To see the other types of publications on this topic, follow the link: Stannylenes.

Journal articles on the topic 'Stannylenes'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Stannylenes.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Cabeza, Javier A., Israel Fernández, Pablo García-Álvarez, Rubén García-Soriano, Carlos J. Laglera-Gándara, and Rubén Toral. "Stannylenes based on pyrrole-phosphane and dipyrromethane-diphosphane scaffolds: syntheses and behavior as precursors to PSnP pincer palladium(ii), palladium(0) and gold(i) complexes." Dalton Transactions 50, no. 44 (2021): 16122–32. http://dx.doi.org/10.1039/d1dt02967c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pahar, Sanjukta, Vishal Sharma, Srinu Tothadi, and Sakya S. Sen. "Pyridylpyrrolido ligand in Ge(ii) and Sn(ii) chemistry: synthesis, reactivity and catalytic application." Dalton Transactions 50, no. 45 (2021): 16678–84. http://dx.doi.org/10.1039/d1dt03136h.

Full text
Abstract:
The work describes the synthesis of a series of germylenes and stannylenes (1–6) supported by pyridylpyrrolido (PyPyr) ligand. The catalytic utility of stannylene 5 towards hydroboration of a range of organic compounds is further explored.
APA, Harvard, Vancouver, ISO, and other styles
3

Neumann, Wilhelm P. "Germylenes and stannylenes." Chemical Reviews 91, no. 3 (May 1991): 311–34. http://dx.doi.org/10.1021/cr00003a002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Al-Allaf, Talal A. K. "Reactions of the Divalent Tin Compounds R2M, R = N(SiMe3)2 or CH(SiMe3)2 with Complexes of the Platinum Group Metals." Journal of Chemical Research 2003, no. 2 (January 2003): 101–4. http://dx.doi.org/10.3184/030823403103173110.

Full text
Abstract:
The stannylenes R2Sn, (R = N(SiMe3)2 or CH(SiMe3)2) insert into M–X bonds of complexes [MX2L2] to give new complexes of the general formula [MX(SnR2X)L2], (M = Pt, Pd, Ni; X = Cl, N3, NO2; L = PEt3, PBu3, DPPE). They also insert into Pt–Cl bonds of the bridged complexes [{Pt(μ-Cl)Cl(L)}2], to give the new bridged complexes[{Pt(μ-Cl)(SnR2Cl)(L)}2], (R = N(SiMe3)2, L = PEt3, PBu3, PMe2Ph, PPh3), in which the bridge remained uncleaved. In one reaction of the stannylene R2Sn, where R = CH(SiMe3)2, the bridged complex [{Pt(μ-Cl)(SnR2Cl)(PEt3)}2] undergoes cleavage followed by migration of Cl to give [PtCl(SnR2Cl)(η2-SnR2)(PEt3)]. Further, the bridged complex [{Pt(μ-Cl)(SnR2Cl)(PEt3)}2], (R = N(SiMe3)2), with the neutral ligands L’, (L’ = PPh3, pyridine or AsPh3), undergoes bridge cleavage to form the complexes [PtCl(SnR2Cl)(PEt3)(L’)]. The reaction of the stannylene R2Sn, (R = N(SiMe3)2) with the platinum(0) complexes [Pt(C2H4)(PPh3)2] and [Pt(COD)2], COD = 1,5-cyclooctadiene is described. The complexes obtained have been characterised mainly by 31P NMR spectroscopy and elemental analysis.
APA, Harvard, Vancouver, ISO, and other styles
5

Kristinsdóttir, Lilja, Nicola L. Oldroyd, Rachel Grabiner, Alastair W. Knights, Andreas Heilmann, Andrey V. Protchenko, Haoyu Niu, et al. "Synthetic, structural and reaction chemistry of N-heterocyclic germylene and stannylene compounds featuring N-boryl substituents." Dalton Transactions 48, no. 31 (2019): 11951–60. http://dx.doi.org/10.1039/c9dt02449b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ochiai, Tatsumi, and Shigeyoshi Inoue. "Synthesis of a cyclopentadienyl(imino)stannylene and its direct conversion into halo(imino)stannylenes." RSC Advances 7, no. 2 (2017): 801–4. http://dx.doi.org/10.1039/c6ra27697k.

Full text
Abstract:
We report the synthesis and structure of a dimeric Cp-substituted iminostannylene as well as its unusual reactivity towards haloalkanes, resulting in the formation of halogen-substituted iminostannylenes.
APA, Harvard, Vancouver, ISO, and other styles
7

Hsu, Chen-Yuan, Li-Wei Chan, Gene-Hsiang Lee, Shie-Ming Peng, and Ching-Wen Chiu. "Triphenylene-based tris-N-heterocyclic stannylenes." Dalton Transactions 44, no. 34 (2015): 15095–98. http://dx.doi.org/10.1039/c5dt00694e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Nakata, Norio, Narimi Hosoda, Shintaro Takahashi, and Akihiko Ishii. "Chlorogermylenes and -stannylenes stabilized by diimidosulfinate ligands: synthesis, structures, and reactivity." Dalton Transactions 47, no. 2 (2018): 481–90. http://dx.doi.org/10.1039/c7dt04390b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

De Proft, Frank, Lies Broeckaert, Jan Turek, Aleš Růžička, and Rudolph Willem. "Reactivity of low-oxidation state tin compounds: an overview of the benefits of combining DFT Theory and experimental NMR spectroscopy." Canadian Journal of Chemistry 92, no. 6 (June 2014): 447–61. http://dx.doi.org/10.1139/cjc-2013-0521.

Full text
Abstract:
The reactivity and complexation properties of dicoordinated Sn(II) and Sn(0) compounds are reviewed. The (dominant) electrophilicity of the stannylenes was confirmed and quantified through density functional theory (DFT) based reactivity indices. For these compounds, combining theoretical DFT calculations and experimental nuclear magnetic resonance (NMR) spectroscopic results has evidenced their potential to undergo π-complexation from aromatic π clouds in addition to significantly stronger σ-complexation. Moreover, their potential as Lewis bases was scrutinized in their interactions and reactions with iron and tungsten carbonyl Lewis acids. Finally, a prospective comparison of the reactivity of divalent stannylenes and stannylones, with a 0 oxidation state at the Sn atom, is presented.
APA, Harvard, Vancouver, ISO, and other styles
10

NEUMANN, W. P. "ChemInform Abstract: Germylenes and Stannylenes." ChemInform 22, no. 50 (August 22, 2010): no. http://dx.doi.org/10.1002/chin.199150327.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Arp, Henning, Christoph Marschner, Judith Baumgartner, Patrick Zark, and Thomas Müller. "Coordination Chemistry of Disilylated Stannylenes with Group 10 d10 Transition Metals: Silastannene vs Stannylene Complexation." Journal of the American Chemical Society 135, no. 21 (May 16, 2013): 7949–59. http://dx.doi.org/10.1021/ja401548d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Herberhold, Max, Christian Köhler, Wolfgang Milius, and Bernd Wrackmeyer. "New Spiro-Tin Compounds: Reaction of N,N′-Dialkyl Sulfur Diimides with Cyclic Bis(amino)stannylenes - Unexpected Formation of a N-N Bond." Zeitschrift für Naturforschung B 50, no. 12 (December 1, 1995): 1811–17. http://dx.doi.org/10.1515/znb-1995-1207.

Full text
Abstract:
N,N′-Dialkyl sulfur diimides (1), R(NSN)R [R = Me (a), Et (b), nPr (c), nBu (d)] react with cyclic bis(amino)stannylenes such as 1,3-di-tert-butyl-4,4-dimethyl-1,3,4,2λ2-diazasilastannetedine (2) or 1,3-di-tert-butyl-4,4,5,5-tetramethyl-1,3,4,5,2λ2-diazadisilastannolidine (3) in a 2:1 ratio to give the new spiro-tin(IV) compounds 5a-d, 6b and 6c, built from the respective cyclic bis(amino)stannylene and a seven-membered ring in which the two sulfur diimide groups are coupled via a N-N bond and across the tin atom. A 1:1 adduct 4 is proposed as an intermediate which is the final product 4e in the case of R = tBu (1e). The products were characterized by multinuclear magnetic resonance (1H, 13C, 15N, 29Si, 119Sn NMR), and in the case of 5c the molecular structure was determined by single crystal X-ray structure analysis [monoclinic, space group C2/c ; a = 1504.1(3), b = 1393.3(3), c = 1688.6(3) pm; β = 115.71(3)°].
APA, Harvard, Vancouver, ISO, and other styles
13

Raut, Ravindra K., Padmini Sahoo, Dipti Chimnapure, and Moumita Majumdar. "Versatile coordinating abilities of acyclic N4 and N2P2 ligand frameworks in conjunction with Sn[N(SiMe3)2]2." Dalton Transactions 48, no. 29 (2019): 10953–61. http://dx.doi.org/10.1039/c9dt00617f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Kuriki, Ryunosuke, Takuya Kuwabara, and Youichi Ishii. "Synthesis and structures of diaryloxystannylenes and -plumbylenes embedded in 1,3-diethers of thiacalix[4]arene." Dalton Transactions 49, no. 35 (2020): 12234–41. http://dx.doi.org/10.1039/d0dt02496a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Roselló-Merino, Marta, and Stephen M. Mansell. "Synthesis and reactivity of fluorenyl-tethered N-heterocyclic stannylenes." Dalton Transactions 45, no. 14 (2016): 6282–93. http://dx.doi.org/10.1039/c5dt04060d.

Full text
Abstract:
N-Heterocyclic stannylenes containing a functionalised donor arm have been synthesised using a transamination strategy from [Sn{N(SiMe3)2}2] and fluorenyl-tethered diamines.
APA, Harvard, Vancouver, ISO, and other styles
16

Khrustalev, Victor N., Ivan A. Portnyagin, Nikolay N. Zemlyansky, Irina V. Borisova, Mikhail S. Nechaev, Yuri A. Ustynyuk, Mikhail Yu Antipin, and Valery Lunin. "New stable germylenes, stannylenes, and related compounds." Journal of Organometallic Chemistry 690, no. 5 (March 2005): 1172–77. http://dx.doi.org/10.1016/j.jorganchem.2004.11.024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Karwasara, Surendar, Chandan Kumar Jha, Soumen Sinhababu, and Selvarajan Nagendran. "O,S-Heterocyclic stannylenes: synthesis and reactivity." Dalton Transactions 45, no. 17 (2016): 7200–7204. http://dx.doi.org/10.1039/c6dt01013j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

PAETZOLD, P., D. HAHNFELD, and U. ENGLERT. "ChemInform Abstract: Addition of Stannylenes to Iminoboranes." ChemInform 23, no. 34 (August 21, 2010): no. http://dx.doi.org/10.1002/chin.199234247.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Piskunov, Alexander V., Igor A. Aivaz’yan, Vladimir K. Cherkasov, and Gleb A. Abakumov. "New paramagnetic N-heterocyclic stannylenes: An EPR study." Journal of Organometallic Chemistry 691, no. 8 (April 2006): 1531–34. http://dx.doi.org/10.1016/j.jorganchem.2005.11.064.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Wrackmeyer, Bernd, and Jürgen Weidinger. "N-Boryl-Substituted Bis(amino)stannylenes and -plumbylenes." Zeitschrift für Naturforschung B 52, no. 8 (August 1, 1997): 947–50. http://dx.doi.org/10.1515/znb-1997-0811.

Full text
Abstract:
Abstract Two equivalents of N-lithio-N-trimethylsilyl-amino-9-borabicyclo[3.3.1]nonane (1) react with tin and lead dichloride by salt elimination to give the corresponding bis(amino)stannylene 2 and -plumbylene 3, respectively. The compounds 2 and 3 are monomers in solution and were characterized by 1H, 13C, 14N, 29Si, 119Sn and 207Pb NMR spectroscopy.
APA, Harvard, Vancouver, ISO, and other styles
21

Álvarez-Rodríguez, Lucía, Javier A. Cabeza, Pablo García-Álvarez, and Diego Polo. "Organic Amides as Suitable Precursors to Stabilize Stannylenes." Organometallics 32, no. 12 (June 13, 2013): 3557–61. http://dx.doi.org/10.1021/om400476c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Köpper, Sabine, and Anna Brandenburg. "Novel 1,6-Stannylenes of Glucose, Galactose and Mannose." Liebigs Annalen der Chemie 1992, no. 9 (September 17, 1992): 933–40. http://dx.doi.org/10.1002/jlac.1992199201154.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Krupski, Sergei, Christian Schulte to Brinke, Hannah Koppetz, Alexander Hepp, and F. Ekkehardt Hahn. "Protic N-Heterocyclic Germylenes and Stannylenes: Synthesis and Reactivity." Organometallics 34, no. 11 (February 9, 2015): 2624–31. http://dx.doi.org/10.1021/om5012616.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Benet, Sisco, Christine J. Cardin, David J. Cardin, Steven P. Constantine, Peter Heath, Haroon Rashid, Susana Teixeira, James H. Thorpe, and Alan K. Todd. "Syntheses and Crystal Structures of Heteroleptic Stannylenes and Germylenes." Organometallics 18, no. 3 (February 1999): 389–98. http://dx.doi.org/10.1021/om980836z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Smith, Laura A., Wei-Bo Wang, Cynthia Burnell-Curty, and Eric J. Roskamp. "Conversion of Esters to Amides with Amino Halo Stannylenes." Synlett 1993, no. 11 (1993): 850–52. http://dx.doi.org/10.1055/s-1993-22630.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Sindlinger, Christian P., Frederik S. W. Aicher, and Lars Wesemann. "Cationic Stannylenes: In Situ Generation and NMR Spectroscopic Characterization." Inorganic Chemistry 56, no. 1 (December 15, 2016): 548–60. http://dx.doi.org/10.1021/acs.inorgchem.6b02377.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Day, Benjamin M., Philip W. Dyer, and Martyn P. Coles. "Hydroformylation by Pt–Sn compounds from N-heterocyclic stannylenes." Dalton Transactions 41, no. 25 (2012): 7457. http://dx.doi.org/10.1039/c2dt30988b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Álvarez-Rodríguez, Lucía, Javier A. Cabeza, Pablo García-Álvarez, and Diego Polo. "The transition-metal chemistry of amidinatosilylenes, -germylenes and -stannylenes." Coordination Chemistry Reviews 300 (September 2015): 1–28. http://dx.doi.org/10.1016/j.ccr.2015.04.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Sullivan, Hannah S. I., Andrew J. Straiton, Gabriele Kociok-Köhn, and Andrew L. Johnson. "N-O Ligand Supported Stannylenes: Preparation, Crystal, and Molecular Structures." Inorganics 10, no. 9 (August 31, 2022): 129. http://dx.doi.org/10.3390/inorganics10090129.

Full text
Abstract:
A new series of tin(II) complexes (1, 2, 4, and 5) were successfully synthesized by employing hydroxy functionalized pyridine ligands, specifically 2-hydroxypyridine (hpH), 8-hydroxyquinoline (hqH), and 10-hydroxybenzo[h]quinoline (hbqH) as stabilizing ligands. Complexes [Sn(μ-κ2ON-OC5H4N)(N{SiMe3}2)]2 (1) and [Sn4(μ-κ2ON-OC5H4N)6(κ1O-OC5H4N)2] (2) are the first structurally characterized examples of tin(II) oxypyridinato complexes exhibiting {Sn2(OCN)2} heterocyclic cores. As part of our study, 1H DOSY NMR experiments were undertaken using an external calibration curve (ECC) approach, with temperature-independent normalized diffusion coefficients, to determine the nature of oligomerisation of 2 in solution. An experimentally determined diffusion coefficient (298 K) of 6.87 × 10−10 m2 s−1 corresponds to a hydrodynamic radius of Ca. 4.95 Å. This is consistent with the observation of an averaged hydrodynamic radii and equilibria between dimeric [Sn{hp}2]2 and tetrameric [Sn{hp}2]4 species at 298 K. Testing this hypothesis, 1H DOSY NMR experiments were undertaken at regular intervals between 298 K–348 K and show a clear change in the calculated hydrodynamic radii form 4.95 Å (298 K) to 4.35 Å (348 K) consistent with a tetramer ⇄ dimer equilibria which lies towards the dimeric species at higher temperatures. Using these data, thermodynamic parameters for the equilibrium (ΔH° = 70.4 (±9.22) kJ mol−1, ΔS° = 259 (±29.5) J K−1 mol−1 and ΔG°298 = −6.97 (±12.7) kJ mol−1) were calculated. In the course of our studies, the Sn(II) oxo cluster, [Sn6(m3-O)6(OR)4:{Sn(II)(OR)2}2] (3) (R = C5H4N) was serendipitously isolated, and its molecular structure was determined by single-crystal X-ray diffraction analysis. However, attempts to characterise the complex by multinuclear NMR spectroscopy were thwarted by solubility issues, and attempts to synthesise 3 on a larger scale were unsuccessful. In contrast to the oligomeric structures observed for 1 and 2, single-crystal X-ray diffraction studies unambiguously establish the monomeric 4-coordinate solid-state structures of [Sn(κ2ON-OC9H6N)2)] (4) and [Sn(κ2ON-OC13H8N)2)] (5).
APA, Harvard, Vancouver, ISO, and other styles
30

Paul, Daniel, Frederik Heins, Sergei Krupski, Alexander Hepp, Constantin G. Daniliuc, Kevin Klahr, Johannes Neugebauer, Frank Glorius, and F. Ekkehardt Hahn. "Synthesis and Reactivity of Intramolecularly NHC-Stabilized Germylenes and Stannylenes." Organometallics 36, no. 5 (February 21, 2017): 1001–8. http://dx.doi.org/10.1021/acs.organomet.6b00925.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Bareš, Josef, Zdeňka Padělková, Philippe Meunier, Nadine Pirio, and Aleš Růžička. "Reactivity of di-n-butyl-dicyclopentadienylzirconium towards amido stabilized stannylenes." Journal of Organometallic Chemistry 694, no. 9-10 (April 2009): 1263–65. http://dx.doi.org/10.1016/j.jorganchem.2009.01.041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Huang, Mengmeng, El’mira Kh Lermontova, Kirill V. Zaitsev, Andrei V. Churakov, Yuri F. Oprunenko, Judith A. K. Howard, Sergey S. Karlov, and Galina S. Zaitseva. "Novel germylenes and stannylenes based on pyridine-containing dialcohol ligands." Journal of Organometallic Chemistry 694, no. 23 (November 2009): 3828–32. http://dx.doi.org/10.1016/j.jorganchem.2009.06.039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Mehring, Michael, Christian Löw, Markus Schürmann, Frank Uhlig, Klaus Jurkschat, and Bernard Mahieu. "Novel Heteroleptic Stannylenes with Intramolecular O,C,O-Donor Stabilization†,‡." Organometallics 19, no. 22 (October 2000): 4613–23. http://dx.doi.org/10.1021/om000452k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

KOEPPER, S., and A. BRANDENBURG. "ChemInform Abstract: Novel 1,6-Stannylenes of Glucose, Galactose and Mannose." ChemInform 24, no. 3 (August 21, 2010): no. http://dx.doi.org/10.1002/chin.199303253.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

WRACKMEYER, B., and J. WEIDINGER. "ChemInform Abstract: N-Boryl-Substituted Bis(amino)stannylenes and -plumbylenes." ChemInform 28, no. 49 (August 2, 2010): no. http://dx.doi.org/10.1002/chin.199749194.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Zabula, Alexander V., and F. Ekkehardt Hahn. "Mono- and Bidentate Benzannulated N-Heterocyclic Germylenes, Stannylenes and Plumbylenes." European Journal of Inorganic Chemistry 2008, no. 33 (November 2008): 5165–79. http://dx.doi.org/10.1002/ejic.200800866.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Krebs, K. M., S. Freitag, J. J. Maudrich, H. Schubert, P. Sirsch, and L. Wesemann. "Coordination chemistry of stannylene-based Lewis pairs – insertion into M–Cl and M–C bonds. From base stabilized stannylenes to bidentate ligands." Dalton Transactions 47, no. 1 (2018): 83–95. http://dx.doi.org/10.1039/c7dt04044j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Baumgartner, Judith, and Christoph Marschner. "Coordination of non-stabilized germylenes, stannylenes, and plumbylenes to transition metals." Reviews in Inorganic Chemistry 34, no. 2 (June 1, 2014): 119–52. http://dx.doi.org/10.1515/revic-2013-0014.

Full text
Abstract:
AbstractComplexes of transition metals with heavy analogs of carbenes (tetrylenes) as ligands have been studied now for some 40 years. The current review attempts to provide an overview about complexes with non-stabilized (having no π-donating substituents) germylenes, stannylenes, and plumbylenes. Complexes are known for groups 4–11. For groups 6–10 not only examples of monodentate tetrylene ligands, but also of bridging ones are known. While this review covers almost 200 complexes, the field in general has been approached only very selectively and real attempts for systematic studies are very scarce. Although some isolated reports exist which deal with the reactivity of the tetrylene complexes most of the so far published work concentrates on synthesis and characterization.
APA, Harvard, Vancouver, ISO, and other styles
39

Zhou, Dong, Clemens Reiche, Mrinmoy Nag, John A. Soderquist, and Peter P. Gaspar. "Synthesis of 1-Stannacyclopent-3-enes and Their Pyrolysis to Stannylenes." Organometallics 28, no. 8 (April 27, 2009): 2595–608. http://dx.doi.org/10.1021/om800541f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Nechaev, Mikhail S. "New type of reactions of stannylenes with organic azides: Theoretical study." Journal of Molecular Structure: THEOCHEM 862, no. 1-3 (August 2008): 49–52. http://dx.doi.org/10.1016/j.theochem.2008.04.024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Mengmeng, H., S. S. Karlov, M. V. Zabalov, K. V. Zaitsev, D. A. Lemenovskii, and G. S. Zaitseva. "Structures of germylenes and stannylenes with chelating ligands: a DFT study." Russian Chemical Bulletin 58, no. 8 (August 2009): 1576–80. http://dx.doi.org/10.1007/s11172-009-0216-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Krupski, Sergei, Julia V. Dickschat, Alexander Hepp, Tania Pape, and F. Ekkehardt Hahn. "Synthesis and Characterization of Rigid Ditopic N-Heterocyclic Benzobisgermylenes and -stannylenes." Organometallics 31, no. 5 (February 29, 2012): 2078–84. http://dx.doi.org/10.1021/om3000604.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Alvarez-Rodriguez, Lucia, Javier A. Cabeza, Pablo Garcia-Alvarez, and Diego Polo. "ChemInform Abstract: The Transition-Metal Chemistry of Amidinatosilylenes, -Germylenes and -Stannylenes." ChemInform 46, no. 51 (December 2015): no. http://dx.doi.org/10.1002/chin.201551206.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Breher, Frank, and Heinz Rüegger. "Distannenes Turned Inside Out: Bis(stannylenes) with an Unusual Structural Motif." Angewandte Chemie International Edition 44, no. 3 (December 29, 2004): 473–77. http://dx.doi.org/10.1002/anie.200460910.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

SMITH, L. A., W. B. WANG, C. BURNELL-CURTY, and E. J. ROSKAMP. "ChemInform Abstract: Conversion of Esters to Amides with Amino Halo Stannylenes." ChemInform 25, no. 36 (August 19, 2010): no. http://dx.doi.org/10.1002/chin.199436089.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Wrackmeyer, Bernd, Andreas Pedall, and Jürgen Weidinger. "N-Silylaminotin Trichlorides. Synthesis and Characterisation by Multinuclear Magnetic Resonance Spectroscopy." Zeitschrift für Naturforschung B 56, no. 10 (October 1, 2001): 1009–14. http://dx.doi.org/10.1515/znb-2001-1008.

Full text
Abstract:
N-Silyl-aminotin trichlorides, R1R2N-SnCl3[R1 = R2 = SiMe3 (1a), R1 = SiMe3, R2 = tBu (1b), R = SiMe3, R2 = 9-borabicyclo[3.3.1]nonyl (1c), R1R2 = Me2 SiCH2CH2SiMe2 (1d)] were prepared by the reaction of tin tetrachloride with the respective bis(amino)plumbylenes, (R1R2N)2Pb 4. The analogous reactions with bis(amino)stannylenes, (R1R2N)2Sn 3, afforded only mixtures of the aminotin trichlorides 1 and bis(amino)tin dichlorides, (R1R2N)2 SnCl2 2 . The products were characterised by 1H, 11B, 13C, 15N, 29Si and 119Sn NMR spectroscopy, and the NMR data of 1 were compared with those of the corresponding N-silylamino(trimethyl)tin compounds 8.
APA, Harvard, Vancouver, ISO, and other styles
47

Švec, Petr, Maksim A. Samsonov, Zdeňka Růžičková, Jiří Brus, and Aleš Růžička. "Oxidative addition of cyanogen bromide to C,N-chelated and Lappert's stannylenes." Dalton Transactions 50, no. 16 (2021): 5519–29. http://dx.doi.org/10.1039/d1dt00704a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Bankiewicz, Barbara, and Piotr Matczak. "Controlling the preferred nitrogen site in 1,2,3-triazine to bind with stannylenes." Polyhedron 225 (October 2022): 116056. http://dx.doi.org/10.1016/j.poly.2022.116056.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Dickschat, Julia V., Slawomir Urban, Tania Pape, Frank Glorius, and F. Ekkehardt Hahn. "Sterically demanding and chiral N,N′-disubstituted N-heterocyclic germylenes and stannylenes." Dalton Transactions 39, no. 48 (2010): 11519. http://dx.doi.org/10.1039/c0dt01233e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Švec, Petr, Zdeňka Padělková, Mercedes Alonso, Frank De Proft, and Aleš Růžička. "Comparison of reactivity of C,N-chelated and Lappert’s stannylenes with trimethylsilylazide." Canadian Journal of Chemistry 92, no. 6 (June 2014): 434–40. http://dx.doi.org/10.1139/cjc-2013-0500.

Full text
Abstract:
Two mixed amido-azido tin(IV) species bearing either C,N-chelating or bulky amido ligands were prepared by the reaction of the corresponding stannylene (e.g., Sn[N(SiMe3)2]2 (1) or (LCN)2Sn (2, LCN = 2-(N,N-dimethylaminomethyl)phenyl)) with Me3SiN3. Both products of the oxidative addition, Sn[N(SiMe3)2]3N3 (3) and (LCN)2Sn[N(SiMe3)2]N3 (5), respectively, were fully characterized by both multinuclear NMR spectroscopy and XRD analysis. Heating of a mixture of 2 and Me3SiN3 up to 100 °C lead to the formation of a novel dimeric species (LCN)2Sn(μ-NSiMe3)2Sn(LCN)2 (4), where the two tin atoms are bridged by two NSiMe3 ligands, thus forming a four-membered diazadistannacycle. DFT calculations were also carried out to support the proposed reaction mechanisms.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography