Academic literature on the topic 'Statistical graph analysis'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Statistical graph analysis.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Statistical graph analysis"
Jain, Brijnesh J. "Statistical graph space analysis." Pattern Recognition 60 (December 2016): 802–12. http://dx.doi.org/10.1016/j.patcog.2016.06.023.
Full textMartins, Maria Maria Pereira, Carolina Fernandes de Carvalho, and Carlos Eduardo Ferreira Monteiro. "The analysis of statistical graphs constructed by primary school teachers." Acta Scientiae 23, no. 6 (November 18, 2021): 28–57. http://dx.doi.org/10.17648/acta.scientiae.6762.
Full textNowicki, Krzysztof. "Asymptotic Poisson distributions with applications to statistical analysis of graphs." Advances in Applied Probability 20, no. 02 (June 1988): 315–30. http://dx.doi.org/10.1017/s0001867800016992.
Full textNowicki, Krzysztof. "Asymptotic Poisson distributions with applications to statistical analysis of graphs." Advances in Applied Probability 20, no. 2 (June 1988): 315–30. http://dx.doi.org/10.2307/1427392.
Full textLin, Zhenxian, Jiagang Wang, and Chengmao Wu. "Robust Spectral Clustering Incorporating Statistical Sub-Graph Affinity Model." Axioms 11, no. 6 (June 5, 2022): 269. http://dx.doi.org/10.3390/axioms11060269.
Full textHora, Akihito. "Central Limit Theorems and Asymptotic Spectral Analysis on Large Graphs." Infinite Dimensional Analysis, Quantum Probability and Related Topics 01, no. 02 (April 1998): 221–46. http://dx.doi.org/10.1142/s0219025798000144.
Full textKalikova, A. "Statistical analysis of random walks on network." Scientific Journal of Astana IT University, no. 5 (July 27, 2021): 77–83. http://dx.doi.org/10.37943/aitu.2021.99.34.007.
Full textTurab, Ali, Wutiphol Sintunavarat, and Jong-Suk Ro. "On Novel Mathematical Modeling for Studying a Class of Nonlinear Caputo-Type Fractional-Order Boundary Value Problems Emerging in CGT." Fractal and Fractional 7, no. 2 (January 17, 2023): 99. http://dx.doi.org/10.3390/fractalfract7020099.
Full textZhao, Jin-Hua. "A local algorithm and its percolation analysis of bipartite z-matching problem." Journal of Statistical Mechanics: Theory and Experiment 2023, no. 5 (May 1, 2023): 053401. http://dx.doi.org/10.1088/1742-5468/acd105.
Full textGhazwani, Haleemah, Muhammad Faisal Nadeem, Faiza Ishfaq, and Ali N. A. Koam. "On Entropy of Some Fractal Structures." Fractal and Fractional 7, no. 5 (April 30, 2023): 378. http://dx.doi.org/10.3390/fractalfract7050378.
Full textDissertations / Theses on the topic "Statistical graph analysis"
Fairbanks, James Paul. "Graph analysis combining numerical, statistical, and streaming techniques." Diss., Georgia Institute of Technology, 2016. http://hdl.handle.net/1853/54972.
Full textSoriani, Nicola. "Topics in Statistical Models for Network Analysis." Doctoral thesis, Università degli studi di Padova, 2012. http://hdl.handle.net/11577/3422100.
Full textLa Network Analysis è un insieme di tecniche statistiche e matematiche per lo studio di dati relazionali per un sistema di entità interconnesse. Molti dei risultati per i dati di rete provengono dalla Social Network Analysis (SNA), incentrata principalmente sullo studio delle relazioni tra un insieme di individui e organizzazioni. La tesi tratta alcuni argomenti riguardanti la modellazione statistica per dati di rete, con particolare attenzione ai modelli utilizzati in SNA. Il nucleo centrale della tesi è rappresentato dai Capitoli 3, 4 e 5. Nel Capitolo 3, viene proposto un approccio alternativo per la stima dei modelli esponenziali per grafi casuali (Exponential Random Graph Models - ERGMs). Nel capitolo 4, l'approccio di modellazione ERGM e quello a Spazio Latente vengono confrontati in termini di bontà di adattamento. Nel capitolo 5, vengono proposti metodi alternativi per la stima della classe di modelli p2.
GRASSI, FRANCESCO. "Statistical and Graph-Based Signal Processing: Fundamental Results and Application to Cardiac Electrophysiology." Doctoral thesis, Politecnico di Torino, 2018. http://hdl.handle.net/11583/2710580.
Full textMeinhardt, Llopis Enric. "Morphological and statistical techniques for the analysis of 3D images." Doctoral thesis, Universitat Pompeu Fabra, 2011. http://hdl.handle.net/10803/22719.
Full textThis thesis proposes a tree data structure to encode the connected components of level sets of 3D images. This data structure is applied as a main tool in several proposed applications: 3D morphological operators, medical image visualization, analysis of color histograms, object tracking in videos and edge detection. Motivated by the problem of edge linking, the thesis contains also an study of anisotropic total variation denoising as a tool for computing anisotropic Cheeger sets. These anisotropic Cheeger sets can be used to find global optima of a class of edge linking functionals. They are also related to some affine invariant descriptors which are used in object recognition, and this relationship is laid out explicitly.
Tavernari, Daniele. "Statistical and network-based methods for the analysis of chromatin accessibility maps in single cells." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amslaurea.unibo.it/12297/.
Full textValba, Olga. "Statistical analysis of networks and biophysical systems of complex architecture." Phd thesis, Université Paris Sud - Paris XI, 2013. http://tel.archives-ouvertes.fr/tel-00919606.
Full textKamal, Tariq. "Computational Cost Analysis of Large-Scale Agent-Based Epidemic Simulations." Diss., Virginia Tech, 2016. http://hdl.handle.net/10919/82507.
Full textPh. D.
Jiang, Shan. "Statistical Modeling of Multi-Dimensional Knowledge Diffusion Networks: An ERGM-Based Framework." Diss., The University of Arizona, 2015. http://hdl.handle.net/10150/555946.
Full textLamont, Morné Michael Connell. "Binary classification trees : a comparison with popular classification methods in statistics using different software." Thesis, Stellenbosch : Stellenbosch University, 2002. http://hdl.handle.net/10019.1/52718.
Full textENGLISH ABSTRACT: Consider a data set with a categorical response variable and a set of explanatory variables. The response variable can have two or more categories and the explanatory variables can be numerical or categorical. This is a typical setup for a classification analysis, where we want to model the response based on the explanatory variables. Traditional statistical methods have been developed under certain assumptions such as: the explanatory variables are numeric only and! or the data follow a multivariate normal distribution. hl practice such assumptions are not always met. Different research fields generate data that have a mixed structure (categorical and numeric) and researchers are often interested using all these data in the analysis. hl recent years robust methods such as classification trees have become the substitute for traditional statistical methods when the above assumptions are violated. Classification trees are not only an effective classification method, but offer many other advantages. The aim of this thesis is to highlight the advantages of classification trees. hl the chapters that follow, the theory of and further developments on classification trees are discussed. This forms the foundation for the CART software which is discussed in Chapter 5, as well as other software in which classification tree modeling is possible. We will compare classification trees to parametric-, kernel- and k-nearest-neighbour discriminant analyses. A neural network is also compared to classification trees and finally we draw some conclusions on classification trees and its comparisons with other methods.
AFRIKAANSE OPSOMMING: Beskou 'n datastel met 'n kategoriese respons veranderlike en 'n stel verklarende veranderlikes. Die respons veranderlike kan twee of meer kategorieë hê en die verklarende veranderlikes kan numeries of kategories wees. Hierdie is 'n tipiese opset vir 'n klassifikasie analise, waar ons die respons wil modelleer deur gebruik te maak van die verklarende veranderlikes. Tradisionele statistiese metodes is ontwikkelonder sekere aannames soos: die verklarende veranderlikes is slegs numeries en! of dat die data 'n meerveranderlike normaal verdeling het. In die praktyk word daar nie altyd voldoen aan hierdie aannames nie. Verskillende navorsingsvelde genereer data wat 'n gemengde struktuur het (kategories en numeries) en navorsers wil soms al hierdie data gebruik in die analise. In die afgelope jare het robuuste metodes soos klassifikasie bome die alternatief geword vir tradisionele statistiese metodes as daar nie aan bogenoemde aannames voldoen word nie. Klassifikasie bome is nie net 'n effektiewe klassifikasie metode nie, maar bied baie meer voordele. Die doel van hierdie werkstuk is om die voordele van klassifikasie bome uit te wys. In die hoofstukke wat volg word die teorie en verdere ontwikkelinge van klassifikasie bome bespreek. Hierdie vorm die fondament vir die CART sagteware wat bespreek word in Hoofstuk 5, asook ander sagteware waarin klassifikasie boom modelering moontlik is. Ons sal klassifikasie bome vergelyk met parametriese-, "kernel"- en "k-nearest-neighbour" diskriminant analise. 'n Neurale netwerk word ook vergelyk met klassifikasie bome en ten slote word daar gevolgtrekkings gemaak oor klassifikasie bome en hoe dit vergelyk met ander metodes.
Noel, Jonathan A. "Extremal combinatorics, graph limits and computational complexity." Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:8743ff27-b5e9-403a-a52a-3d6299792c7b.
Full textBooks on the topic "Statistical graph analysis"
Kalyagin, V. A., A. P. Koldanov, P. A. Koldanov, and P. M. Pardalos. Statistical Analysis of Graph Structures in Random Variable Networks. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60293-2.
Full textLangtangen, Hans Petter. Solving PDEs in Python: The FEniCS Tutorial I. Cham: Springer Nature, 2017.
Find full textStructure in complex networks. Berlin: Springer, 2009.
Find full textBasford, Kaye E. Graphical analysis of multiresponse data: Illustrated with a plant breeding trial : interdisciplinary statistics. Boca Raton, Fla: Chapman & Hall/CRC, 1999.
Find full textBasford, Kaye E. Graphical analysis of multiresponse data: Illustrated with a plant breeding trial. Boca Raton, Fla: Chapman & Hall/CRC, 1999.
Find full textWhittaker, J. Graphical models in applied multivariate statistics. Chichester [England]: Wiley, 1990.
Find full textPhilippe, Mathis, ed. Graphs and networks. London: ISTE, 2007.
Find full textBarthélemy, Jean-Pierre. Trees and proximity representations. Chichester: Wiley, 1991.
Find full textPhilippe, Mathis, ed. Graphs and networks: Multilevel modeling. 2nd ed. London: J. Wiley & Sons, 2010.
Find full textPhilippe, Mathis, ed. Graphs and networks: Multilevel modeling. 2nd ed. London: J. Wiley & Sons, 2010.
Find full textBook chapters on the topic "Statistical graph analysis"
Marasinghe, Mervyn G., and William J. Kennedy. "Statistical Graphics Using SAS/GRAPH." In SAS for Data Analysis, 1–58. New York, NY: Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-77372-8_3.
Full textRupp, Matthias. "Graph Kernels." In Statistical and Machine Learning Approaches for Network Analysis, 217–43. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118346990.ch8.
Full textLange, Kenneth. "Descent Graph Methods." In Mathematical and Statistical Methods for Genetic Analysis, 169–201. New York, NY: Springer New York, 2002. http://dx.doi.org/10.1007/978-0-387-21750-5_9.
Full textAh-Pine, Julien. "Graph Clustering by Maximizing Statistical Association Measures." In Advances in Intelligent Data Analysis XII, 56–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-41398-8_6.
Full textGras, Régis, Antoine Bodin, Raphaël Couturier, and Pablo Gregori. "Fractal Dimension of an Implicative Graph." In The Theory of Statistical Implicative Analysis, 179–89. Boca Raton: Chapman and Hall/CRC, 2023. http://dx.doi.org/10.1201/9781003458777-16.
Full textMiasnikof, Pierre, Alexander Y. Shestopaloff, Anthony J. Bonner, and Yuri Lawryshyn. "A Statistical Performance Analysis of Graph Clustering Algorithms." In Lecture Notes in Computer Science, 170–84. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-92871-5_11.
Full textvor der Brück, Tim. "Hyponym Extraction Employing a Weighted Graph Kernel." In Statistical and Machine Learning Approaches for Network Analysis, 303–25. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118346990.ch11.
Full textGras, Régis, Antoine Bodin, Raphaël Couturier, and Pablo Gregori. "A Mechanical Metaphor of the Implicative Graph of Statistical Implicative Analysis." In The Theory of Statistical Implicative Analysis, 201–6. Boca Raton: Chapman and Hall/CRC, 2023. http://dx.doi.org/10.1201/9781003458777-18.
Full textKutzelnigg, Reinhard. "The Structure of an Evolving Random Bipartite Graph." In Statistical and Machine Learning Approaches for Network Analysis, 191–215. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118346990.ch7.
Full textLi, Shoumei, and Yukio Ogura. "Convergence in graph for fuzzy valued martingales and smartingales." In Statistical Modeling, Analysis and Management of Fuzzy Data, 72–89. Heidelberg: Physica-Verlag HD, 2002. http://dx.doi.org/10.1007/978-3-7908-1800-0_5.
Full textConference papers on the topic "Statistical graph analysis"
Fairbanks, James, David Ediger, Rob McColl, David A. Bader, and Eric Gilbert. "A statistical framework for streaming graph analysis." In ASONAM '13: Advances in Social Networks Analysis and Mining 2013. New York, NY, USA: ACM, 2013. http://dx.doi.org/10.1145/2492517.2492620.
Full textChen, Jia, Gang Wang, Yanning Shen, and Georgios B. Giannakis. "Canonical Correlation Analysis with Common Graph Priors." In 2018 IEEE Statistical Signal Processing Workshop (SSP). IEEE, 2018. http://dx.doi.org/10.1109/ssp.2018.8450749.
Full textVillafane-Delgado, Marisel, and Selin Aviyente. "Temporal network tracking based on tensor factor analysis of graph signal spectrum." In 2016 IEEE Statistical Signal Processing Workshop (SSP). IEEE, 2016. http://dx.doi.org/10.1109/ssp.2016.7551718.
Full textKim, Won Hwa, Vikas Singh, Moo K. Chung, Nagesh Adluru, Barbara B. Bendlin, and Sterling C. Johnson. "Multi-resolution statistical analysis on graph structured data in neuroimaging." In 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI 2015). IEEE, 2015. http://dx.doi.org/10.1109/isbi.2015.7164173.
Full textMadhuri, Mrs A., and T. Uma Devi. "Statistical Analysis of Design Aspects on Various Graph Embedding Learning Classifiers." In 2023 7th International Conference on Computing Methodologies and Communication (ICCMC). IEEE, 2023. http://dx.doi.org/10.1109/iccmc56507.2023.10083741.
Full textXue-Xin Liu, S. X.-D. Tan, and Hai Wang. "Parallel statistical analysis of analog circuits by GPU-accelerated graph-based approach." In 2012 Design, Automation & Test in Europe Conference & Exhibition (DATE 2012). IEEE, 2012. http://dx.doi.org/10.1109/date.2012.6176615.
Full textKaurov, B. "A NEW APPROACH TO THE CONSTRUCTION OF A HUMAN AGING SCHEME." In XIV International Scientific Conference "System Analysis in Medicine". Far Eastern Scientific Center of Physiology and Pathology of Respiration, 2020. http://dx.doi.org/10.12737/conferencearticle_5fe01d9bae6739.66243641.
Full textPavan Perin, Andréa, and Celso Ribeiro Campos. "Reading and Interpretation of Statistical Graphics by 2nd Year Students of High School." In Bridging the Gap: Empowering and Educating Today’s Learners in Statistics. International Association for Statistical Education, 2022. http://dx.doi.org/10.52041/iase.icots11.t2f1.
Full textFreeley, Jennifer, Dmvtro Mishagli, Tom Brazil, and Elena Blokhina. "Statistical Simulations of Delay Propagation in Large Scale Circuits Using Graph Traversal and Kernel Function Decomposition." In 2018 15th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD). IEEE, 2018. http://dx.doi.org/10.1109/smacd.2018.8434901.
Full textMa, Xin, Guorong Wu, and Won Hwa Kim. "Enriching Statistical Inferences on Brain Connectivity for Alzheimer's Disease Analysis via Latent Space Graph Embedding." In 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI). IEEE, 2020. http://dx.doi.org/10.1109/isbi45749.2020.9098641.
Full textReports on the topic "Statistical graph analysis"
Juden, Matthew, Tichaona Mapuwei, Till Tietz, Rachel Sarguta, Lily Medina, Audrey Prost, Macartan Humphreys, et al. Process Outcome Integration with Theory (POInT): academic report. Centre for Excellence and Development Impact and Learning (CEDIL), March 2023. http://dx.doi.org/10.51744/crpp5.
Full textStriuk, Andrii, Olena Rybalchenko, and Svitlana Bilashenko. Development and Using of a Virtual Laboratory to Study the Graph Algorithms for Bachelors of Software Engineering. [б. в.], November 2020. http://dx.doi.org/10.31812/123456789/4462.
Full text