Academic literature on the topic 'STED lithography'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'STED lithography.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "STED lithography"

1

Lee, Won-Sup, Hyunmin Cho, and Won-Seok Chang. "Analytical Description of Digital Mask Based STED Lithography." Journal of the Korean Society for Precision Engineering 39, no. 11 (November 30, 2022): 863–68. http://dx.doi.org/10.7736/jkspe.022.072.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Klar, Thomas A., Richard Wollhofen, and Jaroslaw Jacak. "Sub-Abbe resolution: from STED microscopy to STED lithography." Physica Scripta T162 (September 1, 2014): 014049. http://dx.doi.org/10.1088/0031-8949/2014/t162/014049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Klar, Thomas A., Richard Wollhofen, Johannes Kreutzer, Bianca Buchegger, Christine Eder, and Jaroslaw Jacak. "Sub-Diffraction STED Lithography using Orthogonally Functionalized Resins." Biophysical Journal 112, no. 3 (February 2017): 157a. http://dx.doi.org/10.1016/j.bpj.2016.11.864.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Puthukodan, Sujitha, Eljesa Murtezi, Jaroslaw Jacak, and Thomas A. Klar. "Localization STED (LocSTED) microscopy with 15 nm resolution." Nanophotonics 9, no. 4 (February 28, 2020): 783–92. http://dx.doi.org/10.1515/nanoph-2019-0398.

Full text
Abstract:
AbstractWe present localization with stimulated emission depletion (LocSTED) microscopy, a combination of STED and single-molecule localization microscopy (SMLM). We use the simplest form of a STED microscope that is cost effective and synchronization free, comprising continuous wave (CW) lasers for both excitation and depletion. By utilizing the reversible blinking of fluorophores, single molecules of Alexa 555 are localized down to ~5 nm. Imaging fluorescently labeled proteins attached to nanoanchors structured by STED lithography shows that LocSTED microscopy can resolve molecules with a resolution of at least 15 nm, substantially improving the classical resolution of a CW STED microscope of about 60 nm. LocSTED microscopy also allows estimating the total number of proteins attached on a single nanoanchor.
APA, Harvard, Vancouver, ISO, and other styles
5

Müller, Patrick, Rouven Müller, Larissa Hammer, Christopher Barner-Kowollik, Martin Wegener, and Eva Blasco. "STED-Inspired Laser Lithography Based on Photoswitchable Spirothiopyran Moieties." Chemistry of Materials 31, no. 6 (January 15, 2019): 1966–72. http://dx.doi.org/10.1021/acs.chemmater.8b04696.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Glubokov, D. A., V. V. Sychev, Alexey G. Vitukhnovsky, and A. E. Korol'kov. "Photonic crystal fibre-based light source for STED lithography." Quantum Electronics 43, no. 6 (June 30, 2013): 588–90. http://dx.doi.org/10.1070/qe2013v043n06abeh015059.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wiesbauer, Moritz, Richard Wollhofen, Borislav Vasic, Kurt Schilcher, Jaroslaw Jacak, and Thomas A. Klar. "Nano-Anchors with Single Protein Capacity Produced with STED Lithography." Nano Letters 13, no. 11 (October 16, 2013): 5672–78. http://dx.doi.org/10.1021/nl4033523.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wollhofen, Richard, Julia Katzmann, Calin Hrelescu, Jaroslaw Jacak, and Thomas A. Klar. "120 nm resolution and 55 nm structure size in STED-lithography." Optics Express 21, no. 9 (April 25, 2013): 10831. http://dx.doi.org/10.1364/oe.21.010831.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kaschke, Johannes, and Martin Wegener. "Gold triple-helix mid-infrared metamaterial by STED-inspired laser lithography." Optics Letters 40, no. 17 (August 20, 2015): 3986. http://dx.doi.org/10.1364/ol.40.003986.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Витухновский, А. Г., Р. Д. Звагельский, Д. А. Колымагин, А. В. Писаренко, and Д. А. Чубич. "Двухволновая лазерная стереолитография для создания ИК сенсоров для поверхностно-усиленной спектроскопии-=SUP=-*-=/SUP=-." Журнал технической физики 126, no. 1 (2019): 63. http://dx.doi.org/10.21883/os.2019.01.47055.271-18.

Full text
Abstract:
AbstractThe results of applying two-photon femtosecond laser photopolymerization for fabrication of structures for sensitive IR sensors are reported. Two methods of sensor fabrication, a two-wave laser stereolithography and an electron-beam lithography, are compared. The possibility of applying the obtained structures for investigation of the effect of surface-enhanced IR absorption (SEIRA) with a STED-compatible oligomer pentaerythritol tetraacrylate (PETTA) as an analytical layer is demonstrated.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "STED lithography"

1

Müller, Patrick [Verfasser], and M. [Akademischer Betreuer] Wegener. "Molecular Photoswitches for STED-inspired Laser Lithography / Patrick Müller ; Betreuer: M. Wegener." Karlsruhe : KIT-Bibliothek, 2019. http://d-nb.info/1177147297/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kaschke, Johannes Michael [Verfasser], and M. [Akademischer Betreuer] Wegener. "Complex Helical Metamaterials fabricated via STED-inspired Laser Lithography / Johannes Michael Kaschke. Betreuer: M. Wegener." Karlsruhe : KIT-Bibliothek, 2015. http://d-nb.info/1080701001/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Müller, Rouven [Verfasser], and C. [Akademischer Betreuer] Barner-Kowollik. "Spatially resolved immobilization of metallopolymers – Spiropyrans for light sensitive metal complexes and STED-inspired laser lithography / Rouven Müller ; Betreuer: C. Barner-Kowollik." Karlsruhe : KIT-Bibliothek, 2019. http://d-nb.info/1197138900/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Colburn, Matthew Earl. "Step and flash imprint lithography : a low-pressure, room-temperature nanoimprint lithography /." Access restricted to users with UT Austin EID Full text (PDF) from UMI/Dissertation Abstracts International, 2001. http://wwwlib.umi.com/cr/utexas/fullcit?p3025205.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kim, Eun Jung. "Surface Microtopography Modulation of Biomaterials for Bone Tissue Engineering Applications." Cleveland State University / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=csu1273557062.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Cheng, Zhe Annie. "Biological multi-functionalization and surface nanopatterning of biomaterials." Thesis, Bordeaux 1, 2013. http://www.theses.fr/2013BOR15202/document.

Full text
Abstract:
Le but de la conception d’un biomatériau est de mimer les modèles qui puissent être représentatifs de la matrice extracellulaire (MEC) existant in vivo. Cet objectif peut être atteint en associant une combinaison de cellules et des facteurs biologiques à un biomatériau sur lequel ces cellules peuvent se développer pour reconstruire le tissu natif. Dans cet étude, nous avons crée des surfaces bioactives nanostructurées en combinant la nanolithographie et la fonctionnalisation de surface, en greffant un peptide RGD ou BMP-2 (bone morphogenetic protein 2). Nous avons étudié l’effet de cette nanodistribution sur le comportement des cellules souches mésenchymateuses en analysant leur adhésion et différentiation. Nous notons que la nanodistribution des peptides induit une bioactivité qui a un impact sur l’organisation du cytosquelette, la conformation des fibres de stresse de l’actin, la maturation des adhésions focales (AFs), et le commitment des cellules souches. En particulier, l’aire, la distribution, et la conformation des AFs sont affectes par la présence des nanopatterns. En plus, le RGD et le BMP-2 changent le comportement cellulaire par des voies et des mécanismes différents en variant l’organisation des cellules souches et la maturation de leurs AFs. La nanodistribution influence de façon évidente les cellules souches en modifiant leur comportement (adhésion et différenciation) ce qui a contribué et ce qui contribuera à améliorer la compréhension des interactions des cellules avec la MEC
The aim of biomaterials design is to create an artificial environment that mimics the in vivo extracellular matrix for optimized cell interactions. A precise synergy between the scaffolding material, bioactivity, and cell type must be maintained in an effective biomaterial. In this work, we present a technique of nanofabrication that creates chemically nanopatterned bioactive silicon surfaces for cell studies. Using nanoimprint lithography, RGD and mimetic BMP-2 peptides were covalently grafted onto silicon as nanodots of various dimensions, resulting in a nanodistribution of bioactivity. To study the effects of spatially distributed bioactivity on cell behavior, mesenchymal stem cells (MSCs) were cultured on these chemically modified surfaces, and their adhesion and differentiation were studied. MSCs are used in regenerative medicine due to their multipotent properties, and well-controlled biomaterial surface chemistries can be used to influence their fate. We observe that peptide nanodots induce differences in MSC behavior in terms of cytoskeletal organization, actin stress fiber arrangement, focal adhesion (FA) maturation, and MSC commitment in comparison with homogeneous control surfaces. In particular, FA area, distribution, and conformation were highly affected by the presence of peptide nanopatterns. Additionally, RGD and mimetic BMP-2 peptides influenced cellular behavior through different mechanisms that resulted in changes in cell spreading and FA maturation. These findings have remarkable implications that contribute to the understanding of cell-extracellular matrix interactions for clinical biomaterials applications
APA, Harvard, Vancouver, ISO, and other styles
7

Cheng, Zhe. "Biological multi-functionalization and surface nanopatterning of biomaterials." Phd thesis, Université Sciences et Technologies - Bordeaux I, 2013. http://tel.archives-ouvertes.fr/tel-01016695.

Full text
Abstract:
The aim of biomaterials design is to create an artificial environment that mimics the in vivo extracellular matrix for optimized cell interactions. A precise synergy between the scaffolding material, bioactivity, and cell type must be maintained in an effective biomaterial. In this work, we present a technique of nanofabrication that creates chemically nanopatterned bioactive silicon surfaces for cell studies. Using nanoimprint lithography, RGD and mimetic BMP-2 peptides were covalently grafted onto silicon as nanodots of various dimensions, resulting in a nanodistribution of bioactivity. To study the effects of spatially distributed bioactivity on cell behavior, mesenchymal stem cells (MSCs) were cultured on these chemically modified surfaces, and their adhesion and differentiation were studied. MSCs are used in regenerative medicine due to their multipotent properties, and well-controlled biomaterial surface chemistries can be used to influence their fate. We observe that peptide nanodots induce differences in MSC behavior in terms of cytoskeletal organization, actin stress fiber arrangement, focal adhesion (FA) maturation, and MSC commitment in comparison with homogeneous control surfaces. In particular, FA area, distribution, and conformation were highly affected by the presence of peptide nanopatterns. Additionally, RGD and mimetic BMP-2 peptides influenced cellular behavior through different mechanisms that resulted in changes in cell spreading and FA maturation. These findings have remarkable implications that contribute to the understanding of cell-extracellular matrix interactions for clinical biomaterials applications.
APA, Harvard, Vancouver, ISO, and other styles
8

Colburn, Matthew Earl 1974. "Step and flash imprint lithography : a low-pressure, room-temperature nanoimprint lithograph." 2001. http://hdl.handle.net/2152/10298.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jacobsson, Borje Michael. "Materials development for step and flash imprint lithography." Thesis, 2011. http://hdl.handle.net/2152/ETD-UT-2011-08-4239.

Full text
Abstract:
The quest for smaller and faster integrated circuits (ICs) continues, but traditional photolithography, the patterning process used to fabricate them, is rapidly approaching its physical limits. Step and Flash Imprint Lithography (S-FIL®) is a low-cost patterning technique which has shown great potential for next generation semiconductor manufacturing. To date, all methods of imprint lithography have utilized a sacrificial resist to produce device features. Our goal has been to develop functional materials such as insulators that can be directly patterned by S-FIL and then remain as a part of the end product. Directly patternable dielectric (DPD) materials must meet multiple mechanical and physical requirements for application in microelectronic devices. In some cases these requirements are conflicting, which leads to material design challenges. Many different materials and curing methods have been evaluated. Thiol-ene based approaches to patterning hyperbranched materials incorporating Polyhedral Oligomeric Silsesquioxanes (POSS) have shown the greatest promise. Thiol-ene polymerization takes place by a free radical mechanism, but it has the advantage over acrylates of not being inhibited by the presence of oxygen. This greatly eases some engineering design challenges for the S-FIL process. A number of thiol-ene formulations have been prepared and their mechanical and electrical properties evaluated. SFIL-R has been introduced as an alternative technology to SFIL. SFIL-R offers improvements to SFIL in several ways, but requires a high silicon content, low viscosity, planarizing material. Photopolymerizable branched siloxanes were synthesized and evaluated to function as a planarizing topcoat for this technology. Both SFIL and SFIL-R require a clean separation of the template from the resist material. Fouling of templates is a major concern in imprint lithography and fluorinated materials are used to treat templates to lower their surface energy for better separation. It has been observed that the template treatment degrades over time and needs to be replaced for further imprinting. A fluorinated silazane was designed to repair the degraded areas. This material was evaluated and functions as designed.
text
APA, Harvard, Vancouver, ISO, and other styles
10

Tsung-LunWen and 溫宗倫. "Fabrication of Seamless Roller Mold Using Curved Surface Beam Pen Lithography and Step-and-Rotate Lithography." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/64860854775135705951.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "STED lithography"

1

Fourkas, John T. "STED-Inspired Approaches to Resolution Enhancement." In Multiphoton Lithography, 111–31. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527682676.ch5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ahopelto, Jouni, and Tomi Haatainen. "Step and Stamp Imprint Lithography." In Alternative Lithography, 103–15. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4419-9204-8_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bailey, T. C., M. Colburn, B. J. Choi, A. Grot, J. G. Ekerdt, S. V. Sreenivasan, and C. G. Willson. "Step and Flash Imprint Lithography." In Alternative Lithography, 117–37. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4419-9204-8_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Liu, H. Z., Bing Heng Lu, Y. C. Ding, D. C. Li, Yi Ping Tang, and T. Jin. "A Measurement System for Step Imprint Lithography." In Key Engineering Materials, 107–12. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-977-6.107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yang, Liangliang, Yunfei Zhou, Haihong Pan, and Wei Teng. "Realization of the Synchronization Mechanism of Step and Scan Projection Lithography." In Intelligent Robotics and Applications, 151–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-88518-4_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Cheng, Z. A., O. F. Zouani, K. Glinel, A. M. Jonas, and M. C. Durrieu. "Bioactive Nanoimprint Lithography: A Study of Human Mesenchymal Stem Cell Behavior and Fate." In IFMBE Proceedings, 1817–20. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-00846-2_448.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lee, Jae Jong, Seung Woo Lee, Hyun Taek Cho, Gee Hong Kim, and Kee Bong Choi. "Single-Step UV Nanoimprinting Lithography with Multi-Head Imprinting System and Its Applications." In Experimental Mechanics in Nano and Biotechnology, 441–44. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-415-4.441.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ishikawa, Eiichi, Susumu Fukatsu, Kentaro Onabe, Yasuhiro Shiraki, and Ryoichi Ito. "Ultrafine AlGaAs/GaAs Quantum-Well Wire Fabrication by Combining Electron Beam Lithography and Two-Step Wet Chemical Etching." In Science and Technology of Mesoscopic Structures, 373–78. Tokyo: Springer Japan, 1992. http://dx.doi.org/10.1007/978-4-431-66922-7_39.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

"8. STED lithography and protein nanoanchors." In Optically Induced Nanostructures, 303–24. De Gruyter, 2015. http://dx.doi.org/10.1515/9783110354324-019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Cabezas, Maria D., Daniel J. Eichelsdoerfer, Keith A. Brown, Milan Mrksich, and Chad A. Mirkin. "Combinatorial Screening of Mesenchymal Stem Cell Adhesion and Differentiation Using Polymer Pen Lithography." In Methods in Cell Biology, 261–76. Elsevier, 2014. http://dx.doi.org/10.1016/b978-0-12-416742-1.00013-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "STED lithography"

1

Fischer, J., T. J. A. Wolf, A. N. Unterreiner, and M. Wegener. "Depletion Mechanisms in STED-inspired Lithography." In CLEO: Science and Innovations. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/cleo_si.2012.cm4l.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jacak, Jaroslaw, Richard Wollhofen, and Thomas A. Klar. "Nanoscopic structuring with STED lithography (Conference Presentation)." In Nanophotonics, edited by David L. Andrews, Jean-Michel Nunzi, and Andreas Ostendorf. SPIE, 2016. http://dx.doi.org/10.1117/12.2227682.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mueller, Patrick, Larissa Hammer, Rouven Mueller, Eva Blasco, Christopher Barner-Kowollik, and Martin Wegener. "STED-inspired Laser Lithography Based on Spirothiopyran Chromophores." In CLEO: Science and Innovations. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/cleo_si.2018.sm4o.5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zvagelsky, R. D., D. A. Chubich, D. A. Kolymagin, A. V. Pisarenko, and A. G. Vitukhnovsky. "Fabrication of templates for metallic nanoantennas by STED-DLW lithography." In XVI INTERNATIONAL CONFERENCE ON LUMINESCENCE AND LASER PHYSICS DEVOTED TO THE 100TH ANNIVERSARY OF IRKUTSK STATE UNIVERSITY. Author(s), 2019. http://dx.doi.org/10.1063/1.5089847.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Klar, T. A., R. Wollhofen, and J. Jacak. "120 nm resolution and 55nm line width achieved in visible light STED-lithography." In 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC. IEEE, 2013. http://dx.doi.org/10.1109/cleoe-iqec.2013.6801550.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Liu, Yijie, and Zhen Zhang. "A Larger Range Compliant Nano-Manipulator Supporting Electron Beam Lithography." In ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/detc2021-69770.

Full text
Abstract:
Abstract Electron beam lithography (EBL) is an important lithographic process of scanning a focused electron beam to direct write a custom pattern with nanometric accuracy. Due to the very limited e-beam field of the focused election beam, a motion stage is needed to move the sample to the e-beam field for processing large patterns. In order to eliminate the stitching error induced by the existing “step and scan” process, we in this paper propose a large range compliant nano-manipulator so that the manipulator and the election beam can be moved in a simultaneous manner. We also present an optimization design for the geometric parameters of the compliant manipulator under the vacuum environment.
APA, Harvard, Vancouver, ISO, and other styles
7

Jen, Wei-Lun, Frank Palmieri, Brook Chao, Michael Lin, Jianjun Hao, Jordan Owens, Ken Sotoodeh, Robin Cheung, and C. Grant Willson. "Multilevel step and flash imprint lithography for direct patterning of dielectrics." In Advanced Lithography, edited by Michael J. Lercel. SPIE, 2007. http://dx.doi.org/10.1117/12.711602.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Vorburger, T. V., A. Hilton, R. G. Dixson, N. G. Orji, J. A. Powell, A. J. Trunek, P. G. Neudeck, and P. B. Abel. "Calibration of 1-nm SiC step height standards." In SPIE Advanced Lithography, edited by Christopher J. Raymond. SPIE, 2010. http://dx.doi.org/10.1117/12.849176.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Brooks, Cynthia, Gerard M. Schmid, Mike Miller, Steve Johnson, Niyaz Khusnatdinov, Dwayne LaBrake, Douglas J. Resnick, and S. V. Sreenivasan. "Step and flash imprint lithography for manufacturing patterned media." In SPIE Advanced Lithography, edited by Frank M. Schellenberg and Bruno M. La Fontaine. SPIE, 2009. http://dx.doi.org/10.1117/12.815016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lin, Michael W., Daniel J. Hellebusch, Kai Wu, Eui Kyoon Kim, Kuan Lu, Li Tao, Kenneth M. Liechti, et al. "Interfacial adhesion studies for step and flash imprint lithography." In SPIE Advanced Lithography, edited by Frank M. Schellenberg. SPIE, 2008. http://dx.doi.org/10.1117/12.772797.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography