Academic literature on the topic 'Stationary problems'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Stationary problems.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Stationary problems"
Bergemann, Dirk, and Juuso Välimäki. "Stationary multi-choice bandit problems." Journal of Economic Dynamics and Control 25, no. 10 (October 2001): 1585–94. http://dx.doi.org/10.1016/s0165-1889(99)00064-0.
Full textSakhnovich, Lev. "The Generalized Stationary Scattering Problems." Complex Analysis and Operator Theory 12, no. 3 (June 19, 2017): 607–13. http://dx.doi.org/10.1007/s11785-017-0700-6.
Full textGarc�a-Meli�n, J., and J. Sabina de Lis. "Stationary patterns to diffusion problems." Mathematical Methods in the Applied Sciences 23, no. 16 (2000): 1467–89. http://dx.doi.org/10.1002/1099-1476(20001110)23:16<1467::aid-mma174>3.0.co;2-g.
Full textWu, Wenying, and Dingtao Peng. "Optimality Conditions for Group Sparse Constrained Optimization Problems." Mathematics 9, no. 1 (January 1, 2021): 84. http://dx.doi.org/10.3390/math9010084.
Full textČiegis, R., A. Štikonas, O. Štikoniene, and O. Suboč. "STATIONARY PROBLEMS WITH NONLOCAL BOUNDARY CONDITIONS." Mathematical Modelling and Analysis 6, no. 2 (December 15, 2001): 178–91. http://dx.doi.org/10.3846/13926292.2001.9637157.
Full textNamba, Hiroyuki. "Non-stationary Stochastic Multi-armed Bandit Problems with External Information on Stationarity." Transactions of the Japanese Society for Artificial Intelligence 36, no. 3 (May 1, 2021): D—K84_1–11. http://dx.doi.org/10.1527/tjsai.36-3_d-k84.
Full textbeim Graben, Peter, and Axel Hutt. "Detecting event-related recurrences by symbolic analysis: applications to human language processing." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 373, no. 2034 (February 13, 2015): 20140089. http://dx.doi.org/10.1098/rsta.2014.0089.
Full textTimokhin, I. V., S. A. Matveev, N. Siddharth, E. E. Tyrtyshnikov, A. P. Smirnov, and N. V. Brilliantov. "Newton method for stationary and quasi-stationary problems for Smoluchowski-type equations." Journal of Computational Physics 382 (April 2019): 124–37. http://dx.doi.org/10.1016/j.jcp.2019.01.013.
Full textDautov, R. Z., and E. M. Fedotov. "HDG schemes for stationary convection-diffusion problems." IOP Conference Series: Materials Science and Engineering 158 (November 2016): 012028. http://dx.doi.org/10.1088/1757-899x/158/1/012028.
Full textChebotarev, A. Yu. "Inverse problems for stationary Navier-Stokes systems." Computational Mathematics and Mathematical Physics 54, no. 3 (March 2014): 537–45. http://dx.doi.org/10.1134/s0965542514030038.
Full textDissertations / Theses on the topic "Stationary problems"
Tassignon, Hugo. "Solutions to non-stationary problems in wavelet space." Thesis, De Montfort University, 1997. http://hdl.handle.net/2086/13259.
Full textJohansson, Tomas. "Reconstruction of a stationary flow from boundary data." Licentiate thesis, Linköpings universitet, Kommunikations- och transportsystem, 2000. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-140141.
Full textBarr, Ronald I. "Planning and urban design strategies for addressing stationary noise related problems." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/MQ63488.pdf.
Full textLe, Roux Christiaan. "Mixed variational problems associated with stationary viscous incompressible free boundary flows." Master's thesis, University of Cape Town, 1991. http://hdl.handle.net/11427/15965.
Full textA strategy that is often used in the study of capillary free boundary (FB) problems for viscous incompressible flows is the following: (1) Ignore one of the boundary conditions at the FB and prove that for every chosen position of the FB the resultant problem, here called the auxiliary problem (AP), is well posed. (2) Establish regularity results for the solution of the AP. (3) Using (2) and the remaining boundary condition, determine the position of the FB. We study the existence and uniqueness of the weak solution(s) to the AP, i.e., step (1), under minimal regularity constraints on the data and domain. The analysis is carried out for stationary two-dimensional flows, governed by either the Stokes or Navier-Stokes equations, in the context of four standard examples. A Green's formula is derived which allows the AP to be formulated as a mixed variational problem in which the pressure and normal stress appear as Lagrange multipliers. Existence and uniqueness results are obtained by using the Ladyzhenskaya-Babuska-Brezzi theory for mixed problems. By analogy with step (3), the dependence of the normal stress on the position of the FB is investigated.
Lin, Tianyu. "Some Stationary and Evolution Problems Governed by Various Notions of Monotone Operators." Master's thesis, Faculty of Science, 2021. http://hdl.handle.net/11427/32783.
Full textColville, Kevin. "An analysis of frictional effects in non-stationary contact problems for metal forming simulations." Doctoral thesis, Faculty of Science, 2021. http://hdl.handle.net/11427/33435.
Full textFiscella, A. "VARIATIONAL PROBLEMS INVOLVING NON-LOCAL ELLIPTIC OPERATORS." Doctoral thesis, Università degli Studi di Milano, 2014. http://hdl.handle.net/2434/245334.
Full textKlovienė, Neringa. "Non-stationary Poiseuille type solutions for the second grade fluid flow problem in cylindrical domains." Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2013. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2013~D_20130124_081843-47698.
Full textDisertacijoje nagrinėjamas vienas iš Rivlin-Eriksono diferencialinio tipo skysčių matematinių modelių – antrojo laipsnio skysčių tekėjimo uždavinys. Problema analizuojama su papildomai užduota srauto sąlyga trijose skirtingose srityse: • begalinėje juostoje, • begaliniame sukimosi cilindre, • begaliniame vamzdyje su bet kokiu skerspjūviu. Tariama, kad pradinio greičio ir išorės jėgų vektoriai nepriklauso nuo paskutinės koordinatės ir yra išreikšti pavidalu u_0(x,t)=(0, …, u_{n0}(x’,t)), f(x,t)=(0, …, f_n(x’,t)). Ieškoma antrojo laipsnio skysčių tekėjimo uždavinio Puazeilio tipo u(x,t) =(0, …, u_n(x’,t)) sprendinio. Begalinėje dvimatėje juostoje ir begaliniame trimačiame sukimosi cilindre įrodytas kryptinio Puazeilio tipo sprendinio egzistavimas ir rastas sąryšis tarp srauto ir slėgio gradiento. Analogiški rezultatai gauti pradiniam ir kraštiniam antrojo laipsnio skysčių tekėjimo uždaviniui periodinėje pagal laiką begalinėje dvimatėje juostoje. Darbe parodyta, kad begaliniame trimačiame vamzdyje, su bet kokiu skerspjūviu, kryptinis (priklausantis tik nuo paskutinės komponentės) Puazeilio tipo sprendinys neegzistuoja net jei pradiniai duomenys yra kryptiniai. Nagrinėjamas bendresnis atvejis, kai Puazeilio tipo sprendinys priklauso nuo visų trijų komponenčių u(x’,t)=( u_1, u_2, u_3). Disertacijoje įrodyta, kad esant mažiems pradiniams duomenims egzistuoja vienintelis uždavinio sprendinys. Sprendžiant buvo naudojamas Galiorkino aproksimacijų metodas ir specialios bazės.
Gillard, Frédéric. "Conception et réalisation d’un micro-spectromètre dans l’infrarouge." Thesis, Paris 11, 2012. http://www.theses.fr/2012PA112043/document.
Full textIn order to satisfy the need for handheld infrared spectrometers, the ONERA developed a new concept called MICROSPOC. This device is an infrared focal plane array with a built-in two-wave wedge-like interferometer and forms a static Fourier-transform spectrometer. This modified focal plane array, which merges the detection function and the interferometric function, in association with a simplified optical system, allows to consider the realisation of a much compact instrument. The goal of this thesis is to design and to realize a miniaturized infrared spectrometer based on the MICROSPOC concept.Firstly, a theoritical work has been led in order to design a compact optical system. Since we have chosen a collection optical system (the focal plane array sees an extended source placed at a finite distance), the study of MICROSPOC angular acceptance in these lightening conditions is needed in order to predict the contrast and the shape of interference fringes. The huge angular acceptance of MICROSPOC will be established with the results of this study.Secondly, a demonstrator based on MICROSPOC device and on the simplified optical system has been realized. This demonstrator has been caracterized in the laboratory and used in real conditions of a measurement campaign. These different exploitations have shown the robustness of the instrument despite some defaults on acquired interferograms.Then, a processing chain has been developed in order to estimate a spectrum from an interferogram acquired with our demonstrator. Considering the MICROSPOC’s own characteristics, the Fourier-transform is not the best way to estimate a spectrum. We have come to this conclusion by studying the effects of cut-off wavelenghts disparities of the detector on the spectrum estimation. At this point we have considered an approach that consists of using the spectral characterization of the instrument in order to inverse the measure. This approach gives satisfying results.Finaly, the main goal has been widened with the design and the realisation of other instruments that combine a spectrometric function and a imaging function. The first elements for the design of a handheld spectrometer have been given
Menoni, Jose Antonio. "Formulação e implementação da versão direta do metodo dos elementos de contorno para tratamento de problemas acusticos estacionarios bidimensionais diretos e inversos." [s.n.], 2004. http://repositorio.unicamp.br/jspui/handle/REPOSIP/263958.
Full textTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecanica
Made available in DSpace on 2018-08-04T01:41:44Z (GMT). No. of bitstreams: 1 Menoni_JoseAntonio_D.pdf: 11918799 bytes, checksum: c09bbd80eae74f22092698eb851e1578 (MD5) Previous issue date: 2004
Resumo: Este trabalho trata da formulação e da implementação da versão direta do Método dos Elementos de Contorno (MEC) para tratamento de problemas acústicos bidimensionais estacionários regidos pelo operador diferencial de Helrnholtz. São abordados tanto problemas internos, associados a domínios limitados, quanto problemas externos, associados a domínios ilimitados. A tese ainda aborda a solução de problemas diretos e inversos. A transformação da equação de Helrnholtz em Equação Integral de Contorno, bem como a síntese de sua Solução Fundamental é recuperada de forma detalhada no texto. Para o caso de problemas internos duas técnicas são estudadas para recuperação de grandezas modais de cavidades acústicas. A primeira é baseada na pesquisa direta das raÍzes do polinômio característico e a segunda é baseada na informação obtida a partir de Funções de Resposta em Freqüência sintetizadas pelo MEC. Os problemas da radiação e espalhamento acústico são formulados, implementados e validados. O trabalho apresenta ainda a solução de problemas inversos, no qual as variáveis acústicas em um contorno geométrico conhecido são determinadas a partir de medições em uma superficie fechada e que envolve o corpo radiante. Duas técnicas são utilizadas no processo inverso, a Decomposição em Valores Singulares e a técnica de regularização de Tikhonov. Discute-se a precisão e eficiência destas técnicas em função dos parâmetros que são variáveis presentes nestas técnicas
Abstract: The present Thesis reports a formulation and an implementation of the direct version of the Boundary Element Method (BEM) to model direct and indirect bidimensional stationary acoustic problems governed by the Helrnholz differential operator. Both internal and external problems, associated, respectively to bounded and unbounded domains, are treated in the analysis. The transformation of the Helmholtz differential equation into an equivalent Boundary Integral Equation (BIE) and the synthesis of its Fundamental Solution is recovered in detail. For internal problem two techniques are employed to obtain modal quantities of acoustic cavities. The fIrs is the direct search method of the characteristic polynomial roots. The second strategy is based on numerical Frequency Response Functions, synthesized by the BEM. Radiation and scatter problems are formulated, implemented and validated within the realm of the Boundary Element Method. The present work still addresses the solution of an inverse problem. The inverse problem consists of determining the acoustic variables on the boundary of a radiating or scattering body of known geometry, based on the acoustic fIelds measured over a c10sed surface which embodies the analized body. Two technique to solve the inversion problem are discussed. The fIrst is the Single Value Decomposition strategy and the other is the Tikhonov regularization strategy. The accuracy of this techniques are discussed as functions of the internal parameters which are intrinsic to those strategies
Doutorado
Mecanica dos Sólidos e Projeto Mecanico
Mestre em Engenharia Mecânica
Books on the topic "Stationary problems"
Knight, Philip Anthony. Error analysis of stationary iteration and associated problems. Manchester: University of Manchester, 1993.
Find full textTassignon, H. Solutions to non-stationary problems in wavelet space. Leicester: SERCentre, De Montfort University, 1997.
Find full textTassignon, Hugo. Solutions to non-stationary problems in wavelet space. Leicester: De Montfort University, 1997.
Find full textMahler, Harry. Stationary engineer, high pressure plant tender, high pressure boiler operating engineer. 6th ed. New York: Arco Pub., 1985.
Find full textMarti, Kurt. Computation of descent directions and stationary (efficient) points in stochastic optimization problems having discrete distributions. Neubiberg: Universität der Bundeswehr München, 1986.
Find full textZulehner, Walter. Numerische Mathematik: Stationa re Probleme. Basel: Birkha user, 2008.
Find full textVerband Katholischer Einrichtungen der Heim- und Heilpädagogik., ed. Stationäre Erziehungshilfe für Mädchen. Freiburg im Breisgau: Lambertus, 1990.
Find full textStocker, Jennifer Rachel. The study of two problems in fluid mechanics using asymptotic and numerical methods: Part 1 Stationary perturbations of Couette-Poiseuille flow, the flow development in long cavities and channels : part 2 Unsteady flow past a circular cylinder in a rotating frame. Manchester: University of Manchester, 1995.
Find full textBabeshko, Lyudmila, and Irina Orlova. Econometrics and econometric modeling in Excel and R. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1079837.
Full textBook chapters on the topic "Stationary problems"
Bensoussan, Alain, Jens Frehse, and Phillip Yam. "Stationary Problems." In Mean Field Games and Mean Field Type Control Theory, 59–66. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8508-7_7.
Full textŁukaszewicz, Grzegorz. "Stationary Problems." In Micropolar Fluids, 59–110. Boston, MA: Birkhäuser Boston, 1999. http://dx.doi.org/10.1007/978-1-4612-0641-5_3.
Full textShowalter, R. "Nonlinear stationary problems." In Mathematical Surveys and Monographs, 35–101. Providence, Rhode Island: American Mathematical Society, 2013. http://dx.doi.org/10.1090/surv/049/02.
Full textFlügge, Siegfried. "V. Non-Stationary Problems." In Practical Quantum Mechanics, 471–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-61995-3_5.
Full textThomson, Gavin R., and Christian Constanda. "Problems with Robin Boundary Conditions." In Stationary Oscillations of Elastic Plates, 153–75. Boston: Birkhäuser Boston, 2011. http://dx.doi.org/10.1007/978-0-8176-8241-5_9.
Full textDautray, Robert, and Jacques-Louis Lions. "Numerical Methods for Stationary Problems." In Mathematical Analysis and Numerical Methods for Science and Technology, 160–358. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-61531-3_3.
Full textIsakov, Victor. "Scattering Problems and Stationary Waves." In Inverse Problems for Partial Differential Equations, 211–39. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51658-5_6.
Full textThomson, Gavin R., and Christian Constanda. "The Eigenfrequency Spectra of the Interior Problems." In Stationary Oscillations of Elastic Plates, 61–74. Boston: Birkhäuser Boston, 2011. http://dx.doi.org/10.1007/978-0-8176-8241-5_5.
Full textThomson, Gavin R., and Christian Constanda. "The Question of Uniqueness for the Exterior Problems." In Stationary Oscillations of Elastic Plates, 47–59. Boston: Birkhäuser Boston, 2011. http://dx.doi.org/10.1007/978-0-8176-8241-5_4.
Full textGreenberg, William, Cornelis van der Mee, and Vladimir Protopopescu. "Applications of the Stationary Theory." In Boundary Value Problems in Abstract Kinetic Theory, 242–330. Basel: Birkhäuser Basel, 1987. http://dx.doi.org/10.1007/978-3-0348-5478-8_9.
Full textConference papers on the topic "Stationary problems"
Yu, Jia Yuan, and Shie Mannor. "Piecewise-stationary bandit problems with side observations." In the 26th Annual International Conference. New York, New York, USA: ACM Press, 2009. http://dx.doi.org/10.1145/1553374.1553524.
Full textVarnhorn, W. "A CRANK-NICHOLSON METHOD FOR NON-STATIONARY STOKES FLOW." In Topical Problems of Fluid Mechanics 2016. Institute of Thermomechanics, AS CR, v.v.i., 2016. http://dx.doi.org/10.14311/tpfm.2016.032.
Full textde Oliveira, Adelson S. "Spectral Patching for Non-Stationary Linear Inversion Problems." In 14th International Congress of the Brazilian Geophysical Society & EXPOGEF, Rio de Janeiro, Brazil, 3-6 August 2015. Brazilian Geophysical Society, 2015. http://dx.doi.org/10.1190/sbgf2015-270.
Full textКихтенко, С. Н. "MODELING STATIONARY THERMAL PROBLEMS IN THE EDUCATIONAL PROCESS." In САПР и моделирование в современной электронике. Брянский государственный технический университет, 2020. http://dx.doi.org/10.51932/9785907271739_381.
Full textArkeryd, Leif. "On stationary kinetic systems of Boltzmann type and their fluid limits." In Nonlocal Elliptic and Parabolic Problems. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2004. http://dx.doi.org/10.4064/bc66-0-1.
Full textGlitzky, Annegret, and Rolf Hünlich. "Stationary solutions of two-dimensional heterogeneous energy models with multiple species." In Nonlocal Elliptic and Parabolic Problems. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2004. http://dx.doi.org/10.4064/bc66-0-9.
Full textSilvestrov, Dmitrii, and Sergei Silvestrov. "Asymptotic expansions for stationary and quasi-stationary distributions of perturbed semi-Markov processes." In ICNPAA 2016 WORLD CONGRESS: 11th International Conference on Mathematical Problems in Engineering, Aerospace and Sciences. Author(s), 2017. http://dx.doi.org/10.1063/1.4972739.
Full textKvitko, Alexander N., Oksana S. Firulina, Alla M. Maksina, and Sergey V. Chistyakov. "Solution of control problems for nonlinear stationary system taking into account the non-stationary perturbation." In 2017 Constructive Nonsmooth Analysis and Related Topics (dedicated to the memory of V.F. Demyanov) (CNSA). IEEE, 2017. http://dx.doi.org/10.1109/cnsa.2017.7973980.
Full textFarago, Jean. "Non-equilibrium stationary states in dissipative systems." In UNSOLVED PROBLEMS OF NOISE AND FLUCTUATIONS: UPoN 2005: Fourth International Conference on Unsolved Problems of Noise and Fluctuations in Physics, Biology, and High Technology. AIP, 2005. http://dx.doi.org/10.1063/1.2138663.
Full textAicardi, M., G. Casalino, F. Davoli, R. Minciardi, and R. Zoppoli. "On stationary optimal strategies for team LQG control problems." In 26th IEEE Conference on Decision and Control. IEEE, 1987. http://dx.doi.org/10.1109/cdc.1987.272571.
Full textReports on the topic "Stationary problems"
ZOTOVA, V. A., E. G. SKACHKOVA, and T. D. FEOFANOVA. METHODOLOGICAL FEATURES OF APPLICATION OF SIMILARITY THEORY IN THE CALCULATION OF NON-STATIONARY ONE-DIMENSIONAL LINEAR THERMAL CONDUCTIVITY OF A ROD. Science and Innovation Center Publishing House, April 2022. http://dx.doi.org/10.12731/2227-930x-2022-12-1-2-43-53.
Full textFiliz, Ibrahim, Jan René Judek, Marco Lorenz, and Markus Spiwoks. Einhorn, Yeti, Nessie und der neoklassische Markt – Legenden und empirische Evidenz. Sonderforschungsgruppe Institutionenanalyse, 2022. http://dx.doi.org/10.46850/sofia.9783947850020.
Full textAsmussen, Soeren, Peter W. Glynn, and Hermann Thorisson. Stationarity Detection in the Initial Transient Problem. Fort Belvoir, VA: Defense Technical Information Center, January 1992. http://dx.doi.org/10.21236/ada251516.
Full textLee, Chihoon. Constrained Stochastic Differential Equations Driven by Fractional Brownian Motions: Stationarity and Parameter Estimation Problems. Fort Belvoir, VA: Defense Technical Information Center, August 2013. http://dx.doi.org/10.21236/ada591767.
Full textKlibanov, Michael V., and Sergey E. Pamyatnykh. Global Uniqueness for a Coefficient Inverse Problem for the Non-Stationary Transport Equation via Carleman Estimate. Fort Belvoir, VA: Defense Technical Information Center, January 2006. http://dx.doi.org/10.21236/ada448486.
Full textSymonenko, Svitlana V., Nataliia V. Zaitseva, Viacheslav V. Osadchyi, Kateryna P. Osadcha, and Ekaterina O. Shmeltser. Virtual reality in foreign language training at higher educational institutions. [б. в.], February 2020. http://dx.doi.org/10.31812/123456789/3759.
Full text