Academic literature on the topic 'Steel alloys – Mechanical properties'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Steel alloys – Mechanical properties.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Steel alloys – Mechanical properties"

1

Zhan, Dongping, Jihang Li, Dongwei Wang, Huishu Zhang, Guoxing Qiu, and Yongkun Yang. "Enhanced Mechanical Properties of CLAM by Zirconium Alloying and Thermo-Mechanical Processing." Journal of Nuclear Engineering 4, no. 1 (January 17, 2023): 127–41. http://dx.doi.org/10.3390/jne4010009.

Full text
Abstract:
In this study, we present the effects of 0.004~0.098 wt% Zr and thermo-mechanical processing (TMP) on the microstructure and mechanical properties of the China RAFM steel, CLAM, as a feasibility study for improving mechanical properties. The inclusions in ingots were characterized using optical microscope (OM) and scanning electron microscope (SEM), which could be classified as fine simple particles and large complex particles. The complexity of the alloy’s inclusion composition increases with the increasing Zr concentration. The higher the Zr content, the more complex the composition of inclusions in the alloy. The average diameter of inclusions in 0.004Zr steel was the smallest, which was 0.79 μm and the volume fraction was 0.018%. The highest yield strength, tensile strength, elongation, and impact energy of 0.004Zr alloy at room temperature were 548.3 MPa, 679.4 MPa, 25.7%, and 253.9 J. The structure of the TMPed steels was all tempered martensite. With the increase in tempering temperature, the yield and tensile strength of the experimental steel gradually decreased, while the elongation and impact energy gradually increased. The 0.004ZrD and 0.004ZrH alloys had the best yield strength and impact energy, which were 597.9 and 611.8 MPa and 225.9 and 243.3 J, respectively. In addition, the alloys showed good thermal stability during the aging at 600 °C for 1500 h. It was discovered that TMP is a simple and practical industrial technique that could successfully enhance the mechanical properties of CLAM steel without sacrificing impact toughness.
APA, Harvard, Vancouver, ISO, and other styles
2

Alatalo, Matti, Heikki Pitkänen, Matti Ropo, Kalevi Kokko, and Levente Vitos. "Modeling of Steels and Steel Surfaces Using Quantum Mechanical First Principles Methods." Materials Science Forum 762 (July 2013): 445–50. http://dx.doi.org/10.4028/www.scientific.net/msf.762.445.

Full text
Abstract:
We describe recent progress in first principles materials modelling applied to iron alloys. First principles methods in general have proven to be an effective way of describing atomic level phenomena in solids. When applied to alloys with chemical disorder, however, the widely used supercell methods turn out to be impractical due to the vast variety of different possible configurations. This problem can be overcome using the coherent potential approximation (CPA), which enables the description of a multicomponent alloy in terms of an effective medium constructed in such a way that it represents, on the average, the scattering properties of the alloy. A bulk alloy, in the case of substitutional random alloys, can thus be described with a single atom while a slab is needed to describe surfaces. The exact muffin-tin orbitals (EMTO) method provides a first principles method that can be combined with the CPA in order to describe steels and other multicomponent alloys. We describe the EMTO-CPA method and provide examples of both bulk and surface properties that can be modelled with this method.
APA, Harvard, Vancouver, ISO, and other styles
3

Jena, B. K., N. Gupta, B. Singh, and G. S. Ahoo. "Mechanical properties of low alloy high phosphorus weathering steel." Journal of Mining and Metallurgy, Section B: Metallurgy 51, no. 1 (2015): 81–87. http://dx.doi.org/10.2298/jmmb140120005j.

Full text
Abstract:
Mechanical behaviour of two low alloy steels (G11 and G12) was studied with respect to different phosphorus contents. Tensile strength and yield strength increased while percentage elongation at fracture decreased on increasing phosphorus content. The SEM and light optical photomicrograph of low phosphorus steel (G11) revealed ferrite and pearlite microstructure. On increasing phosphorus content from 0.25 wt.% to 0.42 wt.%, the morphology of grain changed from equiaxed shape to pan-cake shape and grain size also increased. The Charpy V notch (CVN) impact energy of G11 and G12 steel at room temperature was 32 J and 4 J respectively and their fractographs revealed brittle rupture with cleavage facets for both the steels. However, the fractograph of G11 steel after tensile test exhibited ductile mode of fracture with conical equiaxed dimple while that of G12 steel containing 0.42 wt. % P exhibited transgranular cleavage fracture. Based on this study, G11 steel containing 0.25 wt. % P could be explored as a candidate material for weathering application purpose where the 20?C toughness requirement is 27 J as per CSN EN10025-2:2004 specification.
APA, Harvard, Vancouver, ISO, and other styles
4

Mofidi Tabatabaei, Hamed, Ryuji Ishikawa, and Tadashi Nishihara. "Mechanical Interlocking of an Aluminum Alloy and SS400 Structural Steel through Friction-Stir Spot Forming (FSSF)." Materials Science Forum 926 (July 2018): 17–22. http://dx.doi.org/10.4028/www.scientific.net/msf.926.17.

Full text
Abstract:
In the present study, a novel method for mechanically interlocking the dissimilar alloys of A6061-T6 aluminum alloy and SS400 structural steel using friction-stir forming (FSF) is suggested. In this study, the aluminum alloy is placed on top of a steel sheet containing a screwed hole. The present study suggests that friction-stir spot forming (FSSF) can be used to form a mechanical interlock between the aluminum alloy and steel sheet. FSSF is conducted on top of the aluminum alloy, which produces sufficient heat to plasticize the aluminum alloy. This results in a flow of aluminum into the screw hole in the steel, due to the plastic deformation, thereby mechanically interlocking the aluminum with the steel. Moreover, with the proposed method, the authors present a new concept of an easily separable joining of dissimilar alloys. The mechanical properties of the developed interlock are investigated through tensile and hardness tests and microstructural observation.
APA, Harvard, Vancouver, ISO, and other styles
5

Mofidi Tabatabaei, Hamed, Shun Orihara, Tadashi Nishihara, and Takahiro Ohashi. "Mechanical Interlocking of Titanium and Steel Using Friction Stir Forming." Key Engineering Materials 792 (December 2018): 59–64. http://dx.doi.org/10.4028/www.scientific.net/kem.792.59.

Full text
Abstract:
This study presents a novel method for mechanically interlocking dissimilar alloys of pure titanium with steel through using the principles of friction stir forming (FSF) technique. In present study, titanium plate is placed on top of a steel sheet containing a screwed hole. FSF is conducted on top of the titanium alloy, which produces sufficient heat to plasticize the alloy. This results in a flow of titanium into the screw hole in the steel, due to the plastic deformation, thereby mechanically interlocking titanium with the steel. The mechanical properties of the developed interlock are investigated through tensile and hardness tests and microstructural observation.
APA, Harvard, Vancouver, ISO, and other styles
6

Garg, N. B., and A. Garg. "Fractographic Analysis of Mechanical Properties of Microalloyed Steel." Journal of Physics: Conference Series 2070, no. 1 (November 1, 2021): 012174. http://dx.doi.org/10.1088/1742-6596/2070/1/012174.

Full text
Abstract:
Abstract Extensive efforts made over the past few decades have enhanced the rising performance of High-Strength Low-Alloy steels. Use of thermomechanical processing was considered for this research. However, the desired mechanical properties are obtained by formulating alloys. Further, to enhance mechanical properties, impact energy, the subsequent quenching and tempering are used. The metallurgical transformation caused by deformation followed by cooling and/or heat treatment has added influences on steels’ mechanical properties. The rational decrease in impact energy value is complex.
APA, Harvard, Vancouver, ISO, and other styles
7

Mondal, Avishek, Daniela Pilone, Andrea Brotzu, and Ferdinando Felli. "Effect of composition and heat treatment on the mechanical properties of Fe Mn Al steels." Frattura ed Integrità Strutturale 16, no. 62 (September 22, 2022): 624–33. http://dx.doi.org/10.3221/igf-esis.62.43.

Full text
Abstract:
Starting from the research aimed at the development of substitute alloys for stainless steels, with the aim of replacing strategic metals such as chromium and nickel with the more available manganese, FeMnAlC alloys have been studied and developed for several years. These alloys exhibit an attractive strength/ductility combination, low density, and some of them show good oxidation behaviour at high temperatures. After a preliminary study, in this paper the effect of a solubilization treatment followed by aging in the temperature range 550 - 750 °C has been evaluated. The results of the investigation revealed that the steel characterized by the higher amount of Mn and Al shows, after heat treatment, the formation of phases that make the alloy very brittle. Considering the obtained results, it is evident that optimizing the alloy chemical composition is of paramount importance to guarantee a high fracture toughness if the steel works for limited time intervals at high temperature.
APA, Harvard, Vancouver, ISO, and other styles
8

Mishnev, Peter A., Vladimir A. Uglov, Sergey V. Zhilenko, and Ivan B. Chudakov. "Analysis of Specific Properties and Features of Application of New Industrial High-Damping Steel." Materials Science Forum 931 (September 2018): 608–13. http://dx.doi.org/10.4028/www.scientific.net/msf.931.608.

Full text
Abstract:
Mechanical, damping and specific properties of new structural high-damping steel have been studied in the present research. Studied high-damping steel was specially produced by the JSC Severstal in order to obtain metallic material with specified level of damping and mechanical properties. Experiments show that the damping properties of industrial high-damping steel are comparable with damping properties of high-purity damping alloys, produced using laboratory equipment. Mechanical properties of the industrial high-damping steel were found to be comparable with the level of properties of well-known structural steels, widely used in the modern industry. Analysis of the combination of mechanical and specific properties of the new steel indicates that this material can be used for the construction of rigid structures requiring high damping. Specific features of practical application of high-damping steels are also discussed.
APA, Harvard, Vancouver, ISO, and other styles
9

Lišková, Anna, Mária Mihaliková, Lukáš Dragošek, Róbert Kočiško, and Róbert Bidulský. "MECHANICAL PROPERTIES LASER WELDING AUTOMOTIVE STEEL SHEETS." Acta Metallurgica Slovaca 21, no. 3 (September 30, 2015): 195. http://dx.doi.org/10.12776/ams.v21i3.611.

Full text
Abstract:
<p>The experimental and theoretical investigation deals with laser welding of automotive thin steel sheets. As tested materials were used Interstitial Free Steel (IF) from type of Hight Strength Low Alloy (HSLA) and the second is S420 steel (Micro-Alloyed Steel). Changes of properties of these materials were carried out by static dynamic conditions. The structure of welded joints these two materials were investigated by metallographic analysis. Metallographic analysis confirmed the formation of favourable structure of weld metal and heat affected zone. Obtained results showed that by laser welding it is possible to create the high quality welded joints with positive mechanical properties on used in automotive industry.</p>
APA, Harvard, Vancouver, ISO, and other styles
10

Baranov, M. A., E. A. Dubov, and A. Kawałek. "Microstate of Basic Phase of High-Alloyed Ferritic Steels." New Trends in Production Engineering 2, no. 2 (December 1, 2019): 312–20. http://dx.doi.org/10.2478/ntpe-2019-0095.

Full text
Abstract:
Abstract In according with the stated conception the purpose of the present work is the reconstruction of some of innumerable microstates of α phase of ferritic steels, definition of its macroparameters and their subsequent comparison with indicators of mechanical properties of industrially let out steels. The establishment of a correlation between the measured indicators of mechanical properties of already created materials and the calculated state parameters of their basic phase opens an opportunity of mechanical properties prediction of materials in dependence on their prehistory that as a matter of fact represents the central task of material science. Simulation of α-phase state of series of industrially let out ferritic steels and alloys is executed in the assumption of identity of its composition to composition of steel or alloy as a whole. The correlation between indicators of mechanical properties of steels and alloys and state parameters of their basic phase is traced.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Steel alloys – Mechanical properties"

1

Zander, Johan. "Modelling mechanical properties by analysing datasets of commercial alloys." Licentiate thesis, Stockholm : Industriell teknik och management, Kungliga Tekniska högskolan, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4527.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Peacock, Simon. "Mechanical properties of rotary forged sintered steel compacts." Thesis, University of Nottingham, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.319953.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bao, Yaxin. "Mechanical properties and microstructure study for direct metal deposition of titanium alloy and tool steel." Diss., Rolla, Mo. : University of Missouri-Rolla, 2007. http://scholarsmine.umr.edu/thesis/pdf/Bao_09007dcc803c0daf.pdf.

Full text
Abstract:
Thesis (M.S.)--University of Missouri--Rolla, 2007.
Vita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed November 29, 2007) Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
4

Li, Hongxing. "Mechanical Properties of Dual Phase Alloys Composed of Soft and Hard Phases." 京都大学 (Kyoto University), 2016. http://hdl.handle.net/2433/215959.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tungala, Vedavyas. "Exceptional Properties in Friction Stir Processed Beta Titanium Alloys and an Ultra High Strength Steel." Thesis, University of North Texas, 2017. https://digital.library.unt.edu/ark:/67531/metadc984167/.

Full text
Abstract:
The penchant towards development of high performance materials for light weighting engineering systems through various thermomechanical processing routes has been soaring vigorously. Friction stir processing (FSP) - a relatively new thermomechanical processing route had shown an excellent promise towards microstructural modification in many Al and Mg alloy systems. Nevertheless, the expansion of this process to high temperature materials like titanium alloys and steels is restricted by the limited availability of tool materials. Despite it challenges, the current thesis sets a tone for the usage of FSP to tailor the mechanical properties in titanium alloys and steels. FSP was carried out on three near beta titanium alloys, namely Ti6246, Ti185 and Tiβc with increasing β stability index, using various tool rotation rates and at a constant tool traverse speed. Microstructure and mechanical property relationship was studied using experimental techniques such as SEM, TEM, mini tensile testing and synchrotron x-ray diffraction. Two step aging on Ti6246 had resulted in an UTS of 2.2GPa and a specific strength around 500 MPa m3/mg, which is about 40% greater than any commercially available metallic material. Similarly, FSP on an ultra-high strength steel―Eglin steel had resulted in a strength greater than 2GPa with a ductility close to 10% at around 4mm from the top surface of stir zone (SZ). Experimental techniques such as microhardness, mini-tensile testing and SEM were used to correlate the microstructure and properties observed inside SZ and HAZ's of the processed region. A 3D temperature modeling was used to predict the peak temperature and cooling rates during FSP. The exceptional strength ductility combinations inside the SZ is believed to be because of mixed microstructure comprised of various volume fractions of phases such as martensite, bainite and retained austenite.
APA, Harvard, Vancouver, ISO, and other styles
6

Ozaeta, Laverde Pablo. "Microstructural characterization and mechanical properties of 9%Ni steel welds by submerged arc welding process using nickel-base alloys." Doctoral thesis, Universitat de Barcelona, 2017. http://hdl.handle.net/10803/462904.

Full text
Abstract:
Natural Gas with more than 80% methane has a liquefaction temperature around -165 ° C. Temperature at which the gas reduces its volume by a factor of 600/1. This operating temperature makes the use of ferritic materials unfeasible because they have a brittle fracture mode below a critical temperature, called transition temperature. For the construction of large containers, the most commonly used material is Steel A-553-T1 which has a nominal content of 9% nickel and whose crystalline structure is formed by a martensite matrix with some austenite reacted. This microstructure is achieved through double heat treatment; Tempering and tempering. To weld this steel, for this application, it is not possible to use materials of 9% Ni feed, in view of the impossibility of performing the necessary thermal treatments to achieve homogeneity of properties. On the other hand, the austenitic welding consumables present a ductile behavior with a high energy absorbed even to -196ºC and within these NiCrMo family nickel base alloys have a high mechanical strength, and a coefficient of thermal expansion close to the steel 9% Ni. Within this family of nickel base alloys, the Hastalloy C-276 alloy has been used, which increases its mechanical strength by solid solution, the main alloys being chromium and molybdenum both about 15% and with 2.5% of Tungsten and 5% iron. Although this is an alloy that is essentially single-phase Gamma, the last liquid is usually transformed into carbides or TCP phases as the pass Mu and P. These three phases have a very close composition so that their identification through the EDX is not possible . Currently, most of the tanks being built have a storage capacity between 150,000 and 200,000, so the sheet thickness of 1 was ferrule between 27 to 50mm, implying that the welds are multi-pass, Requiring between 16 and 30 passes to fill the joints of this first ferrule. Normally the vertical joints are welded with manual or semi-automatic processes while the horizontal joints are welded with automatic submerged arc process. According to the atmospheric tank design standards for cryogenic storage, the thickness of the sheets is determined by the Maximum Admissible Efforts that are calculated from the mechanical strength of the weakest structural element, the base metal or the weld joint. In the case of welding, the mechanical strength of the weld is determined from the cylindrical specimen tensile test obtained from the deposited metal, from the homologation coupon of the welding process. During the homologation of the manual or semi-automatic procedures, the results obtained in the tests of longitudinal and transverse traction are equivalent. In the case of automatic welding In addition to the low values obtained from the cylindrical tensions of the weld metal of the horizontal joints with respect to the transverse tensions, it is very often observed that an important difference in the resistance presented by the different tensile tests of the same welded specimen , These differences being much greater than the observed difference between two experimental conditions. Prior to this experimental work, 6 other tests and a few procedural approvals were carried out, in which sheets of 12, 21, 26.5 and 27 mm of thickness were used, with 2.4 mm and 1.6 mm threads always of the classification AWS A5.14 ER-NiCrMo-4, corresponding to the Hastalloy C-276 alloy, with different fluxes, stiffening levels, cylindrical probe diameter etc. This PhD work was carried out on the seventh test carried out in the summer of 2008 at Lincoln Electric Cleveland, where 4 fluxes, 2 wire diameters, alternating and continuous current and two voltage levels were tested, with an experimental design 23 with each flux. As all DOE tests were performed, 8 specimens were welded per flux, and a total of 32 specimens were welded. The purpose of this test was to select the best flux wire pair, and determine the optimum parameters to maximize the mechanical strength of the weld metal. The base material used in this experiment were A553 T1 steel sheets, with 9% Ni and annealed and tempered with a thickness of 21mm. The joint design of these specimens is asymmetrical and unbalanced "X" with a 1mm bead and a 2mm spacing. Following the actual joint design of the production plates. In order to prevent the melting bath from being picked up, a flux backing was placed. The tests performed on each specimen were as follows: Cylindrical traction welding metal: 4 per test pieces Charpy V Notch at -196 ° C Macro General Chemical Analysis, performed on the side faces of the macros. Chemical analysis on tensile specimens. Microhardness tests Vickers and Knoob. The wire-flux pair selected in these tests has been used for the welding of eight tanks: three in Spain: two in Gijón 2011-2013 and one in Bilbao 2014-2015; A tank in Chile, 2011-2013 and four other tanks in China, 2011-2013. With this pair, good results have been obtained in the approvals of welding procedures of these projects, both in the transversal tensions and in the cylindrical tensions, fulfilling the requisites of resistance necessary in each project. During the production, a welding metal with very few inclusions of slag has been deposited, presenting good degreasing and degassing. The objective of this research is to determine the factors that produce the variability of results in the tensile tests, correlating the structural and micro structural factors with the mechanical properties of the deposited metal, in order to maximize its mechanical resistance.
Hasta mediados del siglo XX, el gas era considerado como un residuo de la explotación petrolera con importantes barreras tecnológicas y económicas para su procesado y comercialización por lo que gran parte de este era quemado en los países de producción. Desde finales del siglo XX, el aumento de la demanda de energía sumado con los altos niveles de contaminación producido por la quema de petróleo y carbón hicieron que se desarrollen las tecnologías y normas para el transporte seguro y rentable de los gases derivados del petróleo. Desde entonces, El gas natural ha tenido una penetración muy importante en la cadena de consumo debido a su alto poder energético y a la baja cantidad, comparada con el petróleo y carbón, de residuos, sólidos y gaseosos, que han hecho que este se perciba como un combustible limpio. El transporte de este producto se realiza en estado líquido, por medio de 2 tecnologías, presurización o por enfriamiento, LPG y LNG. La primera requiere de plantas de presurizado y gasoductos. Las distancias económicamente rentables para la conducción por gasoducto rondan la docena de miles de kilómetros, requiriendo de plantas de re presurización a lo largo del gasoducto. Cuando la distancia entre los productores y los consumidores que muy grande la licuación por enfriamiento a presión atmosférica es la opción más económica y segura. En este caso en, el gas obtenido del pozo se conduce hasta la planta de licuefacción donde se realiza la separación de los distintos componentes sólidos, líquidos y gaseosos, por procesos de filtración y licuación diferencial. El Gas natural producto de este proceso se almacena temporalmente en un tanque de LNG mientras en cargado en el barco que lo transportará a destino. Una vez en destino el barco descarga a un tanque de LNG, de donde se suministra a la planta de regasificación. De esta el gas es canalizado a alta presión por los gasoductos de distribución o a las plantas de generación eléctrica. El Gas Natural, con más de un 80% de metano tiene una temperatura de licuefacción alrededor de los -165ºC. Temperatura a la cual el gas reduce su volumen por un factor de 600/1. Esta temperatura de operación hace inviable el uso de materiales ferríticos, debido a que estos presentan un modo de fractura frágil por debajo de una temperatura crítica, llamada de transición. Para la construcción de grandes contenedores el material más usado en es Acero A-553-T1 que tiene un contenido nominal de 9% de níquel y cuya estructura cristalina está formada por una matriz de martensita con algo de austenita revenida. Esta microestructura se consigue a través del doble tratamiento térmico; de temple y revenido. Para soldar este acero, para esta aplicación, no se pueden usar materiales de aportes similares al 9%Ni en vista de la imposibilidad de realizar los tratamientos térmicos necesarios para conseguir la homogeneidad de propiedades. Por otro lado, los consumibles de soldadura austeníticos presentan un comportamiento dúctil con una alta energía absorbida incluso a -196ºC y dentro de estos las aleaciones base níquel de la familia NiCrMo presentan una alta resistencia mecánica, y un coeficiente de expansión térmica cercano a del acero 9%Ni. Dentro de esta familia de aleaciones base níquel se ha usado la aleación Hastalloy C-276, la cual incrementa su resistencia mecánica por solución sólida, siendo los principales aleantes el cromo y molibdeno ambos alrededor de 15%, y con un 2,5% de tungsteno y un 5% de hierro. Aun que ésta es una aleación que en esencia es monofásica Gamma, el último liquido suele transformarse en carburos o fases TCP como la pase Mu y P. Estas tres fases tienen una composición muy cercana por lo que su identificación a través del EDX no es posible. Actualmente, la mayoría de los tanques que se están construyendo tienen una capacidad de almacenamiento entre los 150.000 y 200.000, por lo que el espesor de chapa de la 1 era virola de entre 27 a 50mm, lo que implica que las soldaduras son multi pasada, necesitándose entre 16 y 30 pasadas para rellenar las juntas de esta primera virola. Normalmente las juntas verticales se sueldan con procesos manuales o semi-automáticos mientras que las horizontales se sueldan con proceso automático de arco sumergido. Según las normas de diseño de tanques atmosféricos para almacenamiento criogénico, el espesor de las chapas está determinado por los Esfuerzos Máximos Admisibles que se calculan a partir de la resistencia mecánica del elemento estructural más débil, el metal base o la junta de soldadura. En el caso de la soldadura, la resistencia mecánica de ésta se determina a partir del ensayo de tracción con probeta cilíndricas obtenidas del metal depositado, a partir del cupón de homologación del procedimiento de soldadura. Durante la homologación de los procedimientos manuales o semi automáticos los resultados obtenidos en los ensayos de tracción longitudinal y transversal son equivalentes. En el caso de la soldadura automática de las juntas horizontales, los resultados obtenidos de las tracciones transversales siempre han sido muy superiores a los resultados de las tracciones cilíndricas. Además de los bajos valores que se obtienen de las tracciones cilíndricas del metal de soldadura de las juntas horizontales con respecto a las tracciones transversales, con mucha frecuencia se observa que una importante diferencia en la resistencia presentada los diferentes ensayos de tracción de una misma probeta soldada, siendo estas diferencias mucho mayores que la diferencia observada entre dos condiciones experimentales. Situación que dificulta la correcta interpretación de los resultados de los diferentes ensayos o pruebas realizadas. Antes de este trabajo experimental se realizaron otros 6 ensayos y unas cuantas homologaciones de procedimientos, en las cuales se usaron chapas de 12, 21, 26,5 y 27mm de espesor, con hilos de 2,4mm y 1,6mm siempre de la clasificación AWS A5.14 ER-NiCrMo-4, correspondiente a la aleación Hastalloy C-276, con diferentes fluxes, niveles de rigidización, diámetro de probeta cilíndrica etc. Este trabajo de doctorado se he realizado sobre el séptimo ensayo realizado en verano de 2008 en las instalaciones de Lincoln Electric Cleveland, en que se probaron 4 fluxes, 2 diámetros de hilo, corriente alterna y continua y dos niveles de voltaje, desarrollándose un diseño experimental 23 con cada flux. Como se realizaron todas las pruebas correspondientes al DOE, se soldaron 8 probetas por flux, y en total 32 probetas. El objetivo de este ensayo era seleccionar el mejor par alambre fundente, y determinar los parámetros óptimos para maximizar la resistencia mecánica del metal de soldadura. El material base usado en este experimento fueron chapas de acero A553 T1, con 9%Ni y templadas y revenidas con un espesor de 21mm. El diseño de junta de estas probetas es en “X” asimétrica y desbalanceada con un talón de 1mm y una separación de 2mm. Siguiendo el diseño de junta real de las chapas de producción. Con el fin de evitar que el baño de fusión se descuelgue se colocó un respaldo de flux. Los ensayos realizados a cada probeta han sido los siguientes: Tracciones Cilíndricas de metal de soldadura: 4 por probetas Charpy V Notch a -196ºC Macro Análisis Químico General, realizado sobre las caras laterales de las macros. Análisis Químico en las probetas de tracción. Ensayos de microdureza Vickers y Knoob. El par alambre-fundente seleccionado en estas pruebas ha sido usado para el soldeo de ocho tanques: tres en España: dos en Gijón 2011-2013 y uno en Bilbao 2014-2015; un tanque en Chile, 2011-2013 y otros cuatro tanques en China, 2011-2013. Con este par se han conseguido buenos resultados en las homologaciones de procedimientos de soldadura de estos proyectos, tanto en las tracciones transversales como en las tracciones cilíndricas, cumpliendo con los requisitos de resistencia necesarios en cada proyecto. Durante la producción se ha depositado un metal de soldadura con muy pocas inclusiones de escoria, presentando buen desescoriado y desgasificado. El objetivo de este trabajo de investigación es determinar los factores que producen la variabilidad de resultados el los ensayos de tracción, correlacionando los factores estructurales y micro estructurales con las propiedades mecánicas del metal depositado, con el fin de maximizar su resistencia mecánica.
APA, Harvard, Vancouver, ISO, and other styles
7

Sofyan, Nofrijon Bin Imam Gale W. F. "Microstructure and mechanical properties of 2024-T3 and 7075-T6 aluminum alloys and austenitic stainless steel 304 after being exposed to hydrogen peroxide." Auburn, Ala, 2008. http://repo.lib.auburn.edu/EtdRoot/2008/SUMMER/Materials_Engineering/Dissertation/Sofyan_Nofrijon_36.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Paananen, J. (Joni). "Modeling of the microstructure and mechanical properties during welding of low alloyed high strength steel." Master's thesis, University of Oulu, 2017. http://urn.fi/URN:NBN:fi:oulu-201711303218.

Full text
Abstract:
The aim of the work was to create a model to simulate the evolution of the microstructure during welding. The model consists of heat transfer and heat input models, microstructure model and hardness model. The heat transfer and heat input models are used to model the arc welding and the temperature changes in the welded piece. A microstructure model has been coupled with the heat transfer model i.e. the microstructure evolution is modeled simultaneously with the heat transfer model. The microstructure model simulates phase transformations and grain growth. In addition, the model predicts the hardness based on the microstructure. A graphical user interface was also developed to ease the usage of the model. The developed model is numerical and is based on theories presented in the literature. Some parameters for theories have also been defined experimentally using thermomechanical simulator. Real welding experiments were also made to verify the model. The temperature model can predict the temperatures in the heat-affected zone quite reliably. The phase transformation model works also well. The phase fractions from the model correlate with those seen under a microscope and the model predicts the shapes of the heat-affected zone and fusion zone with relatively good accuracy. The grain growth model works well far from fusion line but is not as good near the fusion line. The hardness model is not as reliable as other models but is still able to predict the hardness quite well even though the model is rather simple
Työn tavoitteena oli kehittää malli hitsauksessa tapahtuvien mikrorakennemuutosten simuloimiseen. Malli koostu lämmönsiirto- ja lämmöntuontimallista, mikrorakennemallista sekä kovuusmallista. Lämmönsiirto- ja lämmöntuontimalleilla mallinnetaan kaarihitsausta ja sen aikaansaamia lämpötilamuutoksia teräksessä. Mikrorakennemalli on kytketty lämpötilamalliin eli mikrorakennetta mallinnetaan samanaikaisesti lämpötilojen kanssa. Mikrorakennemalli simuloi faasimuutoksia ja rakeenkasvua. Lisäksi malli pyrkii ennustamaan kovuutta mikrorakenteen perusteella. Malliin luotiin myös graafinen käyttöliittymä helpottamaan käyttöä. Työssä luotu malli on numeerinen ja se perustuu kirjallisuudessa esitettyihin teorioihin. Lisäksi teorioiden vaatimia parametreja on määritetty kokeellisesti termomekaanisella simulaattorilla. Lisäksi työssä tehtiin hitsauskokeita mallin verifioimiseksi. Lämpötilamalli ennustaa muutosvyöhykkeen lämpötilat melko luotettavasti. Faasimuutosmalli toimii myös hyvin. Kokeelliset ja mallinnetut faasiosuudet vastaavat toisiaan. Malli ennustaa myös suhteellisen hyvin sula-alueen ja muutosvyöhykkeen muotoa. Raekokomalli toimii hyvin kauempana sula-alueesta, mutta lähellä sula-aluetta malli ei toimi yhtä hyvin. Kovuusmalli ei ole yhtä luotettava kuin muut mallit, mutta ennustaa silti kovuuksia todella hyvin, vaikka onkin melko yksinkertainen
APA, Harvard, Vancouver, ISO, and other styles
9

Davut, Kemal [Verfasser]. "Relation between microstructure and mechanical properties of a low-alloyed TRIP steel / Kemal Davut." Aachen : Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen, 2013. http://d-nb.info/1038571014/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sule, Jibrin. "Application of local mechanical tensioning and laser processing to improve structural integrity of multi-pass welds." Thesis, Cranfield University, 2015. http://dspace.lib.cranfield.ac.uk/handle/1826/9564.

Full text
Abstract:
Multi-pass fusion welding by a filler wire (welding electrode) is normally carried out to join thick steel sections used in most engineering applications. Welded joints in an installation, is the area of critical importance, since they are likely to contain a higher density of defects than the parent metal and their physical properties can differ significantly from the parent metal. Fusion arc welding process relies on intense local heating at a joint where a certain amount of the parent metal is melted and fused with additional metal from the filler wire. The intense local heating causes severe transient thermal gradients in the welded component and the resulting uneven cooling that follows produces a variably distributed residual stress field. In multi-pass welds, multiple thermal cycles resulted in a variably distribution of residual stress field across the weld and through the thickness. These complex thermal stresses generated in welds are undesirable but inevitable during fusion welding. Presence of such tensile residual stresses can be detrimental to the service integrity of a welded structure. In addition to a complex distribution of residual stress state, multi-pass welds also forms dendritic grain structure, which are repeatedly heated, resulting in segregation of alloying elements. Dendritic grain structure is weaker and segregation of alloying elements would result in formation of corrosion microcells as well as reduction in overall corrosion prevention due to depletion of alloying elements.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Steel alloys – Mechanical properties"

1

Dzugutov, M. I͡A. Plastichnostʹ i deformiruemostʹ vysokolegirovannykh staleĭ i splavov. 3rd ed. Moskva: "Metallurgii͡a", 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Balakrishnan, K. S. Evaluation of the mechanical properties of SA 333 Gr.6, AISI 304 and Zr-2.5% Nb through automated ball indentation (ABI) technique. Mumbai: Bhabha Atomic Research Centre, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ivanovich, Shemi͡a︡kin Evgeniĭ, ed. Teorii͡a︡ i tekhnologii͡a︡ uprochnenii͡a︡ metallicheskikh splavov. Novosibirsk: "Nauka," Sibirskoe otd-nie, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Günther, Hans-Peter, ed. Use and Application of High-Performance Steels for Steel Structures. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2005. http://dx.doi.org/10.2749/sed008.

Full text
Abstract:
<p>New steel production processes have led to a remarkable improve­ment in steel products within the last few years, and now allows steels to be produced according to the desired mechanical and chemical properties. High-Performance Steel (HPS) is the designa­tion given to this new generation of steels that offer higher performance not only in terms of strength but also toughness, weld­ability, cold formability and corrosion resistance, compared to the traditionally used mild steel grades.</p> <p>The development of HPS goes with today's increased demand for slender lightweight structures, as for example in bridge design and the design of high-rise buildings, where there is a strong require­ment to use high-strength materials in combination with good execution and fabrication properties. However, on the structural engineering side there is a need for knowledge on these new steel grades, and quite often design codes do not provide sufficient information to fully exploit the advantageous properties of HPS.</p> <p>The present volume provides an overview of the development and application of HPS on an international level. This is done by giving information on, for example, the production process, the chemical and mechanical properties, the relevant design and fabrication standards and on recent research results. Approximately fifteen included examples of realised applications aim to provide detailed information based on existing technical solutions, and to point out the major benefits when using HPS in comparison to mild steels.</p> <p>The document is thus not a monograph but an assembly of contri­butions from different countries. lt is separated into chapters related to different countries, namely the USA, Canada, Japan and Europe, all of them providing a state-of-the-art report on HPS.</p>
APA, Harvard, Vancouver, ISO, and other styles
5

Berkhout, C. F. Metallurgy and mechanical properties of multipass submerged arc weld metal in C/MN and low alloy constructional steel. Luxembourg: Commission of the European Communities, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Casting. Materials Park, OH: ASM International, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Belin-Ferré, Esther. Mechanical properties of complex intermetallics. Singapore: World Scientific, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

1939-, Desai Pramod D., Payne James E. 1969-, Gilp Brian F. 1968-, and Dudley Ronald D. 1964-, eds. Properties of intermetallic alloys. West Lafayette, Ind: Metals Information Analysis Center, Center for Information and Numerical Data Analysis and Synthesis, Purdue University, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bhadeshia, H. K. D. H. Bainite in steel: Transformations, microstructure and properties. London: Institute of Materials, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

H.K.D.H Bhadeshia. Bainite in steels: Transformations, microstructure and properties. London: Institute of Materials, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Steel alloys – Mechanical properties"

1

Spittel, M., and T. Spittel. "4.1 Mechanical properties of steel after cold deformation." In Metal Forming Data of Ferrous Alloys - deformation behaviour, 81–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-44760-3_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Miranda, J. Reyes, M. Aguilar Sánchez, E. Garfias Garcı́a, D. Y. Medina Velazquez, and Á. de J. Morales Ramı́rez. "Mechanical Properties of SiO2 Coatings for Corrosion Protection of 304 Stainless Steel." In Characterization of Metals and Alloys, 109–16. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31694-9_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Natividad, C., R. Garcı́a, V. H. López, L. A. Falcón, and M. Salazar. "Mechanical and Metallurgical Properties of Grade X70 Steel Linepipe Produced by Non-conventional Heat Treatment." In Characterization of Metals and Alloys, 3–11. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31694-9_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Flores, M., J. J. Ruiz, F. Macı́as, and J. Acevedo. "Effect on the Microstructure and Mechanical Properties of the Structural Steel Welded in Marine Environment." In Characterization of Metals and Alloys, 29–37. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31694-9_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Karuppuswamy, P., C. Bhagyanathan, S. Sathish, and D. Elangovan. "Hardfacing of Ni-Based Alloys on Medium Carbon Steel to Improve Turbine Blade Properties." In Lecture Notes in Mechanical Engineering, 515–23. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9809-8_38.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ogura, Tomo, Taichi Nishida, Hidehito Nishida, Syuhei Yoshikawa, Takumi Yoshida, Noriko Omichi, Mitsuo Fujimoto, and Akio Hirose. "Microstructure and Mechanical Properties of Friction Stir Welded Aluminum Alloy/Stainless Steel Lap Joints." In ICAA13: 13th International Conference on Aluminum Alloys, 647–52. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118495292.ch94.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Schmutzler, H. J., H. P. Bossmann, M. Nazmy, and M. Staubli. "Oxidation and Mechanical Properties of Chemically Modified Fe-Cr-Al Alloys." In Steels and Materials for Power Plants, 395–99. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2006. http://dx.doi.org/10.1002/3527606181.ch68.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Südmeyer, I., M. Rohde, and T. Fürst. "Effect of Various SnAgTi-Alloys and Laser Induced Texturing on the Shear Strength of Laser Brazed SiC-Steel-Joints." In Mechanical Properties and Performance of Engineering Ceramics and Composites V, 119–26. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470944127.ch13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chen, Cheng-Yi, Fei-Yi Hung, Truan-Sheng Lui, and Li-Hui Chen. "Tensile Mechanical Properties and Brittle Effect of Austempered Cr-Mo Alloy Steel." In 4th International Symposium on High-Temperature Metallurgical Processing, 299–306. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118663448.ch37.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Borgstedt, H. U. "Influence of Liquid Sodium on Mechanical Properties of Steels, Refractory Alloys and Ceramics." In NATO Science for Peace and Security Series B: Physics and Biophysics, 461–80. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-8422-5_23.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Steel alloys – Mechanical properties"

1

Sikka, Vinod K., Ronald L. Klueh, Philip J. Maziasz, Suresh Babu, Michael L. Santella, Maan H. Jawad, John R. Paules, and Kenneth E. Orie. "Mechanical Properties of New Grades of FE-3Cr-W Alloys." In ASME/JSME 2004 Pressure Vessels and Piping Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/pvp2004-2576.

Full text
Abstract:
This paper describes the development of two new grades of Fe-3Cr-3W(Mo) alloys at the Oak Ridge National Laboratory. The two grades are designated as A and B. The higher strength Grade B differs from Grade A in that it contains 0.10 wt % Ta. Both grades, when tested in normalized and tempered conditions, show a good combination of tensile strength and Charpy impact properties. Tensile properties of both A and B are over 150 MPa (20 ksi) higher than the highest strength commercial alloy T23. Grade B has higher creep-rupture strength than the T23 steel for the entire temperature range from 540 to 650°C. Grade B also exceeds creep-rupture strength of modified 9Cr-1Mo alloy (Grade 91) up to 615°C. Grade A exceeds the creep-rupture strength of T23 steel up to 600°C and match its values at the higher temperatures. Both grades have been scaled up to 50-ton-size commercial heats and processed into forgings and hot-rolled plates and bars.
APA, Harvard, Vancouver, ISO, and other styles
2

Kim, Min-Chul, Ki-Hyoung Lee, Bong-Sang Lee, and Whung-Whoe Kim. "Mechanical Properties of SA508 Gr.4N Model Alloys as a High Strength RPV Steel." In ASME 2010 Pressure Vessels and Piping Division/K-PVP Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/pvp2010-26002.

Full text
Abstract:
Demands of RPV materials with higher strength and toughness are rising to increase the power capacity and the operation life of nuclear power plants. The ASME SA508 Gr.4N specification can give a superior toughness and strength to the commercial low alloy steels such as SA508 Gr.3. However, the SA508-Gr.4N steels have not yet been used commercially due to a lack of information of the productivity and the age related properties. While the irradiation embrittlement studies are going-on, the current paper focused on the effects of alloying elements such as Ni, Cr and Mo on the fracture mechanical properties of the SA508 Gr.4N low alloy steels. Various model alloys were fabricated by changing the contents of alloying elements based on the composition range of the ASME specification. Tensile properties, Charpy impact toughness and fracture toughness of the model alloys were evaluated and those properties were discussed with the microstructural characteristics of each alloy. The strengths of the alloys were increased with increase of the Ni and Mo contents while there was no remarkable change of the yield strength with the Cr addition. The Charpy impact and fracture toughness were considerably improved with the increase of Ni, Cr contents. The Mo addition did not change the toughness properties significantly. The Cr contents were more effective on the fracture toughness through changing the carbides precipitation characteristics and the Ni contents were effective on the Charpy impact toughness through changing the effective grain size.
APA, Harvard, Vancouver, ISO, and other styles
3

Cunha, Thiago, Jaime T. P. Castro, and Marco Antonio Meggiolaro. "CHARACTERIZATION OF MULTIAXIAL LOW CYCLE FATIGUE PROPERTIES OF SAE 1020 STEEL AND 6351-T6 ALUMINUM ALLOYS." In 25th International Congress of Mechanical Engineering. ABCM, 2019. http://dx.doi.org/10.26678/abcm.cobem2019.cob2019-1854.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wuryanti, Sri, Maridjo, Slameto, Y. Ika, Indriyani, and M. Alvera. "Investigation of Mechanical Properties of ST 145 Steel and Aluminum Alloys for Shaft Making Materials." In International Seminar of Science and Applied Technology (ISSAT 2020). Paris, France: Atlantis Press, 2020. http://dx.doi.org/10.2991/aer.k.201221.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Matsumori, Yoshiaki, Jumpei Nemoto, Yuji Ichikawa, Isamu Nonaka, and Hideo Miura. "High Cycle Fatigue Properties of Modified 9Cr-1Mo Steel at Elevated Temperatures." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-87329.

Full text
Abstract:
Since high-cycle fatigue loads is applied to the pipes in various energy and chemical plants due to the vibration and frequent temperature change of fluid in the pipes, the high-cycle fatigue behavior of the alloys used for pipes should be understood quantitatively in the structural reliability design of the pipes. The purpose of this study, therefore, is to clarify the high-cycle fatigue strength and fracture mechanism of the modified 9Cr-1Mo steel at temperatures higher than 400°C. This material is one of the effective candidates for the pipes in fast breeder demonstration reactor systems. A rotating bending fatigue test was applied to samples at 50 Hz in air. The stress waveform was sinusoidal and the stress ratio was fixed at −1. The fatigue limit was observed at room temperature and it was about 420 MPa. This value was lower than the 0.2% proof stress of this alloy by about 60 MPa. This decrease can be attributed to the cyclic softening of this material. The limited cycles at knee point was about 8×105 cycles. All fracture was initiated from a single surface crack and no inclusion-induced fracture was observed in the fracture surface by SEM. Thus, the high-cycle fatigue design based on the fatigue limit may be applicable to the modified 9Cr-1Mo steel at room temperature. The fatigue limit of about 350 MPa was also observed at 400°C, and it appeared at about 107 cycles, while it appeared at around 106 cycles at room temperature. Thus, it was confirmed that the fatigue strength of this alloy decrease with temperature. However, the fatigue limit didn’t appear at 550°C up to 108 cycles. The fatigue limit may disappear in this alloy at 550°C. It is very important, therefore, to evaluate the ultra-high cycle fatigue strength of this alloy at temperatures higher than 400°C.
APA, Harvard, Vancouver, ISO, and other styles
6

Dolzhenko, A., and A. Belyakov. "Mechanical properties of high-strength low-alloy steel after tempforming." In PROCEEDINGS OF THE INTERNATIONAL CONFERENCE “PHYSICAL MESOMECHANICS. MATERIALS WITH MULTILEVEL HIERARCHICAL STRUCTURE AND INTELLIGENT MANUFACTURING TECHNOLOGY”. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0084752.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Avrithi, Kleio. "Probabilistic Properties of Steel for Nuclear Piping." In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-87054.

Full text
Abstract:
For the development of design rules for nuclear piping using the Load and Resistance Factor Design (LRFD) method, the probabilistic properties of steel, namely, the mean value, bias, coefficient of variation, and probability distribution are needed. The paper presents background information for the existing material tables in the ASME Boiler and Pressure Vessel Code, Section II. Then it investigates the probabilistic properties for the most representative materials used for nuclear piping such as a carbon, stainless austenitic, and low alloy steels. Properties up to temperature 700°F are examined through a review of studies for the mechanical behavior of these materials. The paper discusses approaches for grouping materials in broader categories than the consideration of each type of steel separately. The impact of the steel probabilistic properties on the development of LRFD equations and the associated target reliability index is provided.
APA, Harvard, Vancouver, ISO, and other styles
8

Iyer, Natraj, and Karthik Ramani. "Analysis of Sink Marks for Plastic Parts Molded in Steel and Aluminum Alloy Molds." In ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-1224.

Full text
Abstract:
Abstract Recently developed aluminum alloys show significant potential as injection mold materials for their ability to cool plastic parts faster than steel. These alloys maintain more uniform mold temperatures that can have significant effects in reducing post-molding shrinkage. Commercially available software can be used to predict the global shrinkage in a part. However, none of the currently available software predicts localized sink mark formation. In the present work, temperature and pressure histories from a three-dimensional molding analysis using C-Mold™ are used to determine the initial conditions for a sequentially coupled thermal and structural finite element analysis using ANSYS™. The thermal conductivity, density and specific heat of the polymer are input as temperature dependent properties. The polymer is modeled as a temperature dependent elastic material. Correlations made between numerical and experimental data for sink mark depths in parts molded in P-20 steel and QE-7™ aluminum alloy molds validate the use of the sink mark simulation method. Numerical comparison of sink mark depths for parts molded in aluminum alloy and steel molds show that aluminum alloys reduce sink mark depths in molded parts.
APA, Harvard, Vancouver, ISO, and other styles
9

Giere, Ralf, Ingo Decker, and Juergen Ruge. "Influence of laser-beam-cutting on the mechanical-technological properties of grain-refined steel and aluminium alloys." In The Hague '90, 12-16 April, edited by Hans Opower. SPIE, 1990. http://dx.doi.org/10.1117/12.20550.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ibrahim, Youssef, Khaled H. Khafagy, Tarek M. Hatem, and Hesham A. Hegazi. "Three-Dimensional Crystal Plasticity Modelling of High-Strength Tool Steels Using Fourier Based Spectral Solver." In ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-24167.

Full text
Abstract:
Abstract Tool steels are essential for any industry, being used to cut, drill, form, shear, and shape ferrous and non-ferrous materials in bulk or powder forms. Due to the harsh service environment, tool steels are engineered with superior properties that include high wear, corrosion, and impact resistance. The macro properties of tool steel alloys are acknowledged to depend upon their fine martensitic microstructure. Therefore, accurate representation of its microstructures will help to further study its behavior which shall lead in advancing and improving their properties. In the current research, a novel microstructure generator for tool steel alloys will be used to precisely simulate complex microstructures of tool steels. The novel generating algorithm along with multiple-slip crystal plasticity based model and specialize spectral solver formulations are used to investigate high-speed tools steels behavior. The spectral method for elastoviscoplastic boundary value problems implicitly uses fast Fourier transformation algorithm (FFT) by applying periodic BCs. Both quasi-static and dynamic uniaxial tensile loading in the [010] direction is applied on a RVE of AISI H11 martensitic tool steel. Validating the numerical results with the experimental results of tool steels is presented.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Steel alloys – Mechanical properties"

1

Korth, G. E. Mechanical properties of four RSP stainless steel alloys. Office of Scientific and Technical Information (OSTI), December 1996. http://dx.doi.org/10.2172/542018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hicho, G. E., and J. H. Smith. Mechanical properties and fracture toughness of AAR TC128 grade B steel and micro-alloyed, control-rolled steel, A 8XX grade B, from -80[degrees] F to + 73[degrees] F. Gaithersburg, MD: National Institute of Standards and Technology, 1990. http://dx.doi.org/10.6028/nist.ir.90-4289.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Caskey, Jr, G. R. Mechanical Properties of Uranium Alloys. Office of Scientific and Technical Information (OSTI), October 2002. http://dx.doi.org/10.2172/804673.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Luecke, William E., J. David McColskey, Christopher N. McCowan, Stephen W. Banovic, Richard J. Fields, Timothy Foecke, Thomas A. Siewert, and Frank W. Gayle. Mechanical properties of structural steel. Gaithersburg, MD: National Institute of Standards and Technology, 2005. http://dx.doi.org/10.6028/nist.ncstar.1-3d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Klueh, R. L., D. J. Alexander, and M. Rieth. Mechanical properties of irradiated 9Cr-2WVTa steel. Office of Scientific and Technical Information (OSTI), September 1998. http://dx.doi.org/10.2172/330624.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Switzner, Nathan T. Stainless Steel Microstructure and Mechanical Properties Evaluation. Office of Scientific and Technical Information (OSTI), June 2010. http://dx.doi.org/10.2172/1129927.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Stevenson, D. A. CrystaL Growth and Mechanical Properties of Semiconductor Alloys. Fort Belvoir, VA: Defense Technical Information Center, April 1988. http://dx.doi.org/10.21236/ada198153.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Stevenson, David A. Crystal Growth and Mechanical Properties of Semiconductor Alloys. Fort Belvoir, VA: Defense Technical Information Center, November 1989. http://dx.doi.org/10.21236/ada216697.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lam, P. GASEOUS HYDROGEN EFFECTS ON THE MECHANICAL PROPERTIES OF CARBON AND LOW ALLOY STEELS (U). Office of Scientific and Technical Information (OSTI), June 2006. http://dx.doi.org/10.2172/891665.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Saleh, Tarik A., Tobias J. Romero, Matthew Estevan Quintana, and Kevin G. Field. High Temperature Mechanical Properties of HFIR Irradiated FeCrAl Alloys. Office of Scientific and Technical Information (OSTI), October 2018. http://dx.doi.org/10.2172/1477640.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography