9350.
Full textLeverenz, Christine R., and Miroslaw Truszczynski. "The rectilinear Steiner tree problem." In the 37th annual Southeast regional conference (CD-ROM). New York, New York, USA: ACM Press, 1999. http://dx.doi.org/10.1145/306363.306402.
Full textPark, Joon-Sang, Won W. Ro, Handuck Lee, and Neungsoo Park. "Parallel Algorithms for Steiner Tree Problem." In 2008 Third International Conference on Convergence and Hybrid Information Technology (ICCIT). IEEE, 2008. http://dx.doi.org/10.1109/iccit.2008.167.
Full textAbu-Affash, A. Karim, Paz Carmi, Matthew J. Katz, and Michael Segal. "The euclidean bottleneck steiner path problem." In the 27th annual ACM symposium. New York, New York, USA: ACM Press, 2011. http://dx.doi.org/10.1145/1998196.1998268.
Full textHartley, Stephen J. "Steiner systems and the Boolean satisfiability problem." In the 1996 ACM symposium. New York, New York, USA: ACM Press, 1996. http://dx.doi.org/10.1145/331119.331192.
Full textHsieh, Sun-Yuan, and Wen-Hao Pi. "On the Partial-Terminal Steiner Tree Problem." In 2008 International Symposium on parallel Architectures, Algorighms and Networks I-SPAN. IEEE, 2008. http://dx.doi.org/10.1109/i-span.2008.11.
Full textGuo, Longkun, Kewen Liao, and Hong Shen. "On the Shallow-Light Steiner Tree Problem." In 2014 15th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT). IEEE, 2014. http://dx.doi.org/10.1109/pdcat.2014.17.
Full textNoferesti, Samira, and Mehri Rajayi. "Solving Steiner Tree Problem by Using Learning Automata." In 2009 International Conference on Computational Intelligence and Software Engineering. IEEE, 2009. http://dx.doi.org/10.1109/cise.2009.5365407.
Full textAbu-Affash, A. Karim. "On the euclidean bottleneck full Steiner tree problem." In the 27th annual ACM symposium. New York, New York, USA: ACM Press, 2011. http://dx.doi.org/10.1145/1998196.1998267.
Full textCoric, Rebeka, Mateja Dumic, and Slobodan Jelic. "A genetic algorithm for Group Steiner Tree Problem." In 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO). IEEE, 2018. http://dx.doi.org/10.23919/mipro.2018.8400173.
Full textReports on the topic "Steiner problem"
Dror, Moshe, Bezalel Gavish, and Jean Choquette. Directed Steiner Tree Problem on a Graph: Models, Relaxations, and Algorithms. Fort Belvoir, VA: Defense Technical Information Center, August 1988. http://dx.doi.org/10.21236/ada199769.
Full text