Academic literature on the topic 'Standing wave corrugations'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Standing wave corrugations.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Standing wave corrugations"

1

Weidman, Patrick D., Andrzej Herczynski, Jie Yu, and Louis N. Howard. "Experiments on standing waves in a rectangular tank with a corrugated bed." Journal of Fluid Mechanics 777 (July 16, 2015): 122–50. http://dx.doi.org/10.1017/jfm.2015.318.

Full text
Abstract:
An experimental investigation of resonant standing water waves in a rectangular tank with a corrugated bottom is reported. The study was stimulated by the theory of Howard & Yu (J. Fluid Mech., vol. 593, 2007, pp. 209–234) predicting the existence of normal modes that can be significantly affected by Bragg reflection/scattering. As a result, the amplitude of the standing waves (normal modes) varies exponentially along the entire length of the tank, or from the centre out in each direction, depending on the phase of the corrugations at the tank endwalls. Experiments were conducted in a 5 m tank fitted with a sinusoidal bottom with one adjustable endwall. Waves were excited by small-amplitude sinusoidal horizontal movement of the tank using an electrical motor drive system. Simultaneous time-series data of standing oscillations were recorded at well-separated positions along the tank to measure the growth in amplitude. Waveforms over a section of the tank were filmed through the transparent acrylic walls. Except for very shallow depths and near the tank endwalls, the experimental measurements of resonant frequencies, mean wavelengths, free-surface waveforms and amplitude growth are found in essential agreement with the Bragg resonant normal mode theory.
APA, Harvard, Vancouver, ISO, and other styles
2

Popescu, Mihaela, Stein Tore Johansen, and Wei Shyy. "Flow-Induced Acoustics in Corrugated Pipes." Communications in Computational Physics 10, no. 1 (July 2011): 120–39. http://dx.doi.org/10.4208/cicp.301209.230710a.

Full text
Abstract:
AbstractWhen gas flows through corrugated pipes, pressure waves interacting with vortex shedding can produce distinct tonal noise and structural vibration. Based on established observations, a model is proposed which couples an acoustic pipe and self-excited oscillations with vortex shedding over the corrugation cavities. In the model, the acoustic response of the corrugated pipe is simulated by connecting the lossless medium moving with a constant velocity with a source based on a discrete distribution of van der Pol oscillators arranged along the pipe. Our time accurate solutions exhibit dynamic behavior consistent with that experimentally observed, including the lock-in frequency of vortex shedding, standing waves and the onset fluid velocity capable of generating the lock-in.
APA, Harvard, Vancouver, ISO, and other styles
3

Schwarz, Martin, Alexander Riss, Manuela Garnica, Jacob Ducke, Peter S. Deimel, David A. Duncan, Pardeep Kumar Thakur, et al. "Corrugation in the Weakly Interacting Hexagonal-BN/Cu(111) System: Structure Determination by Combining Noncontact Atomic Force Microscopy and X-ray Standing Waves." ACS Nano 11, no. 9 (September 5, 2017): 9151–61. http://dx.doi.org/10.1021/acsnano.7b04022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Goyder, Hugh. "Noise Generation and Propagation Within Corrugated Pipes." Journal of Pressure Vessel Technology 135, no. 3 (May 21, 2013). http://dx.doi.org/10.1115/1.4024024.

Full text
Abstract:
Corrugated pipes have the advantage of being flexible but the disadvantage of generating unacceptable levels of noise. The noise generated within these pipes is due to oscillation of vortices formed within the corrugations. The noise can induce vibration and unacceptable fatigue damage. Consequently, it is desirable to have a method for predicting the flow conditions that facilitate noise and the noise levels that are generated. This paper develops a theoretical model for the noise generation by considering the interaction of an acoustic wave with the vortices. The key issue that emerges is the delay or phase angle between vortex production in the corrugations and an acoustic standing wave. For the usual conditions, where there are many corrugations in a wavelength, it is possible to form a differential equation for the build-up and saturation of an acoustic resonance. The relative few parameters within this differential equation provide a good basis for modeling the occurrence and level of noise produced. It is anticipated that some experimental input will always be needed for particular corrugation geometries.
APA, Harvard, Vancouver, ISO, and other styles
5

Marques, Olavo B., Matthew H. Alford, Rob Pinkel, Jennifer A. MacKinnon, Jody M. Klymak, Jonathan D. Nash, Amy F. Waterhouse, Samuel M. Kelly, Harper L. Simmons, and Dmitry Braznikov. "Internal tide structure and temporal variability on the reflective continental slope of southeastern Tasmania." Journal of Physical Oceanography, December 1, 2020. http://dx.doi.org/10.1175/jpo-d-20-0044.1.

Full text
Abstract:
AbstractMode-1 internal tides can propagate far away from their generation sites, but how and where their energy is dissipated is not well understood. One example is the semidiurnal internal tide generated south of New Zealand, which propagates over a thousand kilometers before impinging on the continental slope of Tasmania. In-situ observations and model results from a recent process-study experiment are used to characterize the spatial and temporal variability of the internal tide on the southeastern Tasman slope, where previous studies have quantified large reflectivity. As expected, a standing wave pattern broadly explains the cross-slope and vertical structure of the observed internal tide. However, model and observations highlight several additional features of the internal tide on the continental slope. The standing wave pattern on the sloping bottom as well as small-scale bathymetric corrugations lead to bottom-enhanced tidal energy. Over the corrugations, larger tidal currents and isopycnal displacements are observed along the trough as opposed to the crest. Despite the long-range propagation of the internal tide, most of the variability in energy density on the slope is accounted by the spring-neap cycle. However, the timing of the semidiurnal spring tides is not consistent with a single remote wave and is instead explained by the complex interference between remote and local tides on the Tasman slope. These observations suggest that identifying the multiple waves in an interference pattern and their interaction with small-scale topography is an important step in modeling internal energy and dissipation.
APA, Harvard, Vancouver, ISO, and other styles
6

Wang, Yurong. "Theoretical investigation into the measurability of rail unevenness and corrugation using the dynamic response of axle box and bogie." Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, May 12, 2020, 095440972092321. http://dx.doi.org/10.1177/0954409720923213.

Full text
Abstract:
Monitoring track unevenness is important for noise and vibration control and track maintenance. Rail corrugation and shorter wavelength track unevenness can be measured using the corrugation analysis trolley, but it is not suitable for measurement over long distance. It is of great significance to study the dynamic behavior of the response of the axle box and bogie to the unevenness excitation for a better understanding of the measurement results. In this paper, the dynamic response of the axle box and bogie to the unevenness excitation is analyzed in the frequency domain by taking account of multiple wheel–rail interactions, which is the case in practice. The response of the axle box and bogie is found to be affected by the so-called P2 resonances at low and medium frequencies and the standing waves of rail vibration at higher frequencies due to the multiple wheel–rail interactions. Based on the analysis of the response of the axle box and bogie, the measurability of track unevenness is discussed. Results show that the measurement of rail unevenness using the axle box response is mainly limited by the P2 resonance. The frequency range of measurement for the ballasted track studied is estimated to be 1–35 Hz, corresponding to the measurable unevenness wavelength of 0.6–20 m (or longer) at a vehicle speed of 20 m/s. Above 200 Hz, the standing waves of rail vibration will cause serious uncertainty in the measurement of short wavelength rail irregularity using the axle box response for the resilient track. Short pitch rail corrugation, however, can be evaluated using the axle box response due to its strong correlation with certain modes of the wheel–track system.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Standing wave corrugations"

1

Kostovski, Gorgi, and gorgi kostovski@rmit edu au. "Photolithographic and Replication Techniques for Nanofabrication and Photonics." RMIT University. Electrical and Computer Engineering, 2008. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20081203.161726.

Full text
Abstract:
In the pursuit of economical and rapid fabrication solutions on the micro and nano scale, polymer replication has proven itself to be a formidable technique, which despite zealous development by the research community, remains full of promise. This thesis explores the potential of elastomers in what is a distinctly multidisciplinary field. The focus is on developing innovative fabrication solutions for planar photonic devices and for nanoscale devices in general. Innovations are derived from treatments of master structures, imprintable substrates and device applications. Major contributions made by this work include fully replicated planar integrated optical devices, nanoscale applications for photolithographic standing wave corrugations (SWC), and a biologically templated, optical fiber based, surface-enhanced Raman scattering (SERS) sensor. The planar devices take the form of dielectric rib waveguides which for the first time, have been integrated with long-period gratings by replication. The heretofore unemployed SWC is used to demonstrate two innovations. The first is a novel demonstration of elastomeric sidewall photolithographic mask, which exploits the capacity of elastomers to cast undercut structures. The second demonstrates that the corrugations themselves in the absence of elastomers, can be employed as shadow masks in a directional flux to produce vertical stacks of straight lines and circles of nanowires and nanoribbons. The thesis then closes by conceptually combining the preceding demonstrations of waveguides and nanostructures. An optical fiber endface is em ployed for the first time as a substrate for patterning by replication, wherein the pattern is a nanostructure derived from a biological template. This replicated nanostructure is used to impart a SERS capability to the optical fiber, demonstrating an ultra-sensitive, integrated photonic device realized at great economy of both time and money, with very real potential for mass fabrication.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography