Dissertations / Theses on the topic 'Stall and Surge'

To see the other types of publications on this topic, follow the link: Stall and Surge.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 24 dissertations / theses for your research on the topic 'Stall and Surge.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Dahl, Ståle. "Stall og surge i tørr- og våtgasskompressorer." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for energi- og prosessteknikk, 2011. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-13581.

Full text
Abstract:
I denne oppgaven beskrives de aerodynamiske ustabilitetene kalt stall og surge. Oppgaven består hovedsakelig av tre deler. I første del gjennomgås noe fundamental teori på aerodynamikken i sentrifugalkompressorer, før funn gjort i tidligere eksperiment på ustabilitetene presenteres. I litteraturen er det bevist at stall og surge forekommer i flere former og med flere karakteristikker. Med tørrgass som arbeidsmedium kan disse karakteristikkene identifiseres ved hjelp av trykksensorer. Karakteristikkene har vist seg å være svært avhengig av kompressorens geometri.Visualiseringsmetoder som tidligere har vist seg å fungere godt på turbomaskineri gjennomgåes og det diskuteres rundt applikasjonen med våtgass. Laser Doppler Velocimetry ble prøvet ut, men det viste seg at denne måleteknikken er for ømfintelig til at den kan brukes med våtgasstrømning. En spesialløsning med pitot-prober er en mulig metode for fremtidige visualiseringsforsøk. Til slutt presenteres et eget eksperiment hvor en industriell kompressor utsettes for tørr- og våtgass. Formålet med eksperimentet var å dokumentere ustabiliteter, med hovedfokus på frekvens og størrelse. Karakteristikken til tørrgassustabilitetene ble kartlagt ved hjelp av dynamiske trykksensorer plassert i diffusoren. Resultatene ble sammenligning med resultat fra tidliger eksperiment funnet i litteraturen. Funnene stemte godt med tidligere forsøk gjort med tørrgass. Karakteristikken til våtgass lot seg ikke identifisere like lett. De dynamiske sensorene plukket ikke opp noen stallfrekvenser eller størrelser, selv om ustabiliteter var observert visuelt ved testkjøring. Det ble heller ikke funnet noe bevis på at maskinen gikk i surge.
APA, Harvard, Vancouver, ISO, and other styles
2

Zoppellari, Serena. "Analytical modeling of rotating stall and surge." Thesis, Cranfield University, 2014. http://dspace.lib.cranfield.ac.uk/handle/1826/9385.

Full text
Abstract:
The life and performance of axial compressors are limited by the occurrence of instabilities such as rotating stall and surge. Indeed, in the course of the design phase a great effort is usually devoted to guarantee an adequate safety margin from the region of instabilities’ onset. On the other hand, during its operating life, an axial compressor can be subjected to several conditions that can lead to the inception of stall and its dynamics. A few examples of possible stall causes, for the specific case of an axial compressor embedded in an aircraft engine, are inlet flow distortion, engine wear or shaft failure. The shaft failure case can be seen as an exception, as a matter of fact, after this event surge is a desirable outcome since it can potentially decelerate the over-speeding turbine by reducing the mass flow passing through the engine. The possible occurrence of surge and stall should be predicted and controlled in order to avoid severe damage to the compressor and its surroundings. A lot of research has been carried out in the past years to understand the inception and development of stall to achieve the capability for predicting and controlling this severe phenomenon. Nonetheless, this problem is still not well understood and unpredictable outcomes are still a great concern for many axial compressor’s applications. The lack of knowledge in what concerns inception and development of stall and surge reflects in a lack of tools to investigate, predict and control these unstable phenomena. The tools available to study stall and surge events are still not highly reliable or they are very time consuming as 3D CFD simulations. The doctoral research described herein, aimed at the investigation of the rotating stall phenomenon and the derivation of the compressor characteristic during this unstable condition. Following a detailed analysis of the tools and techniques available in the public domain and the identification of their limitations, the development of a FORTRAN through-flow tool was the methodology chosen. A distinctive feature of the developed tool is the independency from steady state characteristics which is a limitation for the majority of the available tools and its computational efficiency. Particular attention was paid to capture various viscous flow features occuring during rotating stall through the selection and implementation of appropriate semiempirical models and correlations. Different models for pressure loss, stall inceptions and stall cell growth/ speed were implemented and verified along with different triggering techniques to achieve a very close to reality simulation of the overall phenomenon, from stall inception to full development. lel compressors’ technique that allows the correct modeling of asymmetric phenomena. The methodology implemented has proved promising since several simulations were run to test the tool adopting different compressor geometries. Verifications were performed in terms of overall compressor performance, with simulations in all the three possible operating regions (forward, stall and reverse flow), in order to verify the tool’s capability in predicting the compressor characteristics. In terms of flow field, the ability to capture the right circumferential trends of the flow properties was checked through a comparison against 3D CFD simulations. The results obtained have demonstrated the ability of the tool to capture the real behavior of the flow across a compressor subjected to several different unstable conditions that can lead to the onset of phenomena such as rotating stall, classic and deep surge. Indeed, the tool has shown ability to tackle steady and transient phenomena characterized by asymmetric and axis-symmetric flow fields. This document provides several examples of investigations emphasizing the flexibility of the developed methodology. As a matter of fact, within this dissertation, many examples can be found on the effect of the plenum size, on the different transient phenomena experienced by the compressor when subjected to multiple regions of inlet distortion instead of a localized region of low or high flow, on the differences between temporary and stationary inlet disturbances and so on. This document describes in detail the methodology, the implementation of the tool, its verification and possible applications and the recommended future work. The work was funded by Rolls-Royce plc and was carried out within the Rolls-Royce UTC in Performance Engineering at Cranfield as three-year Ph.D. program that started in October 2010.
APA, Harvard, Vancouver, ISO, and other styles
3

Wilson, Alexander George. "Stall and surge in axial flow compressors." Thesis, Cranfield University, 1996. http://dspace.lib.cranfield.ac.uk/handle/1826/10432.

Full text
Abstract:
The objective of the work described in this thesis is twofold; to elucidate the nature of stall and surge in an axial flow aeroengine compressor, and to improve on current computational stall modelling techniques. Particular attention is paid to the initial stages of the stall/surge transient, and to the possibility of using active control techniques to prevent or delay the onset of stall/surge. A detailed analysis is presented of measurements of the stalling behaviour of a Rolls- Royce VIPER jet engine, showing a wide variety of stall inception and post-stall behaviour. Stall transients are traced from disturbances through to stable rotating stall or axisymmetic surge. The stall inception pattern at nearly all speeds is shown to conform to the short circumferential length scale pattern described by Day [1993a]. A multiple compressors in parallel stall model is developed using conventional stall modelling techniques, but extended to include the effects of the jet engine environment The model is shown to give a good representation of the overall stalling behaviour of the engine, although the details of the stall inception period are not accurately predicted. A system identification technique is applied to the results of the model in order to develop a method of active control of stall/surge. A new stall model is introduced and developed, based on a time-accurate three dimensional (but pitchwise averaged) solution of the viscous flow equations, with bladerow performance represented by body forces. The flow in the annulus boundary layers is calculated directly, and hence this new method is sufficiently complex to model the initial localised disturbances that lead to stall/surge. At the same time the computational power required is compatible with application to long multistage compressors.
APA, Harvard, Vancouver, ISO, and other styles
4

Protz, Jonathan M. (Jonathan Michael). "Nonlinear active control of rotating stall and surge." Thesis, Massachusetts Institute of Technology, 1997. http://hdl.handle.net/1721.1/10515.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Niazi, Saeid. "Numerical simulation of rotating stall and surge alleviation in axial compressors." Diss., Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/12011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Cousins, William T. "The Dynamics of Stall and Surge Behavior in Axial-Centrifugal Compressors." Diss., Virginia Tech, 1997. http://hdl.handle.net/10919/29794.

Full text
Abstract:
The phenomena of stall and surge in axial-centrifugal compressors is investigated through high-response measurements of both the pressure field and the flowfield throughout the surge cycle. A unique high-response forward-facing and aft-facing probe provides flow information. Several axial-centrifugal compressors are examined, both in compressor rigs and engines. Extensive discussion is presented on the differences in axial and centrifugal rotors and their effect on the system response characteristics. The loading parameters of both are examined and data is presented that shows the increased tolerance of the centrifugal stage to instability. The dynamics of the compressor blade response are shown to be related to the transport time of a fluid particle moving through a blade passage. The data presented provides new insight into the dynamic interactions that occur prior to and during stall and surge. In addition, the inception of rotating stall and the inception of surge are shown to be the same phenomena . An analytical dynamic model (DYNTECC) is applied to one of the compression systems and the results are compared to data. The results show that the model can capture the global effects of rotating stall and surge. The data presented, along with the analytical results, provide useful information for the design of active and passive stall control systems.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
7

Fahim, Ahmed 1974. "Experimental evaluation of asymmetric bleed actuation for rotating stall and surge control." Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/50004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Liao, Shengfang 1968. "Robust control of a surge and rotating stall in an axial compressor." Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/8823.

Full text
Abstract:
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2000.
Includes bibliographical references (p. 123-127).
This thesis presents an investigation of the stability of axial compression systems when external disturbances are introduced. Aerodynamic stability is considered from a nonlinear perspective. From this perspective, the goal is to enhance the ability of compressor systems to remain stable in the face of external disturbances. Experiments were conducted on a low-speed three-stage axial compressor. Instead of achieving extension of linearly stable operating range, this research is focused on the followings: (1). The operability of the compressor, the ability of maintaining the stable operations of the compressor near the operating points in the presence of the external disturbances, was considered. The concept of domain of attraction was adopted to characterize the operability or the disturbance rejection of the compressor. An experimental method was developed to generate disturbances and measure the approximate domain of attraction in terms of the zeroth and first mode flow perturbations. (2). Improvement of the approximate domain of attraction was demonstrated by active control. Both the constant gain control which has been used in many range extension tests and the sliding mode control which is model based, doubles the maximum allowable amplitudes of the zeroth and first mode flow perturbations. (3). The downstream bleed was chosen as the actuation, which is easy to implement and more practical. The number of the bleed valves was chosen to be four to compromise the goal of reducing the number of actuators and the requirement of achieving a satisfactory control effectiveness. (4). The domain of attraction was also examined under inlet distortions. The nonlinear simulation showed that the disturbance rejection of the compressor with background distorted flow was improved by active control.
by Shengfang Liao.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
9

Osborne, Denver Jackson Jr. "Time-resolved measurements of a transonic compressor during surge and rotating stall." Thesis, This resource online, 1992. http://scholar.lib.vt.edu/theses/available/etd-07102009-040321/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Badmus, Olanrewju O. "Nonlinear dynamic analysis and control of surge and rotating stall in axial compression systems." Diss., Georgia Institute of Technology, 1994. http://hdl.handle.net/1853/11296.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Weigl, Harald Jürgen. "Active stabilization of rotating stall and surge in a transonic single stage axial compressor." Thesis, Massachusetts Institute of Technology, 1997. http://hdl.handle.net/1721.1/10353.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Cramer, Kevin Brendan. "Design of a Total Pressure Distortion Generator for Aircraft Engine Testing." Thesis, Virginia Tech, 2002. http://hdl.handle.net/10919/42807.

Full text
Abstract:
A new method and mechanism for generating non-uniform, or distorted, aircraft engine inlet flow is being developed in order to account for dynamic changes during the creation and propagation of the distortion. Total pressure distortions occur in gas turbine engines when the incoming flow is disturbed. Dynamic total pressure changes may happen slowly, or may occur very rapidly. The disturbance of the incoming flow can change engine operating characteristics, including lowering the surge limit and creating High Cycle Fatigue incidents. In order to create a distorted flow with dynamic characteristics, a mechanism must be developed that when actuated, can change the distortion pattern and intensity with respect to time. This work covers the initial design of both the distorting and actuating device. The design chosen is a low force design that is practically independent of flow forces. This allows the system to be easily sized for all flow conditions. The study also includes developing the working design into an overall prototype. Testing is also performed to validate the design as the most advantageous choice.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
13

Dhingra, Manuj. "Compressor stability management." Diss., Available online, Georgia Institute of Technology, 2006, 2006. http://etd.gatech.edu/theses/available/etd-01102006-174943/.

Full text
Abstract:
Thesis (Ph. D.)--Aerospace Engineering, Georgia Institute of Technology, 2006.
Prasad, J.V.R., Committee Chair ; Neumeier, Yedidia, Committee Member ; Seitzman, Jerry, Committee Member ; Sankar, Lakshmi, Committee Member ; Wadia, Aspi, Committee Member.
APA, Harvard, Vancouver, ISO, and other styles
14

Bousquet, Yannick. "Modélisation et analyse des mécanismes impliqués dans l’apparition du pompage d’un étage de compresseur centrifuge." Thesis, Toulouse, ISAE, 2014. http://www.theses.fr/2014ESAE0012/document.

Full text
Abstract:
Le présent travail s'inscrit dans le cadre d'une convention CIFRE entre Liebherr-Aerospace Toulouse SAS et le Département d'Aérodynamique Energétique et Propulsion (DAEP) de l'ISAE. L’étude porte sur l'analyse des mécanismes responsables de la perte de la stabilité d'un étage de compression centrifuge. L'objectif industriel sous-jacent est l'élargissement de la plage de fonctionnement stable des compresseurs. Les travaux sont abordés par voie numérique à l'aide du code de calcul elsA, développé par l'ONERA et le CERFACS. Les simulations instationnaires sont effectuées sur la circonférence complète des roues.La topologie de l'écoulement est analysée dans un premier temps selon trois points de fonctionnement stables répartis sur la courbe caractéristique de l'iso-vitesse de design. Cette analyse permet de décrire l'évolution des phénomènes lorsque le débit est réduit. Au voisinage de la ligne de stabilité, l'excès d'incidence sur les aubes du rouet déclenche le décollement de la couche limite sur la face en d’expression. Le guide issu de la zone décollée migre en direction du carter et alimente l'écoulement de jeu. En conséquence, le déficit de vitesse au voisinage du carter s'intensifie et un lâcher périodique de structures tourbillonnaires apparaît à l'interface entre les écoulements secondaires et l'écoulement principal.La perte de la stabilité de l'étage s’établit suite à la naissance d'une perturbation de type « modal » au sein de l'espace lisse. Cette dernière induit de fortes distorsions circonférentielles dans l'étage de compression mais affecte plus particulièrement l'écoulement à l'entrée du rouet. Sur la moitié de la circonférence, l'interface entre les écoulements secondaires et l'écoulement principal ainsi que les structures tourbillonnaires sont déplacées en amont du front de grille. Le taux total-total du rouet chute de manière brutale et entraîne la perte de la stabilité de l'étage.Enfin, la dernière partie de ce travail est dédiée à la mise en place de critères adaptés au modèle stationnaire mono-canal utilisé chez LTS. Ces critères seront utilisés pour améliorer la prédiction de la ligne de pompage en phase de design. Dans un premier temps, la pertinence de l'utilisation du modèle stationnaire au voisinage de la ligne de stabilité est évaluée. Dans un second temps, les influences de la vitesse de rotation et de la géométrie de l’étage sur la topologie sont étudiées.Deux situations sont jugées critiques vis-à-vis de la stabilité. La première concerne l'alignement de l'interface entre l'écoulement de jeu et l'écoulement principal avec le front de grille. La deuxième concerne l'opération du compresseur avec un angle d'écoulement en sur-incidence sur les aubes du diffuseur qui s'établit sur toute la hauteur de veine
This work results from a CIFRE partnership between Liebherr-Aerospace Toulouse SAS and the Aerodynamics, Energetics and Propulsion Department (DAEP) of ISAE. The main objective is to investigate the mechanisms responsible of the stall onset in a centrifugal compressor operating at the nominal rotational speed. It is part of a larger work which aims at extending the stable operating range of compressors integrated in air conditioning system. The analyses are based on the results of unsteady simulations, in a calculation domain comprising all the blade passages. They are performed with the elsA software developed by ONERA and CERFACS.The investigations show the modifications of the unsteady flow pattern when the mass flow is reduced along the speed line. Near the stability limit, the high incidence angle on the impeller blade leads to a boundary layer separation on the suction side. The fluid in the separation zone moves toward the shroud and enlarges the low momentum flow zone generated by the leakage flow. The interface between the leakage flow and the main flow becomes unstable to the extent of a periodic vortex formation.The path to instability is driven by the growth of a small amplitude disturbance (modal wave) rotating in the vaneless space. The length scale of the wave is equal to the compressor circumference. This perturbation induces distortions and alters the flow characteristics in every location of this subsonic stage, and more specifically the impeller inlet flow structure: the unstable interface between the main flow and the leakage flow is periodically moved upstream of the leading edge plane causing a significant drop of the impeller total-to-total pressure ratio. The last part of this work concerns the definition of criteria which can improve the surge line prediction during the design process in an industrial environment. Therefore, they are adapted to the numerical steady model using the mixing plane approach. To do so, the capacity of the steady model to predict the flow structure when the compressor operates near stall is investigated. Then, the effects of the rotational speed and of the compressor geometry are evaluated. Theses two steps have permitted to define two critical situations regarding the stage stability. The first one is related to the alignment of the interface between the main flow and the leakage flow with the leading edge plane. The second one concerns the compressor operation with positive incidence on the diffuser vane, along the full span
APA, Harvard, Vancouver, ISO, and other styles
15

MUNARI, Enrico. "Instability Phenomena in Multistage Compressors: Experimental Analysis and Dynamic Modeling." Doctoral thesis, Università degli studi di Ferrara, 2017. http://hdl.handle.net/11392/2487959.

Full text
Abstract:
Flow instability conditions, in particular during surge and stall phenomena, have always influenced the operational reliability of turbo-compressors and have attracted significant interest resulting in extensive literature. Nowadays, this subject is still one of the most investigated because of its high relevance on centrifugal and axial compressor operating flow range, performance and efficiency. However, there is another fundamental aspect to be considered; which is the magnitude of the unsteady forces generated in the compressor during these unstable operations. These forces can become highly dangerous for the mechanical and aerodynamic structure of the compressor. Many researchers approach this important issue by developing numerical models, whereas others approach it through experimental studies specifically carried out in order to better comprehend this phenomenon. The aim of this work is: (i) to experimentally analyze the stable and unstable operating conditions of an aeronautic turbo-shaft gas turbine axial-centrifugal compressor installed on a brand new test-rig properly designed for this purpose; and (ii) to develop a nonlinear model for simulating the dynamic behavior of compression systems. The test facility is set up in order to obtain (i) the compressor performance maps at rotational speeds up to 25,000 rpm and (ii) the compressor transient behavior during surge. By using two different test rig layouts, instabilities occurring in the compressor, beyond the peak of the characteristic curve, are identified and investigated. These two types of analysis are carried out thanks to pressure, temperature and mass flow sensors located in strategic positions along the circuit. These measurement sensors are part of a proper control and acquisition system, characterized by an adjustable sampling frequency. Thus, the desired operating conditions of the compressor, in terms of mass flow and rotational speed, and transient of these two parameters, are regulated by this dedicated control system. Successively, a vibro-acoustic analysis, is carried out in order to demonstrate the efficaciousness of accelerometers and microphones in detecting rotating stall and surge and their inception. The dynamic model is implemented in Matlab®/Simulink® environment and developed by means of a general bond graph approach which leads to a highly modular lumped parameter structure. The thermodynamics of the model was validated by using the experimental data provided by the test rig cited above, showing high reliability in simulating the dynamics of the compressor operating point in both the stable field of the characteristic curve and unstable field, reproducing with high fidelity the surge cycle generated. The simulator, is also provided with a supplementary tool to estimate the axial force frequency and amplitude, taking into consideration all the contributions to the axial fluid-dynamic thrust generation, and to the resultant axial mechanical force which acts on the thrust bearing. The test case facility layout, which was simulated by the model, is located at SouthWest Research Institute laboratory in which a 522 kW industrial air centrifugal compressor was performed in surge conditions. The model was tuned and validated by using the test case axial force data showing a good agreement with the experimental results and demonstrating to well predict the amplitude and frequency of the net axial thrust. From these results and analyses some final remarks and conclusions can be drawn, which are presented at the end of this Thesis.
Le condizioni di instabilità fluidodinamica, in particolare durante fenomeni come stallo e pompaggio, hanno sempre influenzato l'affidabilità operativa dei compressori dinamici e hanno attirato un considerevole interesse che ha portato ad un notevole numero di lavori in letteratura. Oggi, questo argomento è ancora uno dei più studiati a causa della sua elevata rilevanza nell’ambito del funzionamento dei compressori centrifughi ed assiali, e delle loro prestazioni anche in termini di efficienza. Tuttavia, vi è un altro aspetto fondamentale da considerare; che è la grandezza delle forze generate nel compressore durante questi fenomeni di instabilità. Queste forze possono diventare molto pericolose per la struttura meccanica ed aerodinamica del compressore. Molti ricercatori affrontano questo importante problema attraverso lo sviluppo di modelli numerici, mentre altri, attraverso studi sperimentali, al fine di comprendere meglio questi fenomeni. Lo scopo di questo lavoro è: (i) analizzare sperimentalmente le condizioni operative di stabilità ed instabilità di un compressore assial-centrifugo, appartenente ad una turbina a gas di tipo turbo-albero di derivazione aeronautica, installato su un nuovo banco prova adeguatamente progettato per questo scopo; e (ii) sviluppare un modello non lineare per la simulazione del comportamento dinamico dei sistemi di compressione. L'impianto di prova è costruito in modo da ottenere (i) le mappe di prestazione del compressore a velocità di rotazione fino a 25,000 rpm e (ii) il comportamento transitorio del compressore in stallo e pompaggio. Utilizzando due diverse configurazioni del banco, vengono individuate ed esaminate le instabilità che si verificano nel compressore una volta superato il picco della curva caratteristica. Questi due tipi di analisi sono effettuati grazie all’utilizzo di sensori di pressione, temperatura e portata in massa situati in posizioni strategiche lungo il circuito. Questi sensori di misura costituiscono parte di un adeguato sistema di controllo e acquisizione, caratterizzato da una frequenza di campionamento regolabile. Pertanto, le condizioni operative del compressore, in termini di portata in massa e velocità di rotazione, e i transitori di questi due parametri, sono regolati da questo sistema di controllo dedicato. Un’analisi vibro-acustica, è stata effettuata successivamente, al fine di dimostrare l'efficacia di accelerometri e microfoni nel rilevare lo stallo rotante ed il pompaggio. Un modello dinamico è implementato in ambiente Matlab® / Simulink® e sviluppato mediante l’uso dei bond-graph, che porta ad una struttura a parametri concentrati altamente modulare. La termodinamica implementata nel modello ed i risultati sono stati validati utilizzando i dati sperimentali forniti dal banco prova realizzato. Il modello mostra elevata affidabilità nel simulare la dinamica del punto di funzionamento del compressore, sia nel campo stabile della curva caratteristica, sia in campo instabile, riuscendo ad ottenere anche un’ottima corrispondenza con i dati sperimentali in pompaggio. Il modello è inoltre dotato di uno strumento supplementare per stimare l’ ampiezza e la frequenza delle forze assiali, prendendo in considerazione tutti i contributi che producono la spinta fluidodinamica assiale, e la conseguente forza meccanica assiale che si scarica sul cuscinetto reggispinta. Il test case, è il banco prova situato presso il laboratorio del Southwest Research Institute, nel quale è installato un compressore centrifugo industriale da 522 kW che è stato fatto operare in condizioni di pompaggio. Il modello è calibrato e validato utilizzando i dati di tale banco prova e mostra una buona correlazione con i risultati sperimentali riferiti ad ampiezza e frequenza della spinta assiale. Da questi risultati e analisi, alcune importanti osservazioni e conclusioni finali possono essere tratte; queste sono presentate alla fine di questa Tesi.
APA, Harvard, Vancouver, ISO, and other styles
16

Dehner, Richard D. "An Experimental and Computational Study of Surge in Turbocharger Compression Systems." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1480364505183253.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Sundström, Elias. "Flow instabilities in centrifugal compressors at low mass flow rate." Doctoral thesis, KTH, Mekanik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-217821.

Full text
Abstract:
A centrifugal compressor is a mechanical machine with purpose to convert kineticenergy from a rotating impeller wheel into the fluid medium by compressingit. One application involves supplying boost air pressure to downsized internalcombustion engines (ICE). This allows, for a given combustion chamber volume,more oxygen to the combustion process, which is key for an elevated energeticefficiency and reducing emissions. However, the centrifugal compressor is limitedat off-design operating conditions by the inception of flow instabilities causingrotating stall and/or surge. These instabilities appear at low flow rates andtypically leads to large vibrations and stress levels. Such instabilities affectthe operating life-time of the machine and are associated with significant noiselevels.The flow in centrifugal compressors is complex due to the presence of a widerange of temporal- and spatial-scales and flow instabilities. The success fromconverting basic technology into a working design depends on understandingthe flow instabilities at off-design operating conditions, which limit significantlythe performance of the compressor. Therefore, the thesis aims to elucidate theunderlying flow mechanisms leading to rotating stall and/or surge by means ofnumerical analysis. Such knowledge may allow improved centrifugal compressordesigns enabling them to operate more silent over a broader operating range.Centrifugal compressors may have complex shapes with a rotating partthat generate turbulent flow separation, shear-layers and wakes. These flowfeatures must be assessed if one wants to understand the interactions among theflow structures at different locations within the compressor. For high fidelityprediction of the complex flow field, the Large Eddy Simulation (LES) approachis employed, which enables capturing relevant flow-driven instabilities underoff-design conditions. The LES solution sensitivity to the grid resolution usedand to the time-step employed has been assessed. Available experimentaldata in terms of compressor performance parameters, time-averaged velocity,pressure data (time-averaged and spectra) were used for validation purposes.LES produces a substantial amount of temporal and spatial flow data. Thisnecessitates efficient post-processing and introduction of statistical averagingin order to extract useful information from the instantaneous chaotic data. Inthe thesis, flow mode decomposition techniques and statistical methods, suchas Fourier spectra analysis, Dynamic Mode Decomposition (DMD), ProperOrthogonal Decomposition (POD) and two-point correlations, respectively, areemployed. These methods allow quantifying large coherent flow structures atvfrequencies of interest. Among the main findings a dominant mode was foundassociated with surge, which is categorized as a filling and emptying processof the system as a whole. The computed LES data suggest that it is causedby substantial periodic oscillation of the impeller blade incidence flow angleleading to complete system flow reversal. The rotating stall flow mode occurringprior to surge and co-existing with it, was also captured. It shows rotating flowfeatures upstream of the impeller as well as in the diffuser.

QC 20171117

APA, Harvard, Vancouver, ISO, and other styles
18

Guzej, Michal. "Rotující odtržení v prostoru odstředivého kompresoru." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2012. http://www.nusl.cz/ntk/nusl-230025.

Full text
Abstract:
This thesis deals with a procedure for determining the complete processing of aerodynamic flow instabilities (rotating stall and surge) in a centrifugal compressor. At small flows the performance of a compressor system is limited by the surge line, which is caused by flow instabilities. Numerical solution is obtained using the method of transfer matrix. This system is simulated through several models with local resistances that represent the dissipation of pressure energy. Pulses are excitated in these models by the pressure jump placed before the centrifugal compressor. From the frequency-amplitude characteristics for the selected range of frequencies and flow the impedance characteristic of the compressor system is determined. We are looking for problematic frequencies in this characteristic that cause flow instabilities in the compressor system.
APA, Harvard, Vancouver, ISO, and other styles
19

Bénichou, Emmanuel. "Analyse numérique des instabilités aérodynamiques dans un compresseur centrifuge de nouvelle génération." Thesis, Ecully, Ecole centrale de Lyon, 2015. http://www.theses.fr/2015ECDL0046.

Full text
Abstract:
L’étude effectuée au cours de cette thèse a permis de caractériser numériquement les instabilités d’origine aérodynamique rencontrées dans un compresseur centrifuge dessiné par Turbomeca. Ce compresseur est composé d’une roue directrice d’entrée, d’un rouet centrifuge, d’un diffuseur radial et de redresseurs axiaux. Le module expérimental, dénommé Turbocel, sera accueilli au LMFA courant 2016. Le contenu de cette étude repose donc exclusivement sur des résultats numériques dont certains sont cependant comparés à des résultats expérimentaux partiels obtenus par Turbomeca sur une configuration proche. _ Le fonctionnement du compresseur est analysé à différentes vitesses de rotation, à partir de simulations RANS et URANS menées avec le code elsA. Du point de vue de la méthodologie, deux points importants sont à retenir :- Du fait du caractère transsonique de l’écoulement dans le rouet et le diffuseur radial à haut régime de rotation, les simulations RANS stationnaires ne permettent pas d’accéder à une description satisfaisante des phénomènes physiques. Cela est dû à l’utilisation d’un plan de mélange aux différentes interfaces rotor-stator qui a pour effet d’empêcher les ondes de choc de remonter à l’amont, et qui affecte tant la physique de l’écoulement que l’étendue de la plage de fonctionnement stable.- En-dessous d’un certain débit, les calculs URANS sur période machine révèlent que le comportement de l’étage n’obéit plus à la périodicité spatio-temporelle mono-canal. Une plage instable est alors obtenue à toutes les iso-vitesses simulées. A bas régime de rotation, une autre plage stable existe lorsque le compresseur est suffisamment vanné. L’étage retrouve alors une périodicité spatio-temporelle, à condition d’étendre le domaine de calcul dans le stator à deux canaux inter-aubes. En ce qui concerne les limites de stabilité de Turbocel, différentes évolutions sont décrites selon la vitesse de rotation considérée :- A haut régime de rotation, une basse fréquence commence à émerger près du point de rendement maximal et son intensité ne fait qu’augmenter jusqu.au pompage.- A bas régime, une signature basse fréquence comparable se manifeste près du point de rendement maximal mais disparaît passé un certain vannage, et n’est donc présente que sur une plage de débit délimitée. La seconde zone stable peut alors être numériquement parcourue jusqu.au pompage proprement dit. La signature basse fréquence est imputée à l’instauration d’une recirculation dans l’inducteur qui une fois établie est quasi-stationnaire. Les résultats numériques mettent en évidence que la source d’instabilité sévère sur Turbocel provient du diffuseur aubé. En fonction du point de fonctionnement, ce composant adopte des comportements différents, entre lesquels une certaine continuité existe, et ses performances chutent progressivement lorsque le débit diminue. Au final, les domaines de stabilité de l’étage de compression peuvent être reliés au type d’écoulement qui se développe dans le diffuseur radial, et apparaissent dictés par le diffuseur semi-lisse à haut régime de rotation. Enfin, afin d’étendre les plages de fonctionnement stable, une stratégie de contrôle basée sur l’aspiration de couche limite dans le diffuseur aubé a également été déterminée dans le cadre de cette thèse. Son évaluation fera l’objet d’études ultérieures sur Turbocel
The present study aims at characterizing the aerodynamic instabilities involved in a centrifugal compressor designed by Turbomeca, by means of numerical simulation. This compressor is composed of inlet guide vanes, a centrifugal impeller, a radial vaned diffuser and axial outlet guide vanes. The test module, named Turbocel, will be delivered to the LMFA in 2016. Thus, the results presented in this manuscript are only based on CFD, although some of them are compared to experimental results obtained by Turbomeca on a close configuration.RANS and URANS simulations are performed for several rotational speeds, using the elsA software.Two methodological key points are to be emphasized:- As the flow in both the impeller and the radial diffuser is transonic at high rotational speed, steady RANS simulations cannot provide a satisfactory description of the physical phenomena taking place. This can be explained by the use of the mixing plane approach which prevents shock waves to extend upstream the rotor-stator interfaces, and which impacts the flow field predicted as well as the prediction of the stable operating range.- Below a given massflow rate, URANS simulations covering the spatial period of the compressor prove that the stage behavior does not obey to the single passage spatio-temporal periodicity anymore. An unstable operating range then appears at all the simulated rotational speeds. At low rotational speed, another stable range is however obtained if the compressor is further throttled’ A new periodicity arises on this massflow range, provided that the stator domain is extended to two neighboring blade passages. Concerning the stability domains of Turbocel, different evolutions are obtained depending on the rotational speed:- At high rotational speed, a low frequency phenomenon starts to develop near the peak efficiency point and its intensity keeps increasing until surge happens.- At low rotational speed, a low frequency signature also appears near the peak efficiency point, but it then vanishes when the compressor is further throttled, so that only a restricted operating range exhibits this instability. It then gives rise to a second stable operating range which can be described numerically, ending with surge itself. The low frequency signature is attributed to the enhancement of a flow recirculation in the inducer which, once fully established, is quasi-steady. The numerical results underline that the source of severe instability in the compressor comes from the vaned diffuser. Depending on the operating point, this component can adopt different behaviors, between which a relative continuity exists, and its performances decrease when the massflow rate decresases. The overall stage performances prove that at high rotational speed, the global stability is driven by the semi-vaneless diffuser and depends on the flow developing in the radial diffuser. Finally, in order to extend the stable operating range of the compressor, a flow control strategy based on boundary layer suction has also been determined in the diffuser. Its impact on the performances of Turbocel will be deeply studied later on
APA, Harvard, Vancouver, ISO, and other styles
20

Crevel, Flore. "Simulation numérique de l'écoulement en régime de pompage dans un compresseur axial multi-étage." Phd thesis, Ecole Centrale de Lyon, 2013. http://tel.archives-ouvertes.fr/tel-00929734.

Full text
Abstract:
Dans le contexte économique et environnemental actuel, la prochaine génération de moteurs d'avion devra offrir opérabilité, compacité et hauts rendements. Les compresseurs demeurent une des pièces critiques de ces moteurs, et leur conception un challenge. À débit réduit, leur plage de fonctionnement est contrainte par la limite de pompage, phénomène hautement instable et dangereux. À ce jour, peu d'études expérimentales sur un compresseur en situation de pompage ont été réalisées, étant donné le danger inhérent pour les installations. Dans ce cadre, la simulation numérique peut apporter des informations sur le développement des instabilités aérodynamiques et aider à la prévision de la limite de pompage. L'objectif du travail présenté dans cette thèse est de mettre en place une méthode afin de simuler numériquement l'entrée en pompage et un cycle complet de l'instabilité avec le code elsA. Le cas test retenu est le compresseur de recherche axial multi-étage CREATE dessiné par Snecma, et étudié expérimentalement par le LMFA. Des études antérieures ont montré le rôle joué par les volumes entourant le compresseur ; l'originalité de cette étude réside donc dans l'inclusion des volumes du banc d'essai dans la simulation du compresseur. Une des difficultés inhérentes à la simulation de ces instabilités est leur temps caractéristique, qui représente plus d'une centaine de rotations de la machine. Le calcul a donc nécessité le recours à une approche massivement parallèle ; environ un million d'heures CPU ont été utilisées pour décrire le cycle. Enfin, compte tenu du retournement de l'écoulement dans le compresseur, les conditions aux limites ont été modifiées pour pouvoir s'adapter aux changements de sens de l'écoulement. La simulation a permis de décrire l'entrée en pompage et un cycle complet de l'instabilité. La comparaison avec les données expérimentales montre que les caractéristiques du cycle sont correctement prédites (phénomènes physiques précurseurs de l'instabilité, durée du cycle..). En parallèle, une étude acoustique a été menée afin de mettre en évidence les modes propres du banc d'essai. L'analyse de ces résultats a notamment montré le rôle de l'acoustique dans le déclenchement du pompage. Les différentes phases du cycle de pompage sont ensuite étudiées, et caractérisées (déclenchement, débit inversé, récupération et recompression). Ce travail a généré une base de données qui permet de mieux comprendre les instabilités qui se développent dans ce type de machine. À terme, ces résultats pourront être utilisés pour élaborer et valider des modélisations du phénomène de pompage moins coûteuses, pouvant intervenir dans un cycle de conception.
APA, Harvard, Vancouver, ISO, and other styles
21

Seyedahmady, Zavieh Seyed Mohamad Amin. "Pseudo Euler-Lagrange and Piecewise Affine Control Applied to Surge and Stall in Axial Compressors." Thesis, 2013. http://spectrum.library.concordia.ca/976980/1/Seyedahmady%2DZavieh_MASc_S2013.pdf.

Full text
Abstract:
This thesis addresses the control of the axial compressor surge and stall phenomena using Pseudo Euler-Lagrange and Piecewise Affine (PWA) controller synthesis techniques. These phenomena are considered as major gas turbine compressor instabilities that may result in failures such as the engine flame-out or severe mechanical damages caused by high blade vibration. The common approach towards the detection of the rotating stall and surge is to install various types of pressure sensors, hot wires and velocity probes. The inception of the rotating stall and surge is recognized by the presence of pressure fluctuation and velocity disturbances in the gas stream that are obtained through sensors. The necessary measure is then taken by applying proper stall and surge stabilizing control actions. The Lyapunov stability of pseudo Euler-Lagrange systems in the literature is extended to include additional nonlinear terms. Although Lyapunov stability theory is considered as the cornerstone of analysis of nonlinear systems, the generalization of this energy-based method poses a drawback that makes obtaining a Lyapunov function a difficult task. Therefore, proposing a method for generating a Lyapunov function for the control synthesis problem of a class of nonlinear systems is of potential importance. A systematic Lyapunov-based controller synthesis technique for a class of second order systems is addressed in this thesis. It is shown, in terms of stability characteristics, that the proposed technique provides a more robust solution to the compressor surge suppression problem as compared to the feedback linearization and the backstepping methods. The second contribution is a proposed new PWA approximation algorithm. Such an approximation is very important in reducing the complexity of nonlinear systems models while keeping the global validity of the models. The proposed method builds upon previous work on piecewise affine (PWA) approximation methods, which can be used to approximate continuous functions of n-variables by a PWA function. Having computed the PWA model of the stall and surge equations, the suppression problem is then solved by using PWA synthesis techniques. The proposed solution is shown to have higher damping characteristics as compared to the backstepping nonlinear method.
APA, Harvard, Vancouver, ISO, and other styles
22

Lee, Shih-Chiang, and 李世強. "An Adaptive Control for Rotating Stall and Surge of Jet Engines - A Function Approximation Approach." Thesis, 2005. http://ndltd.ncl.edu.tw/handle/01437820233718229456.

Full text
Abstract:
碩士
淡江大學
航空太空工程學系
93
Compressor instabilities such as surge and rotating stall are highly unwanted phenomena in operation of jet engines. This is because these two instabilities reduce the performance and cause damage to aircraft engines. In this study, we design a model reference adaptive controller based on the function approximation technique to stabilize these two instabilities. Based upon this scheme, the controller parameters neither are restricted to be constant nor the bounds should be available a priori. The functions of the controller parameters are assumed to be piecewise continuous and satisfy the Dirichlet''s conditions. Furthermore expressing these controller parameters in a finite-term Fourier series, they can be estimated by updating the Fourier coefficients.A Lyapunov stability approach is implemented to provide the update laws for the estimation of those time-invariant coefficients and guarantees the output error convergence.Therefore, the adaptive controller requires less model information and maintains consistent performance for the system when some controller parameters are disturbed.
APA, Harvard, Vancouver, ISO, and other styles
23

Jaiswal, Mayank. "Vaned Diffuser Effect on Centrifugal Compressor Performance and Stall." Thesis, 2022. https://etd.iisc.ac.in/handle/2005/5940.

Full text
Abstract:
A centrifugal compressor is a mechanical device that helps to achieve higher pressure ratios at lower mass flow rates. It is used in many applications such as turbochargers, cruise missiles, and turbojet engines where compact high pressure ratio compressors are required. The performance of a centrifugal compressor is greatly influenced by instabilities like stall and surge, which decrease the operating range and the efficiency of a compressor. These instabilities are effected by the geometry of the vaned diffuser used and hence, the present study aims to see both computationally and experimentally the effect of vaned diffuser parameters like the number of vanes (solidity) and the vane setting angle (α) on the performance and stall of a centrifugal compressor. Computational steady-state study is performed for different vaned diffuser geometries with changes in solidity and vane setting angle to understand their effects on performance. These studies show large variations in the performance curves with changes in surge points, choking mass flow rates and efficiencies. A new rotating centrifugal compressor facility is used for the experimental study. This facility uses a connected turbine driven by compressed air to achieve the required rotation rates, with the compressor RPM being controlled by valves in the turbine inlet and the load on the compressor being controlled by valves at the compressor outlet. This facility enables studies of both performance and stall of centrifugal machines as a function of the vaned diffuser geometry, and preliminary experiments have been done to establish the facility.
APA, Harvard, Vancouver, ISO, and other styles
24

Yeung, Chung-hei (Simon). "Nonlinear control of rotating stall and surge with axisymmetric bleed and air injection on axial flow compressors." Thesis, 1999. https://thesis.library.caltech.edu/785/1/Yeung_ch_1999.pdf.

Full text
Abstract:
The study of compressor instabilities in gas turbine engines has received much attention in recent ears. In particular, rotating stall and surge are major causes of problems ranging from component stress and lifespan reduction to engine explosion. In this thesis, modeling and control of rotating stall and surge using bleed valve and air injection is studied and validated on a low speed, single stage, axial compressor at Caltech. Bleed valve control of stall is achieved only when the compressor characteristic is actuated, due to the fast growth rate of the stall cell compared to the rate limit of the valve. Furthermore, experimental results show that the actuator rate requirement for stall control is reduced by a factor of fourteen via compressor characteristic actuation. Analytical expressions based on low order models (2-3 states) and a high fidelity simulation (37 states) tool are developed to estimate the minimum rate requirement of a bleed valve for control of stall. A comparison of the tools to experiments show a good qualitative agreement, with increasing quantitative accuracy as the complexity of the underlying model increases. Air injection control of stall and surge is also investigated. Simultaneous control of stall and surge is achieved using axisymmetric air injection. Three cases with different injector back pressure are studied. Surge control via binary air injection is achieved in all three cases. Simultaneous stall and surge control is achieved for two of the cases, but is not achieved for the lowest authority case. This is consistent with previous results for control of stall with axisymmetric air injection without a plenum attached. Non—axisymmetric air injection control of stall and surge is also studied. Three existing control algorithms found in literature are modeled and analyzed. A three—state model is obtained for each algorithm. For two cases, conditions for linear stability and bifurcation criticality on control of rotating stall are derived and expressed in terms of implementation—oriented variables such as number of injectors. For the third case, bifurcation criticality conditions are not obtained due to complexity, though linear stability property is derived. A theoretical comparison between the three algorithms is made, via the use of low—order models, to investigate pros and cons of the algorithms in the context of operability. The effects of static distortion on the compressor facility at Caltech is characterized experimentally. Results consistent with literature are obtained. Simulations via a high fidelity model (34 states) are also performed and show good qualitative as well as quantitative agreement to experiments. A non—axisymmetric pulsed air injection controller for stall is shown to be robust to static distortion.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography