Academic literature on the topic 'Stambomycine'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Stambomycine.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Stambomycine":

1

Wang, Yongchen, Venkaiah Chintalapudi, Haraldur G. Gudmundsson, Gregory L. Challis, and Edward A. Anderson. "Synthesis of the C50 diastereomers of the C33–C51 fragment of stambomycin D." Organic Chemistry Frontiers 9, no. 2 (2022): 445–49. http://dx.doi.org/10.1039/d1qo01635k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The preparation of two C50 diastereomers of the C33–C51 region of stambomycin D is described. In addition to excellent correlation with the natural product, this synthesis establishes conditions for eventual global deprotection.
2

Song, Lijiang, Luisa Laureti, Christophe Corre, Pierre Leblond, Bertrand Aigle, and Gregory L. Challis. "Cytochrome P450-mediated hydroxylation is required for polyketide macrolactonization in stambomycin biosynthesis." Journal of Antibiotics 67, no. 1 (November 13, 2013): 71–76. http://dx.doi.org/10.1038/ja.2013.119.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Su, Li, Laurence Hôtel, Cédric Paris, Clara Chepkirui, Alexander O. Brachmann, Jörn Piel, Christophe Jacob, Bertrand Aigle, and Kira J. Weissman. "Engineering the stambomycin modular polyketide synthase yields 37-membered mini-stambomycins." Nature Communications 13, no. 1 (January 26, 2022). http://dx.doi.org/10.1038/s41467-022-27955-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
AbstractThe modular organization of the type I polyketide synthases (PKSs) would seem propitious for rational engineering of desirable analogous. However, despite decades of efforts, such experiments remain largely inefficient. Here, we combine multiple, state-of-the-art approaches to reprogram the stambomycin PKS by deleting seven internal modules. One system produces the target 37-membered mini-stambomycin metabolites − a reduction in chain length of 14 carbons relative to the 51-membered parental compounds − but also substantial quantities of shunt metabolites. Our data also support an unprecedented off-loading mechanism of such stalled intermediates involving the C-terminal thioesterase domain of the PKS. The mini-stambomycin yields are reduced relative to wild type, likely reflecting the poor tolerance of the modules downstream of the modified interfaces to the non-native substrates. Overall, we identify factors contributing to the productivity of engineered whole assembly lines, but our findings also highlight the need for further research to increase production titers.
4

Su, Li, Laurence Hôtel, Cédric Paris, Clara Chepkirui, Alexander O. Brachmann, Jörn Piel, Christophe Jacob, Bertrand Aigle, and Kira J. Weissman. "Author Correction: Engineering the stambomycin modular polyketide synthase yields 37-membered mini-stambomycins." Nature Communications 13, no. 1 (October 6, 2022). http://dx.doi.org/10.1038/s41467-022-33524-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lim, Jieyan, Venkaiah Chintalapudi, Haraldur G. Gudmundsson, Minh Tran, Alice Bernasconi, Araceli Blanco, Lijiang Song, Gregory L. Challis, and Edward A. Anderson. "Synthesis of the C1–C27 Fragment of Stambomycin D Validates Modular Polyketide Synthase-Based Stereochemical Assignments." Organic Letters, September 8, 2021. http://dx.doi.org/10.1021/acs.orglett.1c02650.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Stambomycine":

1

Su, Li. "Generation of analogues of the anti-tumor polyketide stambomycins by genetic engineering and allied approaches." Electronic Thesis or Diss., Université de Lorraine, 2021. http://www.theses.fr/2021LORR0081.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Les polycétides d’origine bactérienne sont une source importante de molécules anti-infectieuses et anticancéreuses d’origine naturelle utilisées en thérapie. Cependant, leurs structures doivent souvent être optimisées afin d'améliorer leurs propriétés thérapeutiques. Les stambomycines, une famille de macrolides parmi les plus grands polycétides connus (elles possèdent un noyau macrolactone à 51 membres), ont été récemment découvertes par une approche de genome mining chez la bactérie Streptomyces ambofaciens ATCC23877. Ces molécules présentent une activité anticancéreuse prometteuse. Six formes de stambomycines ont été caractérisées. Elles diffèrent les unes des autres par la fonctionnalité alkyle au niveau de la position C-26 du noyau macrolactone. Cette variabilité est due au choix alternatif d’unités d'extension par un domaine acyltransférase exceptionnel, le domaine AT12, de la polycétide synthase modulaire (PKS) responsable de la synthèse des stambomycines. Étant donné la taille importante du cycle lactone et la promiscuité intrinsèque du domaine AT12, il existe un intérêt substantiel à accéder à des dérivés stambomycines par réduction de la taille du noyau ou par substitution de la chaine latérale en C-26. Ces dérivés pourraient conserver la bioactivité des structures parentales ou présenter des propriétés améliorées voire nouvelles. Dans ce travail, nous avons mis à profit notre compréhension actuelle des systèmes de PKS modulaires pour raccourcir en interne la chaîne de production de stambomycines, ce qui a permis de générer avec succès, bien qu'à faible rendement, des dérivés avec un noyau macrolactone de taille réduite (des "mini-stambomycines" présentant un noyau à 37 membres). Grâce à une analyse minutieuse, nous avons pu identifier les multiples facteurs expliquant les faibles rendements, ce qui permettra d’éclairer les futures stratégies d'ingénierie. En outre, grâce à une stratégie de mutasynthèse, nous avons pu exploiter la large spécificité du domaine AT12 pour générer six nouveaux analogues de stambomycine présentant différentes substitutions en position C-26. Enfin, nous avons identifié de manière tout à fait inattendue trois classes de sidérophores étroitement apparentées aux desferrioxamines produites par S. ambofaciens. Un certain nombre des métabolites clés générés pendant ce travail constitue une source de nouvelles biomolécules avec des applications thérapeutiques potentielles. Les prochaines étapes consisteront à purifier ces composés, à déterminer leur structure puis à évaluer leurs activités biologiques
The polyketide secondary metabolites of bacteria are a rich source of bioactive agents, with notable applications in anti-infective and anti-cancer therapy. However, their structures often need to be optimized in order to tailor their therapeutic and biophysical properties. The 51-membered macrolide stambomycins, among the largest of known polyketides, were recently discovered by genome mining in Streptomyces ambofaciens ATCC23877, and notably exhibit promising anti-cancer activity. The family encompasses six members which differ from each other in the alkyl functionality at C-26, due to the alternative choice of extender units by an exceptional acyl transferase domain (AT12) of the modular polyketide synthase (PKS) responsible for synthesizing the stambomycin core. Given their enormous size of the stambomycins and the intrinsic promiscuity of AT12, there is substantial interest in accessing ring-contracted and C-26 substituted derivatives of this compounds which might retain the bioactivity of the parental structures, or exhibit improved or even new properties. In this work, we have leveraged our current understanding of modular PKS systems to internally contract the stambomycin assembly line, leading to the successful generation, albeit at low yield, of target smaller derivatives (37-membered ‘mini-stambomycins’). By careful analysis, we could identify multiple factors contributing to the low titers, information which should inform future engineering strategies. Furthermore, using a mutasynthesis strategy, we were able to exploit the broad specificity of the AT12 domain to create 6 novel C-26 substituted stambomycin analogues. Finally, we unexpectedly identified three series of novel desferrioxamine siderophores produced by S. ambofaciens. As a number of key metabolites generated in this work have potential interest for therapeutic applications, they will be targeted for purification, structural characterization and biological evaluation

To the bibliography