Academic literature on the topic 'Steel castings Mathematical models'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Steel castings Mathematical models.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Steel castings Mathematical models"

1

Selivyorstov, Vadim, Tatjana Selivyorstova, and Anton Guda. "SYSTEM ANALYSIS OF POROSITY FORMATION PROCESSES IN STEEL CASTINGS AND THEIR MATHEMATICAL MODELS." System technologies 6, no. 125 (December 27, 2019): 89–104. http://dx.doi.org/10.34185/1562-9945-6-125-2019-09.

Full text
Abstract:
The analysis of scientific and technical information about the hardening features of steel castings, which lead to the formation of shrinkage defects is presented. The mechanisms of the relationship of the casting properties of alloys are shown. The analysis of factors that determine fluidity is carried out. The technological parameters of casting are determined, which lead to the formation of pores in steel castings. The mechanisms of porosity formation of endogenous and exogenous nature are considered. Siverts law is given, that describes the dependence of gas concentration on pressure. Graphs of changes in the concentration of nitrogen and hydrogen in the pressure range 1 - 4 atm are given for medium alloyed steel, open-hearth steel, cast iron. The mechanism of the influence of temperature and gas pressure on the process of gas evolution in the melt is analyzed. Technological methods for influencing the solubility of gases during the solidification of the casting are described. The microporosity model of Advanced Porosity Module, the Niyama criterion are analyzed. The need for further studies to develop a general model for the formation of shrinkage defects, which will take into account, inter alia, the dependence of the concentration of gases dissolved in the metal on pressure temperature, is noted.
APA, Harvard, Vancouver, ISO, and other styles
2

SELIVYORSTOVA, TETJANA, VADIM SELIVYORSTOV, and VITALIY KUZNECOV. "COMPLEX OF MATHEMATICAL MODELS AND METHODS TO CALCULATE PRESSURE EFFECT ON SULFIDE DISTRIBUTION IN STEEL." Computer systems and information technologies, no. 2 (October 4, 2021): 57–65. http://dx.doi.org/10.31891/csit-2021-4-7.

Full text
Abstract:
Primary objective is to develop computational method to analyze digital pictures of sulfide prints, helping obtain qualitative image characteristics, and to formulate mathematical model of the distribution of sulphide inclusions to determine specific features of the pressure effect on the macrostructure formation of carbon steel castings flooded into the uncooled mold. The research was carried out using images of sulfide prints of templates cut of steel cylindrical castings; L500 steel was applied. The castings result from industrial tests of a method of gas-dynamic effect on the fusion in the foundry forms under the conditions of a casthouse of Dnipropetrovsk aggregate plant PJSC. Digital pictures of sulfide prints, obtained in terms of the increased rate of gas pressure and maximum pressure, were binarized; defective fra gments were removed; and zoning took place. The developed computational method has been applied for fragments of images, representing different zones; data arrays have been received containing sizes and amounts of inclusions in the fragment. The developed computational method to analyze digital images of sulfide prints has been implemented. ASImprints software support has helped obtain qualitative characteristics of images; namely, distribution of amount of the certain-size sulfide inclusions. The computational method to analyze digital images of sulfide prints has made it possible to study the set of patterns of sulfide prints. The dependences have been obtained, describing specific features of sulfide inclusion distribution while varying gas-dynamic pressure method in terms of fusion in the casting form. It has been demonstrated that the distribution describes effectively the power-series distribution to compare with the exponential one. Mathematical model of the power-series distribution parameter dependence upon pressure has been developed. Deviation of the distribution parameters in terms of the experimental values and the model values has been evaluated. The research demonstrates the ways to apply an algorithm of simple recursive casting for quantitative analysis of digital images of sulfide prints. Use of ASImprints, being software implementation of the computational method to analyze digital images of sulfide prints making it possible to obtain qualitative characteristics of images, has helped identify that the increased pressure within a casting-device for gas injection system results in the increased specific amount of inclusions and the decreased specific zone of sulfide inclusions respectively. It has been defined that exponential function describes reliably the nature of sulfide inclusion distribution in the digital image of sulfide print. The research has demonstrated that fragments of a sulfide print, belonging to one zone, are statistically homogeneous. Thus, it is possible to analyze quantitively digital image zone of a sulfide print on its fragment. Mathematical model of dependence of sulfide inclusion distribution in carbon-steel castings in terms of gas-dynamic effect on fusion solidifying in a mold has been developed. The model may be applied to predict sulfide inclusion distribution within the selected zones of cross section of the cylindrical castings solidifying in the uncooled mold in terms of the preset mode of gas-dynamic effect. Keywords: gas-dynamic effect, pressure, solidification, casting, steel, 35 Л, mold, macrostructure, sulfides, inclusions, template, sulfide print, distribution, polynomial, parameters, prediction, software implementation, ASImprints
APA, Harvard, Vancouver, ISO, and other styles
3

Bondarenko, V. I., V. V. Bilousov, F. V. Nedopekin, and J. I. Shalapko. "The Mathematical Model of Hydrodynamics and Heat and Mass Transfer at Formation of Steel Ingots and Castings." Archives of Foundry Engineering 15, no. 1 (March 1, 2015): 13–16. http://dx.doi.org/10.1515/afe-2015-0003.

Full text
Abstract:
Abstract The generic mathematical model and computational algorithm considering hydrodynamics, heat and mass transfer processes during casting and forming steel ingots and castings are offered. Usage domains for turbulent, convective and non-convective models are determined depending on ingot geometry and thermal overheating of the poured melt. The expert system is developed, enabling to choose a mathematical model depending on the physical statement of a problem.
APA, Harvard, Vancouver, ISO, and other styles
4

Kondratyuk, S. Ye, V. I. Veis, and Z. V. Parkhomchuk. "Structure formation and properties of overheated steel depending on thermokinetic parameters of crystallization." Journal of Achievements in Materials and Manufacturing Engineering 2, no. 97 (December 1, 2019): 49–56. http://dx.doi.org/10.5604/01.3001.0013.8537.

Full text
Abstract:
Purpose: The aim of the proposed research is to investigate the mutual influence of the temperature of an overheated melt and its cooling rate during crystallization on the formation of the cast structure and mechanical properties of structural steels. Design/methodology/approach: Two structural medium-carbon steels were melted in induction furnace and poured from temperatures 1520-1670°C into casting moulds with different heat removal ability. This ensured the crystallization and structure formation of the studied steel castings at cooling rates (Vc) of 5°C/sec (sand-clay mould), 45°C/sec (steel mould), 350°C/sec (water cooled copper mould). It was studied a change of structure formation, mechanical characteristics depending on the temperature-kinetic conditions of the processing of the melt. Based on the processing of the array of obtained experimental data using linear regression analysis and a software package, interpolation models and their graphic images obtained allow a quantitative assessment of the established patterns of structural characteristics and mechanical properties of the studied steels depending on melt temperature (T, °C) and its cooling rate (Vc, °C/sec) during crystallization and structure formation. Findings: Among the technological factors that determine the formation of the cast structure and the mechanical properties of steels, the dominant role is played by the intensity of heat removal during the solidification of castings. The high cooling rate of the melt during crystallization determines an increase in the number of crystallization nuclei due to an increase in the degree of supercooling of the melt, eliminates the negative effect of the high overheating temperature of the metal before casting. Research limitations/implications: In the future, the results can be complemented by studies of the influence of the duration of isothermal exposure of the melt at different temperatures of superheating and cooling conditions. Practical implications: The obtained mathematical models (regression equations) that determine the mutual influence of the cooling rate and the temperature of the melt overheating on the structure and mechanical properties of the studied steels make it possible to obtain steel castings with predetermined properties at the level of properties of wrought steel of similar chemical composition. Originality/value: Interpolation models that allow a quantitative assessment of the established patterns of structural characteristics and mechanical properties of the studied steels depending on the melt temperature (T, °C) and its cooling rate (Vc, °C/sec) during crystallization and structure formation are obtained.
APA, Harvard, Vancouver, ISO, and other styles
5

Kondratyuk, S. Ye, V. I. Veis, Z. V. Parkhomchuk, and G. I. Shevchenko. "Gradient structure and properties of steel castings." Metaloznavstvo ta obrobka metalìv 99, no. 3 (September 30, 2021): 3–14. http://dx.doi.org/10.15407/mom2021.03.003.

Full text
Abstract:
The influence of melt overheating in the range of 50-150 °C on the equilibrium liquidus and its cooling rate during crystallization of castings on the formation of macrostructural zones along their cross section, on the change of grain dispersion, dendritic structure characteristics and mechanical properties was investigated on the example of 25L steel. It is established that the macrostructure of castings in the direction of unilateral heat removal as it moves away from the cooled surface consists of four main structural zones - small coaxial crystals, columnar, branched and large coaxial crystals, the length and morphology of which naturally change depending on thermokinetic conditions of crystallization. The decisive role of the cooling rate at significant overheating of the melt to increase the number of crystallization nuclei, the formation of a more dispersed cast structure by increasing the degree of supercooling of the melt during crystallization is shown. The regularities of quantitative characteristics change of microstructure and dendritic structure depending on change of temperature-time parameters of crystallization in different structural zones of castings and their connection with characteristics of mechanical properties of steel are established. On the basis of mathematical processing of experimental data by linear regression analysis interpolation models and their graphical interpretations are obtained, which allow to quantify and predict the change of mechanical properties in different structural zones of gradient castings depending on melt overheating temperature and cooling modes within the investigated factor space. Keywords: gradient structure, structural zones, melt, mechanical properties.
APA, Harvard, Vancouver, ISO, and other styles
6

Grămescu, Traian, and Constantin Cărăușu. "Machinability by Milling of Gray Cast Iron." Applied Mechanics and Materials 657 (October 2014): 88–92. http://dx.doi.org/10.4028/www.scientific.net/amm.657.88.

Full text
Abstract:
In the laboratory of cutting machining technologies from the “Gheorghe Asachi” Technical University of Iaşi, a series of investigations on the machinability of cast iron samples having various structures were designed and developed. The aim of the research was to know and to explain the way in which various constituents of some iron castings exert influence on the degree of wear of a milling tool made of high speed steel. Within this research, mathematical empirical models were determined, in order to calculate the cutting speed v60, considered as an indicator for the evaluation of machinability. The research allowed establishing the factors able to have a major influence on tool wear phenomenon and obtaining thus a more complete image concerning the machinability of grey iron used for castings.
APA, Harvard, Vancouver, ISO, and other styles
7

Arif Mammadov, Arif Mammadov, Nizami Ismayilov Nizami Ismayilov, Mukhtar Huseynov Mukhtar Huseynov, and Faiq Guliyev Faiq Guliyev. "SOME ASPECTS OF MATHEMATICAL MODELING OF ELECTRIC STEEL MELTING PROCESS." PAHTEI-Procedings of Azerbaijan High Technical Educational Institutions 14, no. 03 (March 21, 2022): 04–12. http://dx.doi.org/10.36962/pahtei14032022-04.

Full text
Abstract:
The article discusses some aspects of mathematical modeling of the process of melting electric steel on the basis of innovative metallurgical technologies. It was noted that the production of electric steel mainly consists of three stages - preparation of the charge, melting and casting of liquid steel. The most important of these stages is the mathematical modeling of the melting process, especially the physicochemical processes that take place during melting. All physicochemical processes controlled in order to obtain the required chemical composition of electric steel for modeling are combined into two main groups, such as metal refining and alloying. Possibilities of mathematical modeling of electric steel melting processes have been identified: to successfully solve different types of problems without conducting pro¬duc¬tion experiments; to ensure optimal modes of melting in specific production conditions. The problems to be solved by mathematical modeling have been identified: con¬struc¬tion of a model for specific conditions that allow to achieve the required value of any parameter of the solution; possibility to purchase electric steel in specific conditions; minimum cost of material, time, labor and energy and required chemical composition, temperature and mass melting of steel; automatic control of all parameters of the solution. To solve these problems, the characteristics of static, dynamic and mixed mathematical models have been identified. It has been shown that a deterministic mathematical model can be applied to a system of equations expressing the functional relationships between the parameters of the solution and the factors affecting them. The mixed mathematical model includes equations expressing functional correlations. This model is actually a deterministic static model. Depending on the problem, the expediency of using appropriate models in the melting of electric steel is justified. In general, the creation of a mathematical model of melting processes of electric steel includes: dividing the melting into elementary physicochemical processes within the limits of each period, ie decomposing the melting process; to give a quantitative description of each elementary process, ie to describe the process mathematically; write a mathematical model of each cycle of melting by combining the quantitative characteristics of the parameters and elementary processes controlled on the basis of the equations of material and heat balances; to obtain a mathematical model of the solution as a whole by combining mathematical models of different periods. As an example of the application of mathematical modeling in electroplating processes, the amount of pores formed during the steel melting process in the main braided electric arc furnace was calculated using scrap metal. Keywords: electroplating steel, mathematical modeling, static model, dynamic model, deterministic model, mixed model, functional relationships.
APA, Harvard, Vancouver, ISO, and other styles
8

Siciliano, Fulvio. "Mathematical Modelling of Hot Rolling: A Practical Tool to Improve Rolling Schedules and Steel Properties." Materials Science Forum 762 (July 2013): 210–17. http://dx.doi.org/10.4028/www.scientific.net/msf.762.210.

Full text
Abstract:
Most of the commercial metallic materials undergo at least one hot deformation stage during fabrication. Hot deformation processing leads to the production of plates, strips, rods, pipes and other shapes at lower overall cost when compared to the cold deformation/annealing route. Comprehensive study of the metallurgical phenomena during hot deformation has enormous potential application in the control of industrial rolling processes. Understanding of the microstructural and mean flow stress evolution lead to sound steel developments and innovative rolling schedules. The models predict parameters such as grain size, fractional softening (static and dynamic) and strain induced precipitation which are useful to improve rolling schedules. Effects such as incomplete softening and strain accumulation can be easily detected as well as their consequences on the final grain size and mechanical properties. In this regard, special attention must be given to steels, the most important metallic material in terms of history, present and future. In this paper, three hot rolling routes will be analyzed in order to produce high strength linepipe steels. Examples were selected on how the use of modelling during development stage can help to meet mechanical properties, mainly toughness and drop weight tear test. Firstly, it is presented a brief overview on mathematical models applied to hot rolling. Thin slab casting/direct rolling, hot strip mill and plate mill are exemplified in the present work. The development of new steel grades can greatly accelerated with the aid of modelling, which is an useful, low-cost technique.
APA, Harvard, Vancouver, ISO, and other styles
9

Miłkowska‐Piszczek, Katarzyna, and Jan Falkus. "Control and Design of the Steel Continuous Casting Process Based on Advanced Numerical Models." Metals 8, no. 8 (July 30, 2018): 591. http://dx.doi.org/10.3390/met8080591.

Full text
Abstract:
The process of continuous casting of steel is a complex technological task, including issues related to heat transfer, the steel solidification process, liquid metal flow and phase transitions in the solid state. This involves considerable difficulty in creating the optimal process control system, which would include the influence of all the physico‐chemical phenomena which may occur. In parallel, there is an intensive development of new mathematical models and an increase in computer performance, therefore complex numerical simulations requiring substantial computing time can be conducted. This paper presents a review of currently applied numerical methods allowing the phenomena accompanying the process of continuous casting of steel to be accurately represented. Special attention was paid to the selection of appropriate methods to solve the technological problem selected. The possibilities of applying selected numerical models were analysed in order to modify and improve the existing process or to design a new one linked to the implementation of new steel grades in the current production. The description of the method of defining the boundary conditions, initial conditions and material parameters as vital components ensuring that numerical calculations based upon them in the finite element method, which is that most frequently applied, are correct is an important element of the paper. The possibility of reliably defining the values of boundary parameters on the basis of information on the intensity of cooling in individual zones of the continuous casting machine was analysed.
APA, Harvard, Vancouver, ISO, and other styles
10

Ramírez-López, Adán, Omar Dávila-Maldonado, Alfonso Nájera-Bastida, Rodolfo Dávila Morales, Carlos Rodrigo Muñiz-Valdés, and Jafeth Rodríguez-Ávila. "Computer Modeling of Grain Structure Formation during Quenching including Algorithms with Pre- and Post-Solidification." Metals 12, no. 4 (April 4, 2022): 623. http://dx.doi.org/10.3390/met12040623.

Full text
Abstract:
Simulation of the grain growth process, as a function of steel heat transfer conditions, is helpful for predicting grain structures of continuous cast steel products. Many authors have developed models based on numerical methods to simulate grain growth during metal solidification. Nevertheless, the anisotropic nature of grain structures makes necessary the employment of new mathematical methods such as chaos theory, fractals, and probabilistic and stochastic theories of simulation. The problem is significant for steelmakers to avoid defects in products and to control the steel microstructure during the continuous casting process. This work discusses the influence of nodal solidification times and computer algorithms on the dynamic formation of the chill, columnar, and equiaxed zones including physical phenomena such as nucleation and grain growth. Moreover, the model incorporates pre-nucleation and pre-growth routines in the original algorithm. There is a description of the influence of the mathematical parameter criteria and probabilities over the grain morphology obtained after solidification. Finally, an analysis of these algorithms elucidates the differences between these structures and those obtained from models considering only the solidification.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Steel castings Mathematical models"

1

Spinelli, Jose Eduardo. "Simulação do lingotamento continuo de tiras finas de aços." [s.n.], 2000. http://repositorio.unicamp.br/jspui/handle/REPOSIP/264701.

Full text
Abstract:
Orientador: Amauri Garcia
Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecanica
Made available in DSpace on 2018-07-27T19:18:36Z (GMT). No. of bitstreams: 1 Spinelli_JoseEduardo_M.pdf: 6965190 bytes, checksum: 39afbc7a3acd510a9c00a458e1f8ba9a (MD5) Previous issue date: 2000
Resumo: Entende-se por modelagem de processo, o desenvolvimento de uma representação quantitativa ou qualitativa dos fenômenos físicos associados ao processo. Neste trabalho são realizadas simulações do processo twin roll de lingotamento contínuo de tiras de aços, utilizando como referência tecnológica o equipamento piloto instalado nas dependências do Instituto de Pesquisas Tecnológicas do Estado de São Paulo. São construídos dois simuladores para o processo: um simulador da solidificação unidirecional, com molde refrigerado de aço e paredes laterais de material refratário, utilizando-se o aço inoxidável 304 como material de simulação; e variando-se as temperaturas de vazamento; e outro simulador a frio, com componentes feitos de acrílico, água como fluido de simulação e permanganato de potássio como corante. Um modelo matemático previamente desenvolvido é utilizado para confrontar perfis térmicos teóricos com perfis experimentais, para a determinação do coeficiente de transferência de calor metal/molde. O levantamento de valores de espaçamento dendrítico secundário é realizado nas amostras, além da observação simultânea das estruturas de solidificação, o que comprovou a eficiência do simulador em caracterizar o processo de solidificação do equipamento piloto. O uso do modelo frio permitiu a caracterização do posicionamento de barreira a 15 cm ou a 20 cm da lateral esquerda do distribuidor como a melhor configuração
Abstract: It can be understood by process modeling the development of a quantitative or qualitative representation of the physical phenomena associated to the process. In this work, simulations concerning the twin roll continuous caster of steels process at IPT (Instituto de Pesquisas Tecnológicas do Estado de São Paulo) are performed. Two simulators were developed: (i) a simulator of unidirectional solidification with cooled steel mold and refractory lateral walls, by using a stainless steel as the reference metal (AISI 304), and varying superheat temperatures; (ii) a physical model, with components made of acrylic, water as the simulation fluid and potassium permanganate as a pigment. A previously developed mathematical model has been used to determine the metal/mold heat transfer coefficient by a method that compares experimenta1ltheoretical temperature curves. Measurement of secondary dendrite arm spacings is performed by microestructural examination of the samples, confirming the simulator efficiency in characterizing the solidification process in the pilot equipment. The use of the physical model has permitted to attain the best configuration for the tundish, by positioning the dam 15 cm or 20 cm from the left side of tundish
Mestrado
Materiais e Processos de Fabricação
Mestre em Engenharia Mecânica
APA, Harvard, Vancouver, ISO, and other styles
2

Moosbrugger, John C. "Numerical computation of metal/mold boundary heat flux in sand castings using a finite element enthalpy model." Thesis, Georgia Institute of Technology, 1985. http://hdl.handle.net/1853/16365.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rees, C. S. "Mathematical models in an integrated steel making plant." Thesis, University of Hull, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.383736.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sierra, Robinson. "Investigation of the mechanical behaviour of TRIP steels using FEM." Thesis, McGill University, 2006. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=99793.

Full text
Abstract:
The need to develop light-weight and high strength materials for car frames which improve fuel efficiency and provide increased passenger safety during dynamic events such as automobile crashes has been the focus of the steel and automobile industries for the past 30 years. In recent years, the development of high strength steels such as multi-phase TRIP (Transformation-Induced Plasticity)-aided steels have shown great promise due to their excellent combination of high strength and ductility. The savings in automobile weight is provided by the inherent strength of TRIP steels which allows for the use of thinner sections. The TRIP effect is characterized by the phenomenon known as strain-induced martensitic transformation (SIMT) which enhances the work hardenability of such steels as the austenite phase transforms to the much harder martensite phase during plastic straining. This results in a resistance to local necking which subsequently enhances the strength, ductility, and formability of such steels. However, various factors exist which affect the mechanical behaviour of TRIP steels. This study will aim, through the use of finite element models, to investigate the role and influence of each of these factors on the TRIP effect in type 304 austenitic and multi-phase TRIP steels. These factors include the rate at which the martensitic transformation proceeds, the state of stress to which the material is subjected to, the interaction between the surrounding matrix and embedded retained austenite islands in multi-phase TRIP steels, and the volume fraction and morphology of the retained austenite islands. Investigation of these factors will provide further insight on each of their contributions to the TRIP effect in order to exploit the potential benefits offered by these steels.
APA, Harvard, Vancouver, ISO, and other styles
5

Mahmoody, Sam. "Micromechancal modeling of dual-phase steel using a rate-dependent crystal plasticity model." Thesis, McGill University, 2007. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=99778.

Full text
Abstract:
Dual-phase (DP) steels consisting of a ferrite matrix with dispersed martensite particles have attracted a significant interest due to their combination of high work hardening and ductility. A great deal of experimental work has been done to obtain a better comprehension of the relation of their mechanical behaviour to their microstructural characteristics. In the present work, a micromechanical study of ferrite-martensite DP steels is conducted. The deformation of ferrite is described by a rate-dependent crystal plasticity theory, which relates the stress-strain field equations on the grain level to the macroscopic behaviour of the material. The crystal plasticity theory assumes that slip is the only deformation mechanism. Martensite, on the other hand, is considered an elastic-plastic isotropic solid. The interfaces of the grains are taken into account through an idealized form of grain boundaries. A FORTRAN program was coupled with the finite element method to solve the stress equations of the crystal plasticity. Including the grain boundaries made it possible to examine the effect of ferrite grain size on the strength of the material. It is shown that by decreasing the grain size, the yield stress increases according to Hall-Petch equation. Additionally, the effects of the volume fraction of martensite (Vm) on the onset strain, i.e. the strain at which martensite deforms plastically, and of the distribution of martensite on the stress are studied. The former showed that the onset strain of the DP steel declines linearly with increasing Vm up to 36%, beyond which the onset strain becomes independent of V m. The latter revealed that when martensite particles are formed as islands in the ferrite grains, the material exhibits higher strength and hardening rate; compared to when martensite is distributed as large blocks among the ferrite grains.
APA, Harvard, Vancouver, ISO, and other styles
6

Warke, Virendra S. "Removal of Hydrogen and Solid Particles from Molten Aluminum Alloys in the Rotating Impeller Degasser: Mathematical Models and Computer Simulations." Link to electronic thesis, 2003. http://www.wpi.edu/Pubs/ETD/Available/etd-0626103-111317.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Thomas, Brian Gordon. "Investigation of panel crack formation in steel ingots using mathematical and physical models." Thesis, University of British Columbia, 1985. http://hdl.handle.net/2429/25980.

Full text
Abstract:
An investigation of panel crack formation in steel ingots was undertaken to improve understanding of the mechanisms by which they develop and to evaluate possible solutions to the problem. The investigation revealed that two distinct types of panel cracks, both of which are partly caused by intermediate-temperature embrittlement of steel involving aluminum nitride precipitation, operate under different mechanisms. Isothermal, physical modelling experiments were conducted to determine the flow patterns, velocity profiles and flame geometry in a bottom-fired soaking pit and the resultant effects on heat transfer. An investigation involving comparison with analytical solutions determined the optimum numerical method to employ for the mathematical modelling of complex, two-dimensional, transient, heat-conduction problems. This method was formulated to calculate the temperature distribution in a steel ingot during the various processing stages from initial casting up to rolling and was verified with industrial measurements. A transient, elasto-visco-plastic, thermal-stress model employing the finite-element method was formulated, developed and verified using analytical solutions. Based on the temperatures calculated by the finite-element, heat-transfer model as input data, the transient, internal stress state of the ingot was calculated, taking into account the effects of phase-transformation volume changes and kinetics, creep, and temperature-dependent mechanical property behavior. The simulated stress histories were found to be directly linked to the progress of the phase-transformation front and were used to clarify the role of stress generation in panel crack formation. Finally, the results of a metallurgical investigation of steel ingot samples containing off-corner panel cracks were synthesized with the results of the physical and mathematical models to determine mechanisms and to suggest solutions for the formation of both mid-face and off-corner panel cracks. Mid-face panel cracks are apparently formed during air cooling when the mid-face surface is between the Ar₁ and 500 °C. Off-corner panel cracks appear to initiate internally during the early stages of reheating, but do not propagate to the surface until air cooling after removal from the soaking pit.
Applied Science, Faculty of
Mining Engineering, Keevil Institute of
Graduate
APA, Harvard, Vancouver, ISO, and other styles
8

Choi, Joonho. "Concurrent fire dynamic models and thermomechanical analysis of steel and concrete structures." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/26679.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Uslu, Cafer Harun. "3-d Finite Element Analysis Of Semi-rigid Steel Connections." Master's thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/12610835/index.pdf.

Full text
Abstract:
Two types of connection are generally considered in the design of steel structures in practice. These are classified as completely rigid (moment) and simple (shear) connections. In theory, completely rigid connections can not undergo rotation and simple connections can not transfer moment. However, in reality rigid connections have a relative flexibility which makes them to rotate and simple connections have some reserve capacity to transfer moments. In many modern design specifications, this fact is realized and another type which is called partially restrained or semi-rigid connection is introduced. These types of connections have got the transfer of some beam moment to column together with shear. However, there is a lack of information on the amount of moment transferred and rotation of connection during the action of the moment transfer. The only way to quantify the moment and rotation of the partially restrained connections is to draw momentrotation curves. Nevertheless, drawing such curves requires great amount of expenses for experiments. Taking these into account, the use of finite elements with the help of increased computational power is one way to obtain moment-rotation curves of connections. Available test results guides the finite element analysis for justifications. So these analyses can be further implemented into design functions. This thesis is intended to conduct 3-D non-linear finite element analyses to compliment with tests results for different types of semi-rigid connections with angles and compare them with mathematical models developed by different researchers.
APA, Harvard, Vancouver, ISO, and other styles
10

Zhou, Li. "Machining chip-breaking prediction with grooved inserts in steel turning." Link to electronic thesis, 2002. http://www.wpi.edu/Pubs/ETD/Available/etd-0109102-140803.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Steel castings Mathematical models"

1

Szopa, Romuald. Analiza wrażliwości i zadania odwrotne w termodynamice procesów odlewniczych. Częstochowa: Wydawn. Politechniki Częstochowskiej, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Szekely, Julian. The physical and mathematical modeling of Tundish operations. Berlin: Springer-Verlag, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Szekely, Julian. The physical and mathematical modeling of Tundish operations. New York: Springer-Verlag, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Szekely, Julian. The physical and mathematical modeling of Tundish operations. New York, NY: Springer New York, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Falkus, Jan. Fizyczne i matematyczne modelowanie procesów mieszania kąpieli metalowej w reaktorach metalurgicznych. Kraków: AGH, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Obaia, K. H. Inelastic transverse shear capacity of large fabricated steel tubes. Edmonton, Alta., Canada: Dept. of Civil Engineering, University of Alberta, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Spence, John W. Theoretical damage function for the effects of acid deposition on galvanized steel structures. Research Triangle Park, NC: U.S. Environmental Protection Agency, Atmospheric Sciences Research Laboratory, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Spence, John W. Theoretical damage function for the effects of acid deposition on galvanized steel structures. Research Triangle Park, NC: U.S. Environmental Protection Agency, Atmospheric Sciences Research Laboratory, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Symposium on Use of Models to Optimize Blast Furnace Operations (1999 Hamilton, Ont.). Use of models to optimize blast furnace operations: Proceedings of the Symposium on "Use of Models to Optimize Blast Furnace Operations". Hamilton, Ontario, Canada: Dept. of Materials Science and Engineering, McMaster University, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Rozhkov, I. M. Matematicheskie modeli dli͡a︡ vybora rat͡s︡ionalʹnoĭ tekhnologii i upravlenii͡a︡ kachestvom stali. Moskva: "Metallurgii͡a︡", 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Steel castings Mathematical models"

1

Hömberg, Dietmar. "Mathematical models for the phase transitions in carbon steel." In Progress in Industrial Mathematics at ECMI 94, 358–69. Wiesbaden: Vieweg+Teubner Verlag, 1996. http://dx.doi.org/10.1007/978-3-322-82967-2_44.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Aggarwal, Shikha, and Narain Gupta. "Applications of Mathematical Programming Models for Product Mix Optimization in World Steel Industry: Challenges and Directions." In Managing in Recovering Markets, 133–42. New Delhi: Springer India, 2014. http://dx.doi.org/10.1007/978-81-322-1979-8_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Vignesh, S., G. Muthukumaran, P. Dinesh Babu, K. P. Arulshri, R. Sivabalakrishnan, and G. Surya. "Development of Mathematical Models and Evaluation of the Optimal Process Parameters for Laser Surface Hardening of Low Alloy Steel Using Elitist Non-dominated Sorting Genetic Algorithm." In Lecture Notes in Mechanical Engineering, 583–90. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1724-8_53.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Roberts, William L. "Mathematical Models Relating to Rolling Force." In Cold Rolling of Steel, 478–567. Routledge, 2017. http://dx.doi.org/10.1201/9781315139661-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Garber, Eduard, Alexander Traino, and Irina Kozhevnikova. "Novel Mathematical Models for Cold-Rolling Process." In Flat-Rolled Steel Processes, 179–89. CRC Press, 2009. http://dx.doi.org/10.1201/9781420072938-c16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

"Mathematical Models of Friction in Steel Rolling." In Friction and the Hot Rolling of Steel, 189–200. CRC Press, 2014. http://dx.doi.org/10.1201/b16516-23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Seo, Junwon, and Euiseok Jeong. "Seismic fragility analysis of steel building portfolios based on mathematical models." In Seismic Vulnerability Assessment of Civil Engineering Structures At Multiple Scales, 185–204. Elsevier, 2022. http://dx.doi.org/10.1016/b978-0-12-824071-7.00004-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Guthrie, R. I. L., S. Joo, and H. Nakajima. "Mathematical Models and Sensors as an Aid to Steel Quality Assurance for Direct Rolling Operations." In Direct Rolling and Hot Charging of Strand Cast Billets, 193–209. Elsevier, 1989. http://dx.doi.org/10.1016/b978-0-08-036099-7.50019-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sameh, Boudiba, Hanini Karima, Boudiba Louiza, Saouane Izzeddine, and Benahmed Merzoug. "Mathematical Relationship Based on Experimental Data, for Corrosion Inhibition Mechanism of Phenolic Compounds Obtained from Echium italicum L." In Phenolic Compounds [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.99616.

Full text
Abstract:
We highlight in this chapter the corrosion protection using phenolic extract. The building of mathematical models using experimental results obtained from the investigation of phenolic molecules or fractions extracted from Echium italicum L., used as corrosion inhibitors is one of the new trends in the study of steel protection. The evaluation of the corrosion inhibition of carbon steel (API 5 L-X60) in a solution 1 M of hydrochloric acid was performed using gravimetric method, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The predicted mathematical relationships between the corrosion rate and the inhibitory efficiency in the presence of the butanolic extract of Echium italicum L. (BEEI), when increasing temperature proved a good agreement between experimental and mathematical studies.
APA, Harvard, Vancouver, ISO, and other styles
10

Samal, M. K. "Prevention of Corrosion in Austenitic Stainless Steel through a Predictive Numerical Model Simulating Grain Boundary Chromium Depletion." In Modeling and Simulation Techniques in Structural Engineering, 374–89. IGI Global, 2017. http://dx.doi.org/10.4018/978-1-5225-0588-4.ch013.

Full text
Abstract:
In this chapter, a mathematical model for rate of formation of chromium carbides near the grain boundary, which is a pre-cursor to chromium depletion and corresponding sensitization behavior in stainless steels, is presented. This model along with the diffusion equation for chromium in the grain has been used to obtain chromium depletion profiles at various time and temperature conditions. Finite difference method has been used to solve the above equations in the spherical co-ordinate system and the results of time-temperature-sensitization diagrams of four different types of alloys have been compared with those of experiment from literature. For the problem of low temperature sensitization and corresponding inter-granular corrosion in austenitic stainless steel, it is very difficult to carry out experiment at higher temperatures and justify its validity at lower operating temperatures by extrapolation. The development of predictive models is highly useful in order to design the structures for prevention of corrosion of the material in aggressive environments.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Steel castings Mathematical models"

1

Selivyorstova, Tatjana, and Aleksandr Mikhalyov. "Analysis of Prediction Mathematical Models of Shrinkage Defects in Castings." In 2018 IEEE First International Conference on System Analysis & Intelligent Computing (SAIC). IEEE, 2018. http://dx.doi.org/10.1109/saic.2018.8516811.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Putta, Ramesh N., and Malur N. Srinivasan. "Mathematical Model of Solidification in Continuous Cast Low Carbon Steel Billets." In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-12303.

Full text
Abstract:
This paper describes the relation between the Secondary Dendrite Arm Spacing (SDAS), Area of Mushy Zone with the Continuous Casting variables in low carbon steels during the solidification process in the mold zone. A Finite Element analysis of the heat flow equation, coupled with the solute distribution model and the dendrite growth model, enables the determination of the Secondary Dendrite Arm Spacing (SDAS). The CONBCAST.FOR program is developed in this work to analyze effects of process variables on the Secondary Dendrite Arm Spacing (SDAS), Area of Mushy Zone and Volume of the Bleed. Effort is also made to find the optimum casting parameters. A new concept is introduced in this work to analyze the relation between the Area of Mushy Zone and Secondary Dendrite Arm Spacing (SDAS) with the Volume of the Bleed. Quantitative work is performed by collecting the square shaped billets at two different process conditions and determined the Secondary Dendrite Arm Spacing and Volume of Bleed to analyze the relationship between SDAS, Area of Mushy zone and Volume of Bleed.
APA, Harvard, Vancouver, ISO, and other styles
3

Assunção, Charles Sóstenes, Roberto Parreiras Tavares, and Guilherme Dias Oliveira. "WATER DISTRIBUTION ASSESSMENT APPLIED TO MATHEMATICAL MODEL OF CONTINUOUS CASTING OF STEEL." In 46º Seminário de Aciaria - Internacional. São Paulo: Editora Blucher, 2017. http://dx.doi.org/10.5151/1982-9345-26252.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fedosov, A. V., and G. V. Chumachenko. "OPERATIONAL APPROACH FOR DETERMINING RISER SIZES PROVIDING HIGH QUALITY STEEL CASTINGS." In STATE AND DEVELOPMENT PROSPECTS OF AGRIBUSINESS. DSTU-PRINT, 2020. http://dx.doi.org/10.23947/interagro.2020.1.287-289.

Full text
Abstract:
An approach is proposed for the efficient selection of profits in the design of the gatefeeding system for steel castings made in sand and clay forms. The presented results of mathematical modeling allow you to quickly make a decision on the choice of profit margin, which provides high-grade nutrition of the casting thermal units
APA, Harvard, Vancouver, ISO, and other styles
5

Li, Jia-dong, Zhao-dong Wang, Kun Wang, and Guo-dong Wang. "Camera mathematic model of the molten steel level detection in the strip casting process." In 2013 International Conference on Mechatronic Sciences, Electric Engineering and Computer (MEC). IEEE, 2013. http://dx.doi.org/10.1109/mec.2013.6885252.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Antonova, Anna S., and Konstantin A. Aksyonov. "Development of simulation model of continuous casting machine with dry change of steel ladles." In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0027487.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ju, Li, Yongtang Li, Jianhua Fu, Bufang Lei, and Huiping Qi. "Constitutive Modeling for Flow Behavior of As-Cast 1026 Carbon Steel Under Hot Compression Experiments." In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-51222.

Full text
Abstract:
Nowadays, modern casting theories and technologies have got marked progress in reducing steel casting’s defects, such as shrinkages, cracks, porosities, and segregations, which make it possible to manufacture industrial parts with casting instead of forging billet. Compared with the traditional technology, the new method will have many obvious advantages in reducing heating times and discharge, saving materials and energy, and improving productivity. In order to produce parts with sound mechanical properties by employing the new technology, it is important to probe the flow behavior of as-cast carbon steel under hot deformation for premium controlling processing parameters, reasonable planning procedures and a reliable constitutive equation for precise simulation. In this paper, high temperature flow behavior of as-cast 1026 carbon steel is investigated by conducting hot compression experiments on Gleeble-3500 simulator in the temperature range from 1 173 K to 1 473 K at an interval of 100 K and the stain rate range from 0.1 s−1 to 2.0 s−1. The relationships of deformation parameters (temperature, strain rate) with material’s flow behavior are found. The deformation activation energy and the stress index are worked out and the mathematical model of the flow stress under hot deformation is established by means of the liner regression analysis of true stress-strain data. Meanwhile, the effect of initial grain sizes on flow behavior of as-cast 1026 steel is also studied by compressing samples cooled to 1 173 K from 1 273 K, 1 373 K and 1 473 K respectively. The experimental results reveal that strain hardening and flow softening mainly characterize the flow behavior. It is also found that with the increase of deformation, the flow stress first increases rapidly, then reaches the peak slowly, after that it begins to decrease and finally comes to a steady value. At the temperature of 1 173 K, material’s softening is not apparent even if the strain rate is increased, while at the strain rate of 2 s−1, it is also not apparent even when the deformation temperature is raised to 1 473 K, so the final forging temperature is supposed to be about 1 173 K and the maximum stain rates should be below 2 s−1. In addition, at the same deformation temperature and strain rate, the more refined initial grain, the easier material dynamically recrystallizes and the lower the steady stress is. Therefore, the heating process of material is expected to be tightly controlled. The maximum error of flow stress between the model predictions and actual results is only 5.90%. The good agreement signifies the applicability of this method as a general constitutive equation in hot deformation studies.
APA, Harvard, Vancouver, ISO, and other styles
8

Khadom, Anees A. "Mathematical models for prediction of corrosion inhibition rates of steel in acidic media." In 2012 First National Conference for Engineering Sciences (FNCES). IEEE, 2012. http://dx.doi.org/10.1109/nces.2012.6740458.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

BUĽKO, Branislav, Peter DEMETER, Róbert DZURŇÁK, Lukáš FOGARAŠ, Slavomír HUBATKA, Vladimír ŠABÍK, Vladimír CHOMIČ, and Karol ONDREJKOVIČ. "Optimizing of steel flow in three-strand T-type tundish using mathematical and physical models." In METAL 2022. TANGER Ltd., 2022. http://dx.doi.org/10.37904/metal.2022.4389.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Haynes, Mark, Chih-Hang John Wu, B. Terry Beck, Naga Narendra B. Bodapati, and Robert J. Peterman. "Prestressing Steel Reinforcement Wire Bond Index Number." In 2013 Joint Rail Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/jrc2013-2422.

Full text
Abstract:
The purpose of this research project is to develop a mathematical model that predicts the bond strength of a prestressing steel reinforcement wire given the known geometrical features of the wire. The geometrical features of the reinforcement wire were measured by a precision non-contact profilometer. With this mathematical model, prestressing reinforcement wires can now be analyzed for their bond strength without destructive testing. This mathematical model has the potential to serve as a quality control assessment in reinforcement wire production. In addition this mathematical model will provide insight into which reinforcement wires provide the greatest bond strength and which combinations of geometrical features of the reinforcement wire are responsible for providing the bond strength. A precision non-contact profilometer has been developed to measure the important geometrical features of the reinforcement wire. The profilometer is capable of sub-micron resolution measurements to provide an extremely high quality three-dimensional rendering of the reinforcement wire surface profile. From this detailed profile data it is then possible to extract all of the relevant geometrical features of the reinforcement wire. A mathematical model has been created by testing a variety of different reinforcement wires available in the market. By correlating the transfer length of concrete prisms made with the reinforcement wires to various geometrical features, several different levels of mathematical correlation complexity have been investigated. The current empirical correlation models under development are first order and combine three to four unique geometrical features of the reinforcement wire which then act as predictors of the concrete prism transfer length. The resulting mathematical model relating the wire geometrical features to transfer length is referred to as the Bond Index Number (BIN). The BIN is shown to provide a numerical measure of the bond strength of prestressing steel reinforcement wire, without the need for performing destructive tests with the reinforcement wire.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography