Journal articles on the topic 'Stationary micropolar fluids equations'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Stationary micropolar fluids equations.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Duarte-Leiva, Cristian, Sebastián Lorca, and Exequiel Mallea-Zepeda. "A 3D Non-Stationary Micropolar Fluids Equations with Navier Slip Boundary Conditions." Symmetry 13, no. 8 (July 26, 2021): 1348. http://dx.doi.org/10.3390/sym13081348.
Full textKocić, Miloš, Živojin Stamenković, Jelena Petrović, and Jasmina Bogdanović-Jovanović. "MHD micropolar fluid flow in porous media." Advances in Mechanical Engineering 15, no. 6 (June 2023): 168781322311784. http://dx.doi.org/10.1177/16878132231178436.
Full textEldabe, N. T., and M. Y. Abou-Zeid. "The Wall Properties Effect on Peristaltic Transport of Micropolar Non-Newtonian Fluid with Heat and Mass Transfer." Mathematical Problems in Engineering 2010 (2010): 1–40. http://dx.doi.org/10.1155/2010/898062.
Full textWENG, HUEI CHU, CHA'O-KUANG CHEN, and MIN-HSING CHANG. "Stability of micropolar fluid flow between concentric rotating cylinders." Journal of Fluid Mechanics 631 (July 17, 2009): 343–62. http://dx.doi.org/10.1017/s0022112009007150.
Full textXing, Xin, and Demin Liu. "Numerical Analysis and Comparison of Three Iterative Methods Based on Finite Element for the 2D/3D Stationary Micropolar Fluid Equations." Entropy 24, no. 5 (April 29, 2022): 628. http://dx.doi.org/10.3390/e24050628.
Full textSalemovic, Dusko, Aleksandar Dedic, and Bosko Jovanovic. "Micropolar fluid between two coaxial cylinders (numerical approach)." Theoretical and Applied Mechanics 48, no. 2 (2021): 159–69. http://dx.doi.org/10.2298/tam210823012s.
Full textBurmasheva, N. V., and E. Yu Prosviryakov. "Exact solutions to the NAVIER–STOKES equations for unidirectional flows of micropolar fluids in a mass force field." Diagnostics, Resource and Mechanics of materials and structures, no. 3 (June 2024): 41–63. http://dx.doi.org/10.17804/2410-9908.2024.3.041-063.
Full textArnaud, M. M., G. M. de Araùjo, M. M. Freitas, and E. F. L. Lucena. "ON A SYSTEM OF EQUATIONS OF A NON-NEWTONIAN MICROPOLAR FLUID IN THE STATIONARY FORM." Far East Journal of Applied Mathematics 97, no. 4 (December 2, 2017): 125–42. http://dx.doi.org/10.17654/am097040125.
Full textChen, James, James D. Lee, and Chunlei Liang. "Constitutive equations of Micropolar electromagnetic fluids." Journal of Non-Newtonian Fluid Mechanics 166, no. 14-15 (August 2011): 867–74. http://dx.doi.org/10.1016/j.jnnfm.2011.05.004.
Full textIDO, Yasushi. "Basic Equations of Micropolar Magnetic Fluids." Transactions of the Japan Society of Mechanical Engineers Series B 70, no. 696 (2004): 2065–70. http://dx.doi.org/10.1299/kikaib.70.2065.
Full textYang, Hujun, Xiaoling Han, and Caidi Zhao. "Homogenization of Trajectory Statistical Solutions for the 3D Incompressible Micropolar Fluids with Rapidly Oscillating Terms." Mathematics 10, no. 14 (July 15, 2022): 2469. http://dx.doi.org/10.3390/math10142469.
Full textStamenkovic, Zivojin, Milos Kocic, Jasmina Bogdanovic-Jovanovic, and Jelena Petrovic. "Nano and micropolar MHD fluid flow and heat transfer in inclined channel." Thermal Science, no. 00 (2023): 170. http://dx.doi.org/10.2298/tsci230515170k.
Full textRahman, M. M., and T. Sultana. "Radiative Heat Transfer Flow of Micropolar Fluid with Variable Heat Flux in a Porous Medium." Nonlinear Analysis: Modelling and Control 13, no. 1 (January 25, 2008): 71–87. http://dx.doi.org/10.15388/na.2008.13.1.14590.
Full textKocić, Miloš, Živojin Stamenković, Jelena Petrović, and Jasmina Bogdanović-Jovanović. "Control of MHD Flow and Heat Transfer of a Micropolar Fluid through Porous Media in a Horizontal Channel." Fluids 8, no. 3 (March 8, 2023): 93. http://dx.doi.org/10.3390/fluids8030093.
Full textCruz, Felipe W. "Global strong solutions for the incompressible micropolar fluids equations." Archiv der Mathematik 113, no. 2 (April 6, 2019): 201–12. http://dx.doi.org/10.1007/s00013-019-01319-4.
Full textKim, Jae-Myoung, and Seungchan Ko. "Some Liouville-type theorems for the stationary 3D magneto-micropolar fluids." Acta Mathematica Scientia 44, no. 6 (October 1, 2024): 2296–306. http://dx.doi.org/10.1007/s10473-024-0614-0.
Full textIDO, Yasushi, and Takahiko TANAHASHI. "Fundamental equations for magnetic fluids by micropolar theory. 2nd report: Constitutive equations." Transactions of the Japan Society of Mechanical Engineers Series B 56, no. 525 (1990): 1392–99. http://dx.doi.org/10.1299/kikaib.56.1392.
Full textHassanien, I. A. "Mixed Convection in Micropolar Boundary-Layer Flow Over a Horizontal Semi-Infinite Plate." Journal of Fluids Engineering 118, no. 4 (December 1, 1996): 833–38. http://dx.doi.org/10.1115/1.2835517.
Full textKhalid, Asma, Ilyas Khan, and Sharidan Shafie. "Free convection flow of micropolar fluids over an oscillating vertical plate." Malaysian Journal of Fundamental and Applied Sciences 13, no. 4 (December 26, 2017): 654–58. http://dx.doi.org/10.11113/mjfas.v13n4.738.
Full textBRESCH, DIDIER, and JÉRÔME LEMOINE. "STATIONARY SOLUTIONS FOR SECOND GRADE FLUIDS EQUATIONS." Mathematical Models and Methods in Applied Sciences 08, no. 05 (August 1998): 737–48. http://dx.doi.org/10.1142/s0218202598000330.
Full textK.C., Durga Jang, and Dipendra Regmi. "Global regularity criteria for the 2D Magneto-micropolar Equations with Partial Dissipation." Nepali Mathematical Sciences Report 40, no. 1-2 (December 31, 2023): 55–70. http://dx.doi.org/10.3126/nmsr.v40i1-2.61498.
Full textVIAGGIU, STEFANO. "GENERATING ANISOTROPIC FLUIDS FROM VACUUM ERNST EQUATIONS." International Journal of Modern Physics D 19, no. 11 (September 2010): 1783–95. http://dx.doi.org/10.1142/s0218271810018025.
Full textEringen, A. C. "A mixture theory for geophysical fluids." Nonlinear Processes in Geophysics 11, no. 1 (February 25, 2004): 75–82. http://dx.doi.org/10.5194/npg-11-75-2004.
Full textSrinivas, J., J. V. Ramana Murthy, and Ali J. Chamkha. "Analysis of entropy generation in an inclined channel flow containing two immiscible micropolar fluids using HAM." International Journal of Numerical Methods for Heat & Fluid Flow 26, no. 3/4 (May 3, 2016): 1027–49. http://dx.doi.org/10.1108/hff-09-2015-0354.
Full textLiang, Zhilei, and Dehua Wang. "Stationary Cahn–Hilliard–Navier–Stokes equations for the diffuse interface model of compressible flows." Mathematical Models and Methods in Applied Sciences 30, no. 12 (October 23, 2020): 2445–86. http://dx.doi.org/10.1142/s0218202520500475.
Full textSava, Valeriu Al. "A spatial decay estimate of the flow equations of micropolar fluids." International Journal of Engineering Science 24, no. 3 (January 1986): 449–52. http://dx.doi.org/10.1016/0020-7225(86)90099-6.
Full textChandrawat, Rajesh Kumar, Varun Joshi, and O. Anwar Bég. "Ion Slip and Hall Effects on Generalized Time-Dependent Hydromagnetic Couette Flow of Immiscible Micropolar and Dusty Micropolar Fluids with Heat Transfer and Dissipation: A Numerical Study." Journal of Nanofluids 10, no. 3 (September 1, 2021): 431–46. http://dx.doi.org/10.1166/jon.2021.1792.
Full textBenariba, Aboubakeur, Ahmed Bouzidane, and Marc Thomas. "Analytical analysis of a rigid rotor mounted on three hydrostatic pads lubricated with micropolar fluids." Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 233, no. 6 (October 23, 2018): 859–69. http://dx.doi.org/10.1177/1350650118806374.
Full textRafique, Anwar, Misiran, Khan, Baleanu, Nisar, Sherif, and Seikh. "Hydromagnetic Flow of Micropolar Nanofluid." Symmetry 12, no. 2 (February 6, 2020): 251. http://dx.doi.org/10.3390/sym12020251.
Full textChu, Li Ming, Jaw-Ren Lin, Yuh-Ping Chang, and Chung-Chun Wu. "Elastohydrodynamic lubrication of circular contacts at pure squeeze motion with micropolar lubricants." Industrial Lubrication and Tribology 68, no. 6 (September 12, 2016): 640–46. http://dx.doi.org/10.1108/ilt-10-2015-0139.
Full textAhmad, Farooq, A. Othman Almatroud, Sajjad Hussain, Shan E. Farooq, and Roman Ullah. "Numerical Solution of Nonlinear Diff. Equations for Heat Transfer in Micropolar Fluids over a Stretching Domain." Mathematics 8, no. 5 (May 25, 2020): 854. http://dx.doi.org/10.3390/math8050854.
Full textUddin, Ziya, Manoj Kumar, and Souad Harmand. "Influence of thermal radiation and heat generation/absorption on MHD heat transfer flow of a micropolar fluid past a wedge considering hall and ion slip currents." Thermal Science 18, suppl.2 (2014): 489–502. http://dx.doi.org/10.2298/tsci110712085u.
Full textIDO, Yasushi, and Takahiko TANAHASHI. "Fundamental equations for magnetic fluids by micropolar theory. 1st report: Strain tensors and balance equations." Transactions of the Japan Society of Mechanical Engineers Series B 56, no. 525 (1990): 1385–91. http://dx.doi.org/10.1299/kikaib.56.1385.
Full textTangsali, Param R., Nagaraj N. Katagi, Ashwini Bhat, and Manjunath Shettar. "Analysis of Magnetohydrodynamic Free Convection in Micropolar Fluids over a Permeable Shrinking Sheet with Slip Boundary Conditions." Symmetry 16, no. 4 (March 29, 2024): 400. http://dx.doi.org/10.3390/sym16040400.
Full textChandrawat, Rajesh Kumar, Varun Joshi, and O. Anwar Bég. "Numerical Study of Interface Tracking for the Unsteady Flow of Two Immiscible Micropolar and Newtonian Fluids Through a Horizontal Channel with an Unstable Interface." Journal of Nanofluids 10, no. 4 (December 1, 2021): 552–63. http://dx.doi.org/10.1166/jon.2021.1805.
Full textCheruku, Vasavi, and B. Ravindra Reddy. "Numerical Study in Effect of Thermal Slip on Two Fluid Flow in a Vertical Channel." Transactions on Energy Systems and Engineering Applications 4, no. 2 (July 17, 2023): 1–18. http://dx.doi.org/10.32397/tesea.vol4.n2.517.
Full textNabwey, Hossam A., Ahmed M. Rashad, and Waqar A. Khan. "Slip Microrotation Flow of Silver-Sodium Alginate Nanofluid via Mixed Convection in a Porous Medium." Mathematics 9, no. 24 (December 14, 2021): 3232. http://dx.doi.org/10.3390/math9243232.
Full textErofeev, V. I., A. V. Shekoyan, and M. V. Belubekyan. "SPATIALLY-LOCALIZED NONLINEAR MAGNETOELASTIC WAVES IN A MICROPOLAR ELECTRICAL CONDUCTING MEDIUM." Problems of strenght and plasticity 81, no. 4 (2019): 402–15. http://dx.doi.org/10.32326/1814-9146-2019-81-4-402-415.
Full textNaduvinamani, N. B., and G. B. Marali. "Dynamic Reynolds equation for micropolar fluids and the analysis of plane inclined slider bearings with squeezing effect." Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 221, no. 7 (July 1, 2007): 823–29. http://dx.doi.org/10.1243/13506501jet286.
Full textHasnain, Jafar, and Zaheer Abbas. "Entropy generation analysis on two-phase micropolar nanofluids flow in an inclined channel with convective heat transfer." Thermal Science 23, no. 3 Part B (2019): 1765–77. http://dx.doi.org/10.2298/tsci170715221h.
Full textNadeem, S., M. Y. Malik, and Nadeem Abbas. "Heat transfer of three-dimensional micropolar fluid on a Riga plate." Canadian Journal of Physics 98, no. 1 (January 2020): 32–38. http://dx.doi.org/10.1139/cjp-2018-0973.
Full textVADASZ, PETER. "Coriolis effect on gravity-driven convection in a rotating porous layer heated from below." Journal of Fluid Mechanics 376 (December 10, 1998): 351–75. http://dx.doi.org/10.1017/s0022112098002961.
Full textEltayeb, I. A. "Convective instabilities of Maxwell–Cattaneo fluids." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 473, no. 2201 (May 2017): 20160712. http://dx.doi.org/10.1098/rspa.2016.0712.
Full textChen, Mingtao, Bin Huang, and Jianwen Zhang. "Blowup criterion for the three-dimensional equations of compressible viscous micropolar fluids with vacuum." Nonlinear Analysis: Theory, Methods & Applications 79 (March 2013): 1–11. http://dx.doi.org/10.1016/j.na.2012.10.013.
Full textAdeniyan, Adetunji, Gbeminiyi M. Sobamowo, and Samsondeen O. Kehinde. "Impacts of Slips on Peristaltic flow and Heat transfer of micropolar fluids in an asymmetric channel." International Journal of Mathematical Analysis and Optimization: Theory and Applications 7, no. 2 (March 2022): 107–29. http://dx.doi.org/10.52968/28308561.
Full textDUAN, RENJUN, SEIJI UKAI, TONG YANG, and HUIJIANG ZHAO. "OPTIMAL CONVERGENCE RATES FOR THE COMPRESSIBLE NAVIER–STOKES EQUATIONS WITH POTENTIAL FORCES." Mathematical Models and Methods in Applied Sciences 17, no. 05 (May 2007): 737–58. http://dx.doi.org/10.1142/s021820250700208x.
Full textIshigaki, Yusuke, and Yoshihiro Ueda. "Stability of stationary solutions to outflow problem for compressible viscoelastic system in one dimensional half space." AIMS Mathematics 9, no. 11 (2024): 33215–53. http://dx.doi.org/10.3934/math.20241585.
Full textChandrawat, Rajesh Kumar, and Varun Joshi. "Numerical Solution of the Time-Depending Flow of Immiscible Fluids with Fuzzy Boundary Conditions." International Journal of Mathematical, Engineering and Management Sciences 6, no. 5 (October 1, 2021): 1315–30. http://dx.doi.org/10.33889/ijmems.2021.6.5.079.
Full textLin, Hongxia, Sen Liu, Heng Zhang, and Qing Sun. "Stability for a system of the 2D incompressible magneto-micropolar fluid equations with partial mixed dissipation." Nonlinearity 37, no. 5 (March 18, 2024): 055001. http://dx.doi.org/10.1088/1361-6544/ad3098.
Full textCélérier, M. N. "Fully integrated interior solutions of GR for stationary rigidly rotating cylindrical perfect fluids." Journal of Mathematical Physics 64, no. 2 (February 1, 2023): 022501. http://dx.doi.org/10.1063/5.0131945.
Full text