Academic literature on the topic 'Stainless steels's etching'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Stainless steels's etching.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Stainless steels's etching":

1

Fedorov, Aleksandr Sergeevich, Andrey Igorevich Zhitenev, Darya Andreevna Strekalovskaya, Aleksandr Aleksandrovich Kur, and Alexey Aleksandrovich Alkhimenko. "Quantitative Description of Duplex Stainless Steels Microstructure Using Selective Etching." Metals 11, no. 11 (October 31, 2021): 1750. http://dx.doi.org/10.3390/met11111750.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The properties of duplex stainless steels (DSSs) depend on the ferrite–austenite ratio, on the content of secondary phases and on the contamination with non-metallic inclusions. To assess the quality of DSSs, it is necessary to use an integrated approach which includes controlling for the volume fraction, the morphology and the distribution of all phases and non-metallic inclusions. Samples of several grades of DSSs were obtained using various heat treatments, such as solution annealing and quenching from 1050 to 1250 °C to obtain different amounts of ferrite and to provoke annealing at 850 °C to precipitate σ-phase. As a result, a metallographic technique of phase analysis in DSSs based on selective etching and subsequent structure parameters estimation according to ASTM E1245 was developed. We demonstrated that the developed method of quantitative analysis based on selective etching and metallographic analysis according to ASTM E1245 allows us to obtaining much more accurate results, compared to the point count method described in ASTM E562 and to the XRD method.
2

Irgolič, Tomaž, David Potočnik, Mirko Ficko, and Peter Kirbiš. "Microstructural characterization of laser cladded AISI 316 stainless steel on a carbon steel substrate." Advanced Technologies & Materials 44, no. 2 (December 20, 2019): 1–5. http://dx.doi.org/10.24867/atm-2019-2-001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Laser engineering net shaping (LENS) is a method of depositing metals into fully shaped parts or for the production of clad layers of noble or wear resistant metals on construction grade steels. In the current work stainless steel was deposited using different combinations of processing parameters such as speed, layer thickness and laser power. The resulting microstructures within the clad layers were then characterized using different etching techniques. Microstructures formed during the SLM process are comprised of columnar grains with a cellular, cellular/dendritic substructure. The exact shape of these grains is difficult to observe with the use of common etching techniques, this is especially true when considering thin cladded layers, with dissimilar etching behavior. For this purpose we compared a variety of different etchants, which attack the ferrite phase or produce a tint effect. Special attention was giving to the delineation of the columnar grains, which under certain processing parameters can exceed the thickness of individual deposited layers.
3

Baghra, Chetan, Aniruddha Kumar, D. B. Sathe, R. B. Bhatt, P. G. Behere, and Mohd Afzal. "Laser etching of austenitic stainless steels for micro-structural evaluation." Optics & Laser Technology 69 (June 2015): 172–79. http://dx.doi.org/10.1016/j.optlastec.2015.01.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

David, Charles, Fiona Ruel, Florent Krajcarz, Clément Boissy, Saghi Saedlou, and Vincent Vignal. "Effect of Grain Size on the Anodic Dissolution of Lean Duplex UNS S32202 Austenitic-Ferritic Stainless Steel." Corrosion 75, no. 12 (September 30, 2019): 1450–60. http://dx.doi.org/10.5006/3218.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The effect of grain size on the anodic dissolution of lean duplex UNS S32202 dual-phase austenitic-ferritic stainless steel was evaluated. Grain coarsening was achieved by heat treatment, and grain size and grain boundary densities determined by automatic image analysis after etching. Potentiodynamic electrochemical testing in acidic chloride medium allowed isolating the anodic dissolution behavior of the crystallographic phases of the material. A relationship between grain boundary density (for grain sizes in the micrometer range) and dissolution rate has been found, showing that reducing grain size enhances active corrosion rates in environments that promote active behavior. This leads to new possibilities of industrial adjustment of the corrosion behavior of duplex stainless steels via grain size control.
5

Fedorov, Aleksandr, Andrey Zhitenev, Darya Strekalovskaya, and Aleksandr Kur. "Quantitative Description of the Microstructure of Duplex Stainless Steels Using Selective Etching." Materials Proceedings 3, no. 1 (March 8, 2021): 4. http://dx.doi.org/10.3390/iec2m-09387.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
: The properties of duplex stainless steels (DSSs) depend on the ferrite–austenite ratio and on the contents of secondary phases. Therefore, it is necessary to control the volume fractions, morphologies, and distribution patterns of all phases. The phases in the samples were identified using thermodynamic modeling and scanning electron microscopy. Investigated specimens were obtained after different heat treatments, such as solution annealing and quenching from 1050 to 1250 °C to obtain different amounts of ferrite and annealing at 850 °C to precipitate the σ-phase. Therefore, a metallographic technique for assessing the phases in DSSs based on selective etching and subsequent analysis according to ASTM E 1245 was developed. It was shown that the developed method of quantitative analysis based on selective etching and metallographic assessment according to ASTM E 1245 allows obtaining much more accurate results compared to the proposed ASTM E 562 method, which correlates well with the XRD quantitative phase analysis.
6

Tolnai, Ferenc, and Balázs Varbai. "Effect of Heat Treatment on the Microstructure of Duplex Stainless Steel Welds." Acta Materialia Transylvanica 3, no. 2 (October 1, 2020): 103–7. http://dx.doi.org/10.33924/amt-2020-02-10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Abstract Duplex stainless steels (DSS) are gaining in popularity due to their characteristic features, excellent mechanical properties, and corrosion resistance. The microstructure of DSSs consists of ferrite up to 50 %, and the rest is built up from austenite. The ferritic microstructure can cause chromium-nitride precipitation because the nitrogen solubility in the ferrite phase is very low below 700 °C. Our research showed that electrochemical etching is an acceptable process for revealing chromium-nitrides. Additionally, our research points out that chromium-nitride acts as a secondary austenite nucleation site.
7

Nakasa, Keijiro, Akihiro Yamamoto, Rongguang Wang, and Tsunetaka Sumomogi. "Formation of Fine Protrusions by Sputter Etching of Martensitic Stainless Steels." Tetsu-to-Hagane 100, no. 5 (2014): 647–55. http://dx.doi.org/10.2355/tetsutohagane.100.647.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Potgieter, J. H., and P. de Visser. "Potentiostatic etching of duplex stainless steels and high chromium white cast irons." Materials Science and Technology 9, no. 4 (April 1993): 336–42. http://dx.doi.org/10.1179/mst.1993.9.4.336.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

NAKASA, Keijiro, Xu YAN, Masashi YOSHIDA, and Tsunetaka SUMOMOGI. "Deformation Characteristics of Fine Protrusions Formed by Sputter-Etching of Stainless Steels." Journal of Solid Mechanics and Materials Engineering 4, no. 7 (2010): 1103–10. http://dx.doi.org/10.1299/jmmp.4.1103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Villalobos Vera, Doris Ivette, and Ivan Mendoza Bravo. "Effect of annealing temperature on the microstructure of hyperduplex stainless steels." Ingeniería Investigación y Tecnología 20, no. 2 (March 1, 2019): 1–6. http://dx.doi.org/10.22201/fi.25940732e.2019.20n2.024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Samples of hyperduplex stainless steels were produced experimentally and exposed to different conventional annealing heat treatments in order to obtain the microstructural balance of 50% ferrite and 50% austenite. To differentiate the ferrite and austenite from any secondary phase, selective etching was used and quantitative metallography was performed to measure the percentage of phases. Results showed that conventional annealing heat treatments promote the transformation from ferrite to sigma phase and secondary austenite, suggesting a higher occurrence of sigma phase in the experimental hyperduplex alloys compared to other duplex alloys due to the superior content of chromium and molybdenum. On the other hand, a balanced microstructure free of secondary phases was accomplished increasing the temperature of the annealing heat treatment, which allowed the transformation of ferrite into austenite during cooling.

Dissertations / Theses on the topic "Stainless steels's etching":

1

Laourine, Feriel. "Texturation de la surface d’aciers inoxydables par plasmas chlorés et compréhension des mécanismes mis en jeu par l’étude de la gravure du fer, du chrome et du nickel massifs." Electronic Thesis or Diss., Université de Lorraine, 2021. http://www.theses.fr/2021LORR0252.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
La structuration à l’échelle submicronique de la surface des aciers inoxydables permet de leur apporter de nouvelles fonctionnalités, par exemple pour des applications tribologiques et optiques. Cette thèse s’inscrit dans le cadre du projet ANR SPOT qui a pour objectif de structurer à l’échelle submicronique la surface d’aciers austénitiques et martensitiques par gravure sèche. Dans ce travail, nous avons développé un procédé plasma avec un mélange de chlore et d’argon pour la gravure des aciers inoxydables. La mise au point de ce procédé a été réalisée en se basant sur l’étude de la gravure des métaux principaux qui composent ces aciers, à savoir, le fer, le chrome et le nickel. En se basant sur des mesures de vitesses de gravure, ainsi que sur des techniques de diagnostics plasmas, nous avons montré que, dans un plasma de chlore et d’argon, le fer est l’élément qui se grave le plus, suivi du chrome puis du nickel. Les échantillons métalliques ainsi que les aciers inoxydables gravés ont été analysés par des techniques de caractérisation de surface notamment des analyses de spectrométrie photoélectronique X (XPS). Nous avons également étudié la variation des vitesses de gravures de ces métaux et de ces aciers en fonction de la température des substrats. Ces études nous ont permis d’établir les mécanismes mis en jeu en cours de la gravure des éléments métalliques. Nous avons montré que, dans un plasma de chlore et d’argon, le fer se grave principalement par un mécanisme chimique qui suit une loi d’Arrhenius. Ce mécanisme serait basé sur la formation de chlorures de fer volatiles. Dans le cas du chrome, la gravure nécessite une assistance ionique afin de désorber les chlorures de chrome non volatiles formés à la surface du matériau. Enfin, pour le nickel, nous avons observé que la vitesse de gravure diminue lorsque la température augmente. Dans ce cas, des observations au microscope électronique à balayage ont permis de mettre en évidence la formation de gonflements riches en chlore. Les analyses XPS de la surface gravée du nickel suggère que ces gonflements sont dus à la formation de chlorures de nickel non volatiles. Ces chlorures seraient à l’origine de la diminution de la vitesse de gravure du nickel dont la pulvérisation se trouverait bloquée par la présence de ces chlorures. La compréhension de ces mécanismes a permis de conclure que, dans un plasma chloré, l’élément bloquant dans la gravure des aciers inoxydables est le nickel
The structuring at sub-micronic scale of the surface of stainless steels allows to provide them with new functionalities, for example for tribological and optical applications. This thesis is part of the ANR SPOT project which aims to structure the surface of austenitic and martensitic steels on a submicronic scale by dry etching. In this work, we have developed a plasma process with a mixture of chlorine and argon for the etching of stainless steels. The development of this process was carried out based on the study of the etching of the main metals that make up these steels, namely, iron, chromium and nickel. Based on measurements of etching speeds, as well as on plasma diagnostic techniques, we have shown that, in a chlorine and argon plasma, iron is the most etched element, followed by chromium, then nickel. The metallic and the stainless steels etched samples were analyzed by surface characterization techniques, in particular X photoelectron spectrometry (XPS) analyzes. We have also studied the variation of the etching speeds of these metals and steels as a function of the temperature of the substrates. These studies have enabled us to establish the mechanisms involved in the etching of metallic elements. We have shown that in a plasma of chlorine and argon, iron is mainly etched by a chemical mechanism which follows an Arrhenius law. This mechanism would be based on the formation of volatile iron chlorides. In the case of chromium, the etching requires ionic assistance in order to desorb the non-volatile chromium chlorides formed on the surface of the material. Finally, for nickel, we observed that the etching speed decreases when the temperature increases. In this case, observations with a scanning electron microscope made it possible to highlight the formation of swellings rich in chlorine. XPS analyzes of the etched surface of nickel suggest that these swellings are due to the formation of non-volatile nickel chlorides. These chlorides would be at the origin of the decrease in the rate of etching of nickel, the sputtering of which would be blocked by the presence of these chlorides. Understanding these mechanisms led to conclude that, in a chlorinated plasma, the blocking element in the etching of stainless steels is nickel
2

Souza, Solange de. "Aparências metalográficas e corrosão seletiva de fases de aços inoxidáveis fundidos austenítico e martensítico atacados potenciostaticamente." Universidade de São Paulo, 1997. http://www.teses.usp.br/teses/disponiveis/88/88131/tde-16092016-111802/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
A corrosão seletiva de fases de dois tipos de aços inoxidáveis fundidos foi analisada, ao serem submetidos a vários valores constantes de potencial, a partir da região catódica para a anódica da curva de polarização. Os aços estudados foram: austenítico (ACI CF-3M) solubilizado e martensítico (ACI CA-6NM) normalizado e revenido. As curvas de polarização foram traçadas potenciodinamicamente, a uma velocidade de varredura de 0,16 m.V.s-1 em solução aerada contendo H2SO4 1M e NaCl 1M, pH 0,35, à temperatura ambiente. Vários valores de potencial foram selecionados, previamente localizados nas regiões catódica, ativa, passiva e transpassiva da curva de polarização. Potenciostaticamente, foram atingidos os valores de potencial selecionados, sendo eles mantidos fixos por 1800 s. Após o ataque potenciostático, as aparências metalográficas dos aços foram verificadas, desde a região catódica até a anódica. Por microssonda eletrônica, foram quantificados os elementos químicos presentes nas fases dos aços. Para melhor avaliar o início de propagação de pite, foi determinada a porcentagem de íons liberados para o eletrólito, após a imposição de valores de potencial críticos de pite predeterminados pelas curvas de polarização, pelas aparências metalográficas e pelas curvas de densidade de corrente em função do tempo.
The selective corrosion of phases present in two types of cast stainless steels was analyzed, when submitled to several constant values of potential, starting from the cathodic to the anodic regions of the polarization curve. The cast stainless steels were: austenitic (ACI CF-3M) solubilized and martensitic (ACI CA-6NM) normalized and tempered. The polarization curves were obtained at a scanning rate of 0.16 mV.s-1 in 1M H2S04 and 1M NaCI solution, pH 0.35 and at room temperature. Several potential values were selected, previously located in the cathodic, active, passive and transpassive regions of the polarization curve. The values of the selected potential were maintained fixed for 1800 s. After the potentiostatic etching, the metallographic appearances of the steels were verified, from the cathodic to the anodic region. Through electronic microprobe analysis, the present chemical elements were quantified in the phases of the steels. For betler evaluating the beginning of pitling propagation in the studied steels, liberated ion percentage for the solution was determined, after the imposition of critic pitting potential values predetermined from the polarization curves, through the metallographic appearances obtained after potentiostatic etching of the samples and the current density curves as a function of time.

Conference papers on the topic "Stainless steels's etching":

1

Ioka, Ikuo, Chiaki Kato, Kiyoshi Kiuchi, and Junpei Nakayama. "Susceptibility of Intergranular Corrosion for Extra High Purity Austenitic Stainless Steel in Nitric Acid." In 16th International Conference on Nuclear Engineering. ASMEDC, 2008. http://dx.doi.org/10.1115/icone16-48776.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Austenitic stainless steels suffer intergranular attack in boiling nitric acid with oxidants. The intergranular corrosion is mainly caused by the segregation of impurities to grain. An extra high purity austenitic stainless steel (EHP alloys) was developed with conducting the new multiple refined melting technique in order to suppress the total harmful impurities less than 100ppm. The basically corrosion behavior of type 310 EHP alloy with respect to nitric acid solution with highly oxidizing ions was investigated. The straining, aging and recrystallizing (SAR) treated type 310 EHP alloy showed superior corrosion resistance for intergranular attack. The segregated boron along the grain boundaries was one of main factor of intergranular corrosion from fission track etching results. The SAR treatment was effective to restrain the intergranular attack for type 310 EHP alloy with B less than 7ppm.
2

Pua, Lee M., and S. O. Rumbold. "Industrial Microchannel Devices: Where Are We Today?" In ASME 2003 1st International Conference on Microchannels and Minichannels. ASMEDC, 2003. http://dx.doi.org/10.1115/icmm2003-1101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Heatric has been involved in the commercial design and manufacturing of “micro/milli” scale heat exchanger core matrices called Printed Circuit Heat Exchangers (PCHEs) since 1985. These core matrices are formed by diffusion bonding together plates into which fluid flow microchannels have (usually) been formed by photo-chemical machining. Complex fluid circuitry is readily implemented with this technique. Diffusion bonding is a ‘solid-state joining’ process creating a bond of parent metal strength and ductility. The complete microchannel heat exchangers are highly compact, typically comprising about one-fifth the size and weight of conventional heat exchangers for the same thermal duty and pressure drops. PCHEs can be constructed out of a range of materials, including austenitic stainless steels suitable for design temperatures up to 800°C, and nickel alloys such as Incoloy 800HT suitable for design temperatures more than 900°C. Single units ranging from a few grams up to 100 tonnes have been manufactured. Currently there are thousands of tons of such microchannel matrix in hundreds of services — many of them arduous duties on offshore oil and gas platforms where the size and weight advantages of microchannel heat exchangers are of obvious benefit. Whilst these matrices are predominantly involved in thermally simple two-fluid heat exchange, albeit at pressures up to 500 bar, PCHEs have also been used for many multi-stream counter-flow heat exchangers. However the field of applications is very varied, including specialised chemicals processing, and PCHEs are even to be found orbiting the Earth in the International Space Station! Due to the inherent flexibility of the etching process, the basic construction may readily be applied to both a wider range, and more complex integration of process unit operations. Chemical reaction, rectification, stripping, mixing, and absorption, as well as boiling and condensation, can be incorporated into compact integrated process modules. Crucially, the resulting degree of compactness has led printed circuit technology to be the enabling technology in certain duties. Techniques for chemical coating onto the surfaces of channels continue to evolve, with applicability both to protective coatings and catalytically active coatings. We will describe a selection of innovative printed circuit technology examples. Alongside the more esoteric, Heatric is actively extending printed circuit technology to adapt to new market opportunities such as nuclear power generation plant and fuel cell systems. These applications perhaps represent two extremes of the both size and process integration, and thus aptly serve to demonstrate the range of industrial use of microchannel devices.

To the bibliography