Journal articles on the topic 'SrFeO2.5'

To see the other types of publications on this topic, follow the link: SrFeO2.5.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'SrFeO2.5.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Répécaud, Pierre-Alexis, Monica Ceretti, Mimoun Aouine, Céline Delwaulle, Emmanuel Nonnet, Werner Paulus, and Helena Kaper. "Brownmillerites CaFeO2.5 and SrFeO2.5 as Catalyst Support for CO Oxidation." Molecules 26, no. 21 (October 23, 2021): 6413. http://dx.doi.org/10.3390/molecules26216413.

Full text
Abstract:
The support material can play an important role in oxidation catalysis, notably for CO oxidation. Here, we study two materials of the Brownmillerite family, CaFeO2.5 and SrFeO2.5, as one example of a stoichiometric phase (CaFeO2.5, CFO) and one existing in different modifications (SrFeO2.75, SrFeO2.875 and SrFeO3, SFO). The two materials are synthesized using two synthesis methods, one bottom-up approach via a complexation route and one top-down method (electric arc fusion), allowing to study the impact of the specific surface area on the oxygen mobility and catalytic performance. CO oxidation on 18O-exchanged materials shows that oxygen from SFO participates in the reaction as soon as the reaction starts, while for CFO, this onset takes place 185 °C after reaction onset. This indicates that the structure of the support material has an impact on the catalytic performance. We report here on significant differences in the catalytic activity linked to long-term stability of CFO and SFO, which is an important parameter not only for possible applications, but equally to better understand the mechanism of the catalytic activity itself.
APA, Harvard, Vancouver, ISO, and other styles
2

Yokota, Takeshi, Shinya Kito, Shotaro Murata, Yasutoshi Tsuboi, and Manabu Gomi. "Relationships between Negative Differential Resistances and Resistance Switching Properties of SrFeO2+x Thin Films with Excess Oxygen." Key Engineering Materials 445 (July 2010): 152–55. http://dx.doi.org/10.4028/www.scientific.net/kem.445.152.

Full text
Abstract:
Resistance random access memory (RRAM) is attractive as a next-generation form of nonvolatile memory. We investigated an electric field-induced resistance change of SrFeO2+x film as a candidate for RRAM material. SrFeO2.5-x film prepared at 300 oC showed hysteresis in its current-voltage curve and distinct pulse-switching properties. On the other hand, the sample prepared below 280 oC showed hysteresis in its current-voltage curve but didn’t show pulse-switching properties. The amount of oxygen in the sample and easiness of oxygen migration play important roles in the resistance-switching properties.
APA, Harvard, Vancouver, ISO, and other styles
3

Huang, Hailin, Liang Zhu, Hui Zhang, Jine Zhang, Furong Han, Jinghua Song, Xiaobing Chen, et al. "Tuning magnetic anisotropy by interfacial engineering in SrFeO2.5/La2/3Ba1/3MnO3/SrFeO2.5 trilayers." Journal of Physics D: Applied Physics 53, no. 44 (August 6, 2020): 445001. http://dx.doi.org/10.1088/1361-6463/aba299.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Schmidt, M., and W. A. Kaczmarek. "Synthesis of SrFeO2.5 from mechanically activated reactants." Journal of Alloys and Compounds 283, no. 1-2 (February 1999): 117–21. http://dx.doi.org/10.1016/s0925-8388(98)00867-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kito, Shinya, Takeshi Yokota, Shotaro Murata, Yasutoshi Tsuboi, and Manabu Gomi. "Electric Field Induced Resistance Change of SrFeO2.5-x Film." e-Journal of Surface Science and Nanotechnology 8 (2010): 346–48. http://dx.doi.org/10.1380/ejssnt.2010.346.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Nallagatla, Venkata Raveendra, and Chang Uk Jung. "Resistive switching behavior in epitaxial brownmillerite SrFeO2.5/Nb:SrTiO3 heterojunction." Applied Physics Letters 117, no. 14 (October 5, 2020): 143503. http://dx.doi.org/10.1063/5.0015151.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Khare, Amit, Jaekwang Lee, Jaeseoung Park, Gi-Yeop Kim, Si-Young Choi, Takayoshi Katase, Seulki Roh, et al. "Directing Oxygen Vacancy Channels in SrFeO2.5 Epitaxial Thin Films." ACS Applied Materials & Interfaces 10, no. 5 (January 23, 2018): 4831–37. http://dx.doi.org/10.1021/acsami.7b17377.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Heo, Yooun, Daisuke Kan, and Yuichi Shimakawa. "Nanoscale oxygen ion dynamics in SrFeO2.5+δ epitaxial thin films." Applied Physics Letters 113, no. 22 (November 26, 2018): 221904. http://dx.doi.org/10.1063/1.5046749.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Korotin, M. A., V. M. Zainullina, and V. L. Kozhevnikov. "Electronic structure of the high-temperature cubic phase of SrFeO2.5." JETP Letters 102, no. 5 (September 2015): 307–11. http://dx.doi.org/10.1134/s0021364015170063.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Shi, Peng, Dong Wang, Tongliang Yu, Ruofei Xing, Zhenfa Wu, Shishen Yan, Lin Wei, et al. "Solid-state electrolyte gated synaptic transistor based on SrFeO2.5 film channel." Materials & Design 210 (November 2021): 110022. http://dx.doi.org/10.1016/j.matdes.2021.110022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Nemudry, A., M. Weiss, I. Gainutdinov, V. Boldyrev, and R. Schöllhorn. "Room Temperature Electrochemical Redox Reactions of the Defect Perovskite SrFeO2.5+x." Chemistry of Materials 10, no. 9 (September 1998): 2403–11. http://dx.doi.org/10.1021/cm980090v.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Hirai, Kei, Daisuke Kan, Ryotaro Aso, Noriya Ichikawa, Hiroki Kurata, and Yuichi Shimakawa. "Anisotropic in-plane lattice strain relaxation in brownmillerite SrFeO2.5 epitaxial thin films." Journal of Applied Physics 114, no. 5 (August 7, 2013): 053514. http://dx.doi.org/10.1063/1.4817505.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Saleem, Muhammad Shahrukh, Bin Cui, Cheng Song, Yiming Sun, Youdi Gu, Ruiqi Zhang, Muhammad Umer Fayaz, et al. "Electric Field Control of Phase Transition and Tunable Resistive Switching in SrFeO2.5." ACS Applied Materials & Interfaces 11, no. 6 (January 21, 2019): 6581–88. http://dx.doi.org/10.1021/acsami.8b18251.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

NEMUDRY, A., M. WEISS, I. GAINUTDINOV, V. BOLDYREV, and R. SCHOELLHORN. "ChemInform Abstract: Room Temperature Electrochemical Redox Reactions of the Defect Perovskite SrFeO2.5+x." ChemInform 29, no. 47 (June 18, 2010): no. http://dx.doi.org/10.1002/chin.199847011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Wang, Dashan, Xiaomei Du, James J. Tunney, Michael L. Post, and Raynald Gauvin. "TEM Investigation of Interfacial Reactions Between SrFeO2.5+x Thin Films and Silicon, Sapphire Substrates." Microscopy and Microanalysis 10, S02 (August 2004): 572–73. http://dx.doi.org/10.1017/s1431927604884940.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Haavik, Camilla, Egil Bakken, Truls Norby, Svein Stølen, Tooru Atake, and Takeo Tojo. "Heat capacity of SrFeO3–δ; δ = 0.50, 0.25 and 0.15 – configurational entropy of structural entities in grossly non-stoichiometric oxidesElectronic supplementary information (ESI) available: the experimental molar heat capacities of SrFeO2.54, SrFeO2.725 and SrFeO2.833 at sub-ambient temperatures and the corresponding data for SrFeO2.50, SrFeO2.74, SrFeO2.82, SrFeO2.833 and SrFeO2.85 at super-ambient temperatures. See http://www.rsc.org/suppdata/dt/b2/b209236k/." Dalton Transactions, no. 3 (December 24, 2002): 361–68. http://dx.doi.org/10.1039/b209236k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Zhu, Liang, Lei Gao, Lifen Wang, Zhi Xu, Jianlin Wang, Xiaomin Li, Lei Liao, et al. "Atomic-Scale Observation of Structure Transition from Brownmillerite to Infinite Layer in SrFeO2.5 Thin Films." Chemistry of Materials 33, no. 9 (April 26, 2021): 3113–20. http://dx.doi.org/10.1021/acs.chemmater.0c04683.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Tanasescu, S. "Thermodynamic properties of the SrFeO2.5 and SrMnO2.5 brownmillerite-like compounds by means of EMF-measurements." Solid State Ionics 134, no. 3-4 (October 2, 2000): 265–70. http://dx.doi.org/10.1016/s0167-2738(00)00731-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Shimakawa, Yuichi, Masato Goto, and Midori Amano Patino. "Topotactic Oxygen Release and Incorporation in AFeO3 with Fe4+, AFeO2.5 with Fe3+, and AFeO2 with Fe2+ (A = Ca and Sr): Dedicated to the Occasion of the 100th Birthday of Prof. John B. Goodenough." ECS Journal of Solid State Science and Technology 11, no. 4 (April 1, 2022): 043004. http://dx.doi.org/10.1149/2162-8777/ac62ee.

Full text
Abstract:
Oxygen contents in perovskite-structure Fe oxides can change in accordance with the valence states of Fe, i.e., AFeO3 with Fe4+, AFeO2.5 with Fe3+, and AFeO2 with Fe2+ (A = Ca and Sr). AFeO3 has a fully oxygenated simple-perovskite structure, and the unusual high valence Fe4+ in AFeO3 is easily reduced to relatively stable Fe3+ by releasing oxygen. On the other hand, AFeO2 has an infinite-layer structure, and the unusual square-planar coordination of Fe2+ in AFeO2 changes to tetrahedral and octahedral Fe3+ by incorporating oxygen. Sample weight measurements by thermogravimetry and corresponding phase analysis with synchrotron X-ray diffraction data revealed that the difference in the A-site cation strongly influenced the oxygen release and incorporation behaviors. In ambient air, topotactic changes of AFe4+O3 → AFe3+O2.5 ← AFe2+O2 for both A = Ca and Sr can occur by releasing and incorporating oxygen in the perovskite structure frameworks. Nonstoichiometric phases with oxygen vacancies are present between SrFeO3 and SrFeO2.5.
APA, Harvard, Vancouver, ISO, and other styles
20

Zainullina, V. M., I. A. Leonidov, and V. L. Kozhevnikov. "Specific features of the formation of oxygen defects in the SrFeO2.5 ferrate with a brownmillerite structure." Physics of the Solid State 44, no. 11 (November 2002): 2063–66. http://dx.doi.org/10.1134/1.1521456.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Xing, Yao Long, Bumsu Park, Zhen Wang, Kyeong Tae Kang, Jinsol Seo, Jong Chan Kim, Hu Young Jeong, Woo Seok Choi, and Sang Ho Oh. "In situ Negative Cs HRTEM Imaging of Topotactic Phase Transformation from Perovskite SrFeO3 to Brownmillerite SrFeO2.5." Microscopy and Microanalysis 25, S2 (August 2019): 1482–83. http://dx.doi.org/10.1017/s1431927619008146.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Maity, Avishek, Rajesh Dutta, Bartosz Penkala, Monica Ceretti, Angélique Letrouit-Lebranchu, Dmitry Chernyshov, and Werner Paulus. "Solid-state reactivity explored in situ by synchrotron radiation on single crystals of SrFeO2.5 during electrochemical oxygen intercalation." Acta Crystallographica Section A Foundations and Advances 72, a1 (August 28, 2016): s421. http://dx.doi.org/10.1107/s2053273316093840.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Heo, Yooun, Daisuke Kan, and Yuichi Shimakawa. "Publisher's Note: “Nanoscale oxygen ion dynamics in SrFeO2.5+δ epitaxial thin films” [Appl. Phys. Lett. 113, 221904 (2018)]." Applied Physics Letters 114, no. 7 (February 18, 2019): 079901. http://dx.doi.org/10.1063/1.5092959.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Nallagatla, Venkata Raveendra, Jihun Kim, Kyoungjun Lee, Seung Chul Chae, Cheol Seong Hwang, and Chang Uk Jung. "Complementary Resistive Switching and Synaptic-Like Memory Behavior in an Epitaxial SrFeO2.5 Thin Film through Oriented Oxygen-Vacancy Channels." ACS Applied Materials & Interfaces 12, no. 37 (August 17, 2020): 41740–48. http://dx.doi.org/10.1021/acsami.0c10910.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Piovano, Andrea, Giovanni Agostini, Anatoly I. Frenkel, Tanguy Bertier, Carmelo Prestipino, Monica Ceretti, Werner Paulus, and Carlo Lamberti. "Time Resolved in Situ XAFS Study of the Electrochemical Oxygen Intercalation in SrFeO2.5 Brownmillerite Structure: Comparison with the Homologous SrCoO2.5 System." Journal of Physical Chemistry C 115, no. 4 (December 8, 2010): 1311–22. http://dx.doi.org/10.1021/jp107173b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Blakely, Colin K., Joshua D. Davis, Shaun R. Bruno, Shannon K. Kraemer, Mengze Zhu, Xianglin Ke, Wenli Bi, E. Ercan Alp, and Viktor V. Poltavets. "Multistep synthesis of the SrFeO2F perovskite oxyfluoride via the SrFeO2 infinite-layer intermediate." Journal of Fluorine Chemistry 159 (March 2014): 8–14. http://dx.doi.org/10.1016/j.jfluchem.2013.12.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Zhao, Y. M., X. J. Yang, Y. F. Zheng, D. L. Li, and S. Y. Chen. "Large magnetoresistance in SrFeO2.95." Solid State Communications 115, no. 7 (July 2000): 365–68. http://dx.doi.org/10.1016/s0038-1098(00)00187-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Zhao, Y. M., P. F. Zhou, X. J. Yang, G. M. Qiu, and L. Ping. "Magnetotransport properties of SrFeO2.95 perovskite." Solid State Communications 120, no. 7-8 (October 2001): 283–87. http://dx.doi.org/10.1016/s0038-1098(01)00389-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Hsieh, Shang Hsien, Mukta Vinayak Limaye, Shashi Bhushan Singh, Yu Cheng Shao, Yu Fu Wang, Chang Hung Yao, Chao Hung Du, et al. "X-ray Absorption Spectroscopic studies of Single Crystal SrFeO3-δ." Acta Crystallographica Section A Foundations and Advances 70, a1 (August 5, 2014): C1527. http://dx.doi.org/10.1107/s2053273314084721.

Full text
Abstract:
We have prepared a high quality single crystal of SrFeO3-δ (δ ~ 0.14) by the floating-zone method to study the electronic and atomic structures using temperature-dependent x-ray absorption near-edge structure (XANES), x-ray linear dichroism (XLD), and extended x-ray absorption fine structure (EXAFS) at the O K-edge, Fe L3,2- and K-edge. Resistivity measurements indicate that the SrFeO2.86 shows an anisotropic behavior, and thermal hysteresis behavior between 70 K and 40 K. The temperature dependent Fe K-edge EXAFS studies shows that the Fe-O bond length changes in ab-plane below transition temperature. The XLD results illustrate that as temperature is reduced from room temperature to below the transition temperature, the preferential occupancy of Fe majority-spin eg orbitals changes from the 3d3z2-r2 to 3dx2-y2, but restore to 3dx2-y2 after thermal hysteresis. Experimental findings suggest that the charge transfer during thermal hysteresis is induced by lattice distortions of the FeO6 octahedra in SrFeO2.86.
APA, Harvard, Vancouver, ISO, and other styles
30

Bakken, Egil, Neil L. Allan, T. Hugh K. Barron, Chris E. Mohn, Ilian T. Todorov, and Svein Stølen. "Order–disorder in grossly non-stoichiometric SrFeO2.50— a simulation study." Phys. Chem. Chem. Phys. 5, no. 11 (2003): 2237–43. http://dx.doi.org/10.1039/b300137g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Berry, F. J., R. Heap, Ö. Helgason, E. A. Moore, S. Shim, P. R. Slater, and M. F. Thomas. "Magnetic order in perovskite-related SrFeO2F." Journal of Physics: Condensed Matter 20, no. 21 (April 18, 2008): 215207. http://dx.doi.org/10.1088/0953-8984/20/21/215207.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Xu, Haohang, Qingyuan Liu, Xuebo Zhou, Lei Tao, Mingxue Huo, Xianjie Wang, and Yu Sui. "Anisotropic transport properties of tetragonal SrFeO2.84 single crystal." Solid State Communications 318 (September 2020): 113992. http://dx.doi.org/10.1016/j.ssc.2020.113992.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Peles, Amra. "The effect of SrFeO25 native point defects on its electrical properties: First principles investigations." Computational Materials Science 202 (February 2022): 110922. http://dx.doi.org/10.1016/j.commatsci.2021.110922.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Kalanda, N. A. "Thermally stimulated oxygen desorption in Sr2FeMoO6-δ." Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering 21, no. 1 (June 22, 2019): 48–53. http://dx.doi.org/10.17073/1609-3577-2018-1-48-53.

Full text
Abstract:
Polycrystalline Sr2FeMoO6-δ specimens have been obtained by solid state synthesis from partially reduced SrFeO2.52 and SrMoO4 precursors. It has been shown that during oxygen desorption from the Sr2FeMoO6-δ compound in polythermal mode in a 5%H2/Ar gas flow at different heating rates, the oxygen index 6–δ depends on the heating rate and does not achieve saturation at T = 1420 K. Oxygen diffusion activation energy calculation using the Merzhanov method has shown that at an early stage of oxygen desorption from the Sr2FeMoO6-δ compound the oxygen diffusion activation energy is the lowest Еа = 76.7 kJ/mole at δ = 0.005. With an increase in the concentration of oxygen vacancies, the oxygen diffusion activation energy grows to Еа = 156.3 kJ/mole at δ = 0.06. It has been found that the dδ/dt = f(Т) AND dδ/dt = f(δ) functions have a typical break which allows one to divide oxygen desorption in two process stages. It is hypothesized that an increase in the concentration of oxygen vacancies V ·· leads to their mutual interaction followed by ordering in the Fe/Mo–O1 crystallographic planes with the formation of various types of associations.
APA, Harvard, Vancouver, ISO, and other styles
35

Huang, Wen Lai, and Qingshan Zhu. "Structures and Energetics of SrFeO2.875 Calculated within the GGA + U Framework." Journal of Chemical Theory and Computation 5, no. 10 (September 28, 2009): 2787–97. http://dx.doi.org/10.1021/ct900405j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Kikuchi, Masayoshi, Tomoko Kagayama, Katsuya Shimizu, and Hiroshi Kageyama. "Electrical resistance of SrFeO2 at ultra high pressure." Journal of Physics: Conference Series 592 (March 18, 2015): 012041. http://dx.doi.org/10.1088/1742-6596/592/1/012041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Köhler, Jürgen. "Quadratisch-planar koordiniertes Eisen im Schicht-Ferrat(II) SrFeO2." Angewandte Chemie 120, no. 24 (June 2, 2008): 4544–46. http://dx.doi.org/10.1002/ange.200800855.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Matsumoto, Kazuya, Mitsutaka Haruta, Masanori Kawai, Aya Sakaiguchi, Noriya Ichikawa, Hiroki Kurata, and Yuichi Shimakawa. "Artificial Superlattice Thin Film of Infinite-Layer Structure [CaFeO2]/[SrFeO2]." Applied Physics Express 3, no. 10 (October 8, 2010): 105601. http://dx.doi.org/10.1143/apex.3.105601.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Köhler, Jürgen. "Square-Planar Coordinated Iron in the Layered Oxoferrate(II) SrFeO2." Angewandte Chemie International Edition 47, no. 24 (June 2, 2008): 4470–72. http://dx.doi.org/10.1002/anie.200800855.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Inoue, Satoru, Masanori Kawai, Yuichi Shimakawa, Masaichiro Mizumaki, Naomi Kawamura, Takashi Watanabe, Yoshihiro Tsujimoto, Hiroshi Kageyama, and Kazuyoshi Yoshimura. "Single-crystal epitaxial thin films of SrFeO2 with FeO2 “infinite layers”." Applied Physics Letters 92, no. 16 (April 21, 2008): 161911. http://dx.doi.org/10.1063/1.2913164.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Gupta, M. K., R. Mittal, S. L. Chaplot, Cédric Tassel, Hiroshi Kageyama, K. Tomiyasu, and Jon Taylor. "Phonons and stability of infinite-layer iron oxides SrFeO2 and CaFeO2." Solid State Communications 241 (September 2016): 43–55. http://dx.doi.org/10.1016/j.ssc.2016.05.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

蔡, 瑞. "First-Principle Study of Electronic Structure and Magnetism of Doped SrFeO2." Applied Physics 06, no. 06 (2016): 119–25. http://dx.doi.org/10.12677/app.2016.66017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Thompson, Corey M., Colin K. Blakely, Roxana Flacau, John E. Greedan, and Viktor V. Poltavets. "Structural and magnetic behavior of the cubic oxyfluoride SrFeO2F studied by neutron diffraction." Journal of Solid State Chemistry 219 (November 2014): 173–78. http://dx.doi.org/10.1016/j.jssc.2014.07.019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Fournes, L., Y. Potin, J. C. Grenier, and P. Hagenmuller. "Ensemble pour spectrométrie Môssbauer haute température in situ. Evolution thermique des paramètres Môssbauer de SrFeO2,50." Revue de Physique Appliquée 24, no. 4 (1989): 463–68. http://dx.doi.org/10.1051/rphysap:01989002404046300.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Blakely, Colin K., Joshua D. Davis, Shaun R. Bruno, Shannon K. Kraemer, Mengze Zhu, Xianglin Ke, Wenli Bi, E. Ercan Alp, and Viktor V. Poltavets. "ChemInform Abstract: Multistep Synthesis of the SrFeO2F Perovskite Oxyfluoride via the SrFeO2Infinite-Layer Intermediate." ChemInform 45, no. 21 (May 8, 2014): no. http://dx.doi.org/10.1002/chin.201421018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Kawakami, Takateru, Takafumi Yamamoto, Kanami Yata, Minoru Ishii, Yoshitaka Watanabe, Masaichiro Mizumaki, Naomi Kawamura, et al. "Effect of Fe-site Substitution on Pressure-induced Spin Transition in SrFeO2." Journal of the Physical Society of Japan 86, no. 12 (December 15, 2017): 124716. http://dx.doi.org/10.7566/jpsj.86.124716.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Rahman, Mavlanjan, Yao-zhuang Nie, and Guang-hua Guo. "Electronic Structures and Magnetism of SrFeO2 under Pressure: A First-Principles Study." Inorganic Chemistry 52, no. 21 (October 23, 2013): 12529–34. http://dx.doi.org/10.1021/ic401615r.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Seinberg, Liis, Takafumi Yamamoto, Cédric Tassel, Yoji Kobayashi, Naoaki Hayashi, Atsushi Kitada, Yuji Sumida, et al. "Fe-Site Substitution Effect on the Structural and Magnetic Properties in SrFeO2." Inorganic Chemistry 50, no. 9 (May 2, 2011): 3988–95. http://dx.doi.org/10.1021/ic102467u.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Huang, Wen Lai. "First-principles calculations on the energetics, electronic structures and magnetism of SrFeO2." Journal of Computational Chemistry 30, no. 16 (December 2009): 2684–93. http://dx.doi.org/10.1002/jcc.21283.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Kalanda, Nikolay A. "Thermally stimulated oxygen desorption in Sr2FeMoO6-δ." Modern Electronic Materials 4, no. 1 (May 1, 2018): 1–5. http://dx.doi.org/10.3897/j.moem.4.1.33270.

Full text
Abstract:
Polycrystalline Sr2FeMoO6-δ specimens have been obtained by solid state synthesis from partially reduced SrFeO2,52 and SrMoO4 precursors. It has been shown that during oxygen desorption from the Sr2FeMoO6-δ compound in polythermal mode in a 5%H2/Ar gas flow at different heating rates, the oxygen index 6-δ depends on the heating rate and does not achieve saturation at T = 1420 K. Oxygen diffusion activation energy calculation using the Merzhanov method has shown that at an early stage of oxygen desorption from the Sr2FeMoO6-δ compound the oxygen diffusion activation energy is the lowest Еа = 76.7 kJ/mole at δ = 0.005. With an increase in the concentration of oxygen vacancies, the oxygen diffusion activation energy grows to Еа = 156.3 kJ/mole at δ = 0.06. It has been found that the dδ/dt = f (Т) and dδ/dt = f (δ) functions have a typical break which allows one to divide oxygen desorption in two process stages. It is hypothesized that an increase in the concentration of oxygen vacancies Vo•• leads to their mutual interaction followed by ordering in the Fe/Mo-01 crystallographic planes with the formation of various types of associations.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography