Academic literature on the topic 'SrFeO'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'SrFeO.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "SrFeO"

1

Katayama, T., A. Chikamatsu, Y. Hirose, R. Takagi, H. Kamisaka, T. Fukumura, and T. Hasegawa. "Topotactic fluorination of strontium iron oxide thin films using polyvinylidene fluoride." J. Mater. Chem. C 2, no. 27 (2014): 5350–56. http://dx.doi.org/10.1039/c4tc00558a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Xu, Kun, Youdi Gu, Cheng Song, Xiaoyan Zhong, and Jing Zhu. "Atomic insight into spin, charge and lattice modulations at SrFeO3−x/SrTiO3 interfaces." Nanoscale 13, no. 12 (2021): 6066–75. http://dx.doi.org/10.1039/d0nr07697j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Krzystowczyk, Emily, Xijun Wang, Jian Dou, Vasudev Haribal, and Fanxing Li. "Substituted SrFeO3 as robust oxygen sorbents for thermochemical air separation: correlating redox performance with compositional and structural properties." Physical Chemistry Chemical Physics 22, no. 16 (2020): 8924–32. http://dx.doi.org/10.1039/d0cp00275e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Heifets, Eugene, Eugene A. Kotomin, Alexander A. Bagaturyants, and Joachim Maier. "Thermodynamic stability of non-stoichiometric SrFeO3−δ: a hybrid DFT study." Physical Chemistry Chemical Physics 21, no. 7 (2019): 3918–31. http://dx.doi.org/10.1039/c8cp07117a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bulfin, B., J. Vieten, S. Richter, J. M. Naik, G. R. Patzke, M. Roeb, C. Sattler, and A. Steinfeld. "Isothermal relaxation kinetics for the reduction and oxidation of SrFeO3 based perovskites." Physical Chemistry Chemical Physics 22, no. 4 (2020): 2466–74. http://dx.doi.org/10.1039/c9cp05771d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chikamatsu, Akira, Yusuke Suzuki, Takahiro Maruyama, Tomoya Onozuka, Tsukasa Katayama, Daisuke Ogawa, and Tetsuya Hasegawa. "Selective fluorination of perovskite iron oxide/ruthenium oxide heterostructures via a topotactic reaction." Chemical Communications 55, no. 17 (2019): 2437–40. http://dx.doi.org/10.1039/c8cc09443h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Matsubayashi, Yasuhito, Junichi Nomoto, Iwao Yamaguchi, and Tetsuo Tsuchiya. "Control of the oxygen deficiency and work function of SrFeO3−δ thin films by excimer laser-assisted metal organic decomposition." CrystEngComm 22, no. 28 (2020): 4685–91. http://dx.doi.org/10.1039/d0ce00442a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

dos Santos-Gómez, L., J. M. Porras-Vázquez, E. R. Losilla, and D. Marrero-López. "Ti-doped SrFeO3 nanostructured electrodes for symmetric solid oxide fuel cells." RSC Advances 5, no. 130 (2015): 107889–95. http://dx.doi.org/10.1039/c5ra23771h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Luongo, Giancarlo, Felix Donat, and Christoph R. Müller. "Structural and thermodynamic study of Ca A- or Co B-site substituted SrFeO3−δ perovskites for low temperature chemical looping applications." Physical Chemistry Chemical Physics 22, no. 17 (2020): 9272–82. http://dx.doi.org/10.1039/d0cp01049a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yao, Shukai, Pilsun Yoo, and Peilin Liao. "A computational study of hydrogen doping induced metal-to-insulator transition in CaFeO3, SrFeO3, BaFeO3 and SmMnO3." Physical Chemistry Chemical Physics 21, no. 45 (2019): 25397–405. http://dx.doi.org/10.1039/c9cp04669k.

Full text
Abstract:
First principles density functional theory calculations were performed to identify transition metal perovskites CaFeO3, SrFeO3, BaFeO3 and SmMnO3 as promising candidates with large band gap opening upon hydrogen doping.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "SrFeO"

1

Kleveland, Kjersti. "Preparation, microstructure and mechanical properties of LaCoO₃ and SrFeO₃ based ceramics." Doctoral thesis, Norwegian University of Science and Technology, Department of Chemistry, 2000. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-1931.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Glenne, Rita. "Preparation and Transport Properties of SrFeO. Based Materials with controlled Microstructure." Doctoral thesis, Norwegian University of Science and Technology, Department of Chemistry, 2001. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-463.

Full text
Abstract:

This work consists of mainly two parts. The first part deals with the sintering behaviour and the microstructural stability of SrFe1-xCrxO3-δ, and the second with transport properties of membranes of the same compositions. The most important experimental tools have been dilatometry and oxygen permeability measurements. Supplementary tools were x-ray diffraction analysis (XRD), scanning electron microscope (SEM) and particle size distribution analysis.

APA, Harvard, Vancouver, ISO, and other styles
3

Schmidt, Marek Wojciech, and Marek Schmidt@rl ac uk. "Phase formation and structural transformation of strontium ferrite SrFeOx." The Australian National University. Research School of Physical Sciences and Engineering, 2001. http://thesis.anu.edu.au./public/adt-ANU20020708.190055.

Full text
Abstract:
Non-stoichiometric strontium iron oxide is described by an abbreviated formula SrFeOx (2.5 ≤ x ≤ 3.0) exhibits a variety of interesting physical and chemical properties over a broad range of temperatures and in different gaseous environments. The oxide contains a mixture of iron in the trivalent and the rare tetravalent state. The material at elevated temperature is a mixed oxygen conductor and it, or its derivatives,can have practical applications in oxygen conducting devices such as pressure driven oxygen generators, partial oxidation reactors in electrodes for solid oxide fuel cells (SOFC). ¶ This thesis examines the behaviour of the material at ambient and elevated temperatures using a broad spectrum of solid state experimental techniques such as: x-ray and neutron powder diffraction,thermogravimetric and calorimetric methods,scanning electron microscopy and Mossbauer spectroscopy. Changes in the oxide were induced using conventional thermal treatment in various atmospheres as well as mechanical energy (ball milling). The first experimental chapter examines the formation of the ferrite from a mixture of reactants.It describes the chemical reactions and phase transitions that lead to the formation of the oxide. Ball milling of the reactants prior to annealing was found to eliminate transient phases from the reaction route and to increase the kinetics of the reaction at lower temperatures. Examination of the thermodynamics of iron oxide (hematite) used for the reactions led to a new route of synthesis of the ferrite frommagnetite and strontium carbonate.This chapter also explores the possibility of synthesis of the material at room temperature using ball milling. ¶ The ferrite strongly interacts with the gas phase so its behaviour was studied under different pressures of oxygen and in carbon dioxide.The changes in ferrite composition have an equilibrium character and depend on temperature and oxygen concentration in the atmosphere. Variations of the oxygen content x were described as a function of temperature and oxygen partial pressure, the results were used to plot an equilibrium composition diagram. The heat of oxidation was also measured as a function of temperature and oxygen partial pressure. ¶ Interaction of the ferrite with carbon dioxide below a critical temperature causes decomposition of the material to strontium carbonate and SrFe12O19 . The critical temperature depends on the partial pressure of CO2 and above the critical temperature the carbonate and SrFe12O19 are converted back into the ferrite.The resulting SrFe12O19 is very resistant towards carbonation and the thermal carbonation reaction does not lead to a complete decomposition of SrFeOx to hematite and strontium carbonate. ¶ The thermally induced oxidation and carbonation reactions cease at room temperature due to sluggish kinetics however,they can be carried out at ambient temperature using ball milling.The reaction routes for these processes are different from the thermal routes.The mechanical oxidation induces two or more concurrent reactions which lead to samples containing two or more phases. The mechanical carbonation on the other hand produces an unknown metastable iron carbonate and leads a complete decomposition of the ferrite to strontiumcarbonate and hematite. ¶ Thermally and mechanically oxidized samples were studied using Mossbauer spectroscopy. The author proposes a new interpretation of the Sr4Fe4O11 (x=2.75) and Sr8Fe8O23 (x=2.875)spectra.The interpretation is based on the chemistry of the compounds and provides a simpler explanation of the observed absorption lines.The Mossbauer results froma range of compositions revealed the roomtemperature phase behaviour of the ferrite also examined using x-ray diffraction. ¶ The high-temperature crystal structure of the ferrite was examined using neutron powder diffraction.The measurements were done at temperatures up to 1273K in argon and air atmospheres.The former atmosphere protects Sr2Fe2O5 (x=2.5) against oxidation and the measurements in air allowed variation of the composition of the oxide in the range 2.56 ≤ x ≤ 2.81. Sr2Fe2O5 is an antiferromagnet and undergoes phase transitions to the paramagnetic state at 692K and from the orthorhombic to the cubic structure around 1140K.The oxidized formof the ferrite also undergoes a transition to the high-temperature cubic form.The author proposes a new structural model for the cubic phase based on a unit cell with the Fm3c symmetry. The new model allows a description of the high-temperature cubic form of the ferrite as a solid solution of the composition end members.The results were used to draw a phase diagramfor the SrFeOx system. ¶ The last chapter summarizes the findings and suggests directions for further research.
APA, Harvard, Vancouver, ISO, and other styles
4

Rizki, Youssef. "Structure et propriétés physiques d’oxydes de fer à valence mixte SrFe1-x(Sc,Sn)xO3-d." Rouen, 2011. http://www.theses.fr/2011ROUES048.

Full text
Abstract:
Ce travail de thèse porte sur les relations entre structure et propriétés physiques de nouveaux oxydes de métaux de transition à valence mixte de type SrFe1-x(Sc,Sn)xO3-d (M = Sc, Sn). La caractérisation structurale a été effectuée par diffraction X et par microscopie électronique en transmission. La spectrométrie Mössbauer a permis d'accéder aux degrés d'oxydation du fer et à son environnement local. Les propriétés physiques des composés ont été caractérisées par mesures de résistivité avec ou sans champ magnétique appliqué, mesures de susceptibilité magnétique, mesures d'aimantation en fonction du champ magnétique ou de la température. La substitution du fer par un ion trivalent non magnétique tel que le Sc3+ conduit, comme attendu, à une diminution de la teneur en oxygène sans affecter la structure cristalline du composé. Cependant, la substitution est limitée et le composé limite SrFe0,5Sc0,5O2,5 peut être également synthétisé dans une structure chimiquement ordonnée de type brownmillerite. Bien que les propriétés de transport et les propriétés magnétiques soient fortement affectées par une telle substitution, la magnétorésistivité n'est pas significativement modifiée. La substitution du fer par un ion tétravalent tel que le Sn4+ ne permet pas de maintenir constante la teneur en oxygène. Celle-ci augmente avec le taux de substitution. La substitution n'est pas limitée, et un changement de structure est observé pour un taux de substitution supérieur à 0,5 : la structure de la pérovskite n'est plus cubique mais orthothrombique. Toutes les propriétés physiques étudiées (transport, magnétisme, magnétorésistivité) sont significativement influencées par la substitution
In this thesis, the relationship between structure and physical properties of new transition-metal oxides of the SrFe1-x(Sc,Sn)xO3-d (M = Sc, Sn) type has been investigated. The structural characterization was performed by X-ray diffraction and transmission electron microscopy. Mössbauer spectrometry has been used to investigate both the oxidation state of iron and its local environment. The physical properties of the compounds were characterized by resistivity measurements with and without applied magnetic field, magnetic susceptibility measurements, magnetization measurements as a function of magnetic field or temperature. The substitution of iron by a nonmagnetic trivalent ion such as Sc3+ leads to a decrease in the oxygen content without affecting the crystalline structure of the compound. However, the substitution is limited and the SrFe0,5Sc0,5O2,5 limit compound can also be chemically synthesized in a brownmillerite ordered structure. Although transport and magnetic properties are strongly affected by such substitution, magnetoresistivity is not significantly altered. The substitution of iron by a tetravalent ion such as Sn4+ cannot maintain constant oxygen content, which increases with the substitution rate. Substitution is not limited, and a structural change is observed for a substitution rate higher than 0. 5. All the physical properties investigated (transport, magnetism, magnetoresistivity) are significantly influenced by the substitution
APA, Harvard, Vancouver, ISO, and other styles
5

Hernandez, José Luis Valenzuela. "Obtenção e caracterização de filmes de perovskitas do tipo SrFeO3≠” para uso em spintrônica baseada em seleção aumentada de spins." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2018. http://hdl.handle.net/10183/184662.

Full text
Abstract:
Inspirados por resultados que mostram grande capacidade de seleção de spins em sistemas quirais, produzimos, principalmente em forma de filmes, óxidos tipo perovskita SrFeO3− com conhecida estrutura magnética helicoidal. Foi usando método químico a partir de Fe(NO3)3.9H2O, SrCO3 e ácido cítrico como reagentes precursores. Devido à complexidade de produção, a rota de fabricação foi detalhadamente explorada e descrita. Medidas de transporte eletrônico foram feitas aplicando correntes com frequências controladas para excitar o filme depositado. Foram encontrados dois mecanismos de transporte que aparentemente dependem da espessura da amostra, com uma possível transição perto de 700 nm. O mecanismo de transporte para temperaturas acima da transição magnética é mais sensível à frequência e à temperatura. Por outro lado, duas transições atribuídas a fases magnéticas foram encontradas em temperaturas ao redor de 105 K e 135 K. As temperaturas coincidem com as transições correspondentes à transição magnética helicoidal. Mediante o uso dos modelos de Mott e de Polarons pequenos conseguimos determinar duas fases magnéticas separadas por uma transição(crossover) que possivelmente seja antiferromagnética. Conclui-se que filmes da perovskita que apressentam transições correspondentes às reportadas como helicoidais, foram fabricados com sucesso.
Inspired by results that showed great ability of chiral systems to select spins in electronic transport, we produced films of SrFeO3− perovskite-type oxides that present helical magnetic structure. We used a chemical method starting from Fe(NO3)3.9H2O, SrCO3 and citric acid as precursors. Due to the complexity of production, the manufacturing route has been extensively explored and described. Electronic transport measurements were made by applying currents with controlled frequencies to the deposited film. Two transport mechanisms were found. Apparently they depend on the thickness of the sample, with a possible transition near 700 nm. The transport mechanism for temperatures above the magnetic transition is more sensitive to both frequency and temperature. On the other hand, two transitions attributed to magnetic phases were found around the temperatures of 105 K and 135 K. The temperatures coincide with the transitions corresponding to the helical magnetic transition. Through the use of the Mott and small Polarons models we can determine two magnetic phases separated by a transition (crossover) that is possibly antiferromagnetic. It is concluded that films of the perovskite that present transactions corresponding to those reported as helical, were manufactured successfully.
APA, Harvard, Vancouver, ISO, and other styles
6

Li, Jianlin. "SrCeO₃₋based protonic conductors for hydrogen production and separation by water gas shift, steam reforming, and carbon dioxide reforming reactions." [Gainesville, Fla.] : University of Florida, 2009. http://purl.fcla.edu/fcla/etd/UFE0024942.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Maity, Avishek. "Etude des mécanismes de diffusion de l’oxygène dans SrFeO3-x et Pr2NiO4+d, réalisée par diffraction du rayonnement synchrotron in situ sur monocristal." Thesis, Montpellier, 2016. http://www.theses.fr/2016MONTT188/document.

Full text
Abstract:
La compréhension des aspects fondamentaux de la diffusion de l'oxygène dans les oxydes solides à des températures modérées, jusqu'à température ambiante, est un enjeu majeur pour le développement d'une variété de dispositifs technologiques dans un avenir proche. Cela concerne, par exemple, le développement de la prochaine génération des électrolytes et membranes solides d'oxygène pour les piles à combustible de type SOFC. Autrement, les réactions d'intercalation de l'oxygène réalisées à basse température présentent un outil puissant pour contrôler le dopage en oxygène ainsi que des propriétés physiques. Dans ce contexte, les oxydes ayant une structure type brownmillérite (A2BB'O5) ou type K2NiF4, ont attiré beaucoup d'attention, car ils montrent une mobilité de l'oxygène déjà à température ambiante.Dans cette thèse, nous avons étudié les mécanismes d'intercalation d'oxygène dans SrFeO2.5+x, ainsi que Pr2NiO4+x par des méthodes de diffraction in situ, réalisées sur des monocristaux dans une cellule électrochimique spécifiquement conçue, explorant principalement le rayonnement synchrotron. Ceci a permis d’explorer en 3D tout le réseau réciproque, et d'obtenir des informations précieuses sur la diffusion diffuse, sur les faibles intensités des raies de surstructure, ainsi que des informations sur la fraction volumique des différents domaines de maclage au cours de la réaction, impossibles à accéder par diffraction de poudre.Les deux systèmes montrent des changements structuraux complexes, accompagnés par une mise en ordre de l'oxygène à longue portée. Au cours de l'intercalation d'oxygène nous avons mis en évidence deux phases intermédiaires, SrFeO2.75 et SrFeO2.875, possédant des lacunes en oxygène ordonnées à longue échelle. En raison du maclage, avec jusqu'à douze possibles individus, nous avons suivi directement la formation et l'évolution des domaines de maclage ainsi que leur micro-structure apparentée. Nous avons ainsi observé un mécanisme de réaction topotactique pour SrFeO2.5 vers SrFeO2.75, tandis que l'oxydation de SrFeO2.75 conduit à des importants réarrangements de l’oxygène, associés à un changement de nombre de domaines de maclage. La réduction électrochimique de la phase orthorhombique Pr2NiO4.25 donne Pr2NiO4.0 comme produit final, ayant la même symétrie, tandis que la phase tétragonale Pr2NiO~4.12 apparaît comme phase intermédiaire. Utilisant un monocristal avec un diamètre de 50 microns, la réaction se déroule dans des conditions d'équilibre dans moins que 24 heures, ce qui implique un coefficient de diffusion de l’oxygène anormalement élevé, supérieur à 10-^11cm2*s-1 à température ambiante. Nous avons également étudié le diagramme de phase de Pr2NiO4.25 sur monocristal jusqu’à 1100°C en chauffant sous air. Une série complexe de transition de phases a été mise en évidence, la vraie symétrie de Pr2NiO4.25 s’avérée en fait monoclinique.Outre l'exploration des diagrammes de phases complexes de SrFeO2.5+x et Pr2NiO4+d, nous avons pu étudier les changements détaillés concernant la micro-structure à l'aide de diffraction sur monocristaux in situ, impossible à accéder par des méthodes de diffraction de poudre classique. Les changements de la micro-structure des domaines va bien au-delà des composés étudiés ici et porte une grande importance pour extrapoler sur la performance, la stabilité et la durée de vie par exemple des matériaux utilisés pour le stockage de l’énergie
Understanding fundamental aspects of oxygen diffusion in solid oxides at moderate temperatures, down to ambient, is an important issue for the development of a variety of technological devices in the near future. This concerns e.g. the progress and invention of next generation solid oxygen ion electrolytes and oxygen electrodes for solid oxide fuel cells (SOFC) as well as membrane based air separators, oxygen sensors and catalytic converters to transform e.g. NOx or CO from exhaust emissions into N2 and CO2. On the other hand oxygen intercalation reactions carried out at low temperatures present a powerful tool to control hole doping, i.e. the oxygen stoichiometry, in electronically correlated transition metal oxides. In this aspect oxides with Brownmillerite (A2BB’O5) and K2NiF4-type frameworks, have attracted much attention, as they surprisingly show oxygen mobility down to ambient temperature. In this thesis we investigated oxygen intercalation mechanisms in SrFeO2.5+x as well as Pr2NiO4+x by in situ diffraction methods, carried out on single crystals in especially designed electrochemical cell, mainly exploring synchrotron radiation. Following up oxygen intercalation reactions on single crystals is challenging, as it allows to scan the whole reciprocal lattice, enabling to obtain valuable information as diffuse scattering, weak superstructure reflections, as well as information of the volume fraction of different domains during the reaction, to highlight a few examples, difficult or impossible to access by powder diffraction. Both title systems are able to take up an important amount of oxygen on regular and interstitial lattice sites, inducing structural changes accompanied by long range oxygen ordering. For SrFeO2.5+x the uptake of oxygen carried out by electrochemical oxidation yields SrFeO3 as the final reaction product. The as grown SrFeO2.5 single crystals we found to show a complex defect structure, related to the stacking disorder of the octahedral and tetrahedral layers. During the oxygen intercalation we evidenced the formation of two reaction intermediates, SrFeO2.75 and SrFeO2.875, showing complex and instantly formed long range oxygen vacancies. Due to the specific twinning with up to totally twelve possible twin individuals, we directly follow up the formation and changes of the specific domain and related micro-structure. We thus observed a topotactic reaction mechanism from SrFeO2.5 to SrFeO2.75, while further oxidation lead to important rearrangements in the dimensionality of the oxygen defects in SrFeO2.75, implying the formation of an additional twin domain in course of the reaction. The electrochemical reduction of orthorhombic Pr2NiO4.25 yields stoichiometric Pr2NiO4.0 as the final reaction product with the same symmetry, while tetragonal Pr2NiO~4.12 appears as a non-stoichiometric intermediate phase. Using a single crystal with 50µm diameter, the reaction proceeded under equilibrium conditions in slightly less than 24h, implying an unusually high oxygen ion diffusion coefficient of > 10^-11cm2*s-1 at already ambient temperature. From the changes of the associated twin domain structure during the reduction reaction, the formation of macro twin domains was evidenced. Heating up Pr2NiO4.25 single crystals in air revealed a complex series of phase transition, evidencing the true symmetry of the starting phase to be in fact monoclinic. Beside exploring the complex phase diagrams of SrFeO2.5+x and Pr2NiO4+d we were able to investigate detailed changes in the micro-structure using in situ single crystal diffraction techniques, impossible to access by classical powder diffraction methods. The importance of changes in the domain structure goes far beyond the investigated title compounds and has utmost importance of the performance, stability and lifetime of e.g. battery materials
APA, Harvard, Vancouver, ISO, and other styles
8

Karim, Abid [Verfasser], and Christine A. [Akademischer Betreuer] Kuntscher. "Electronic correlations in SrFe2-xCoxAs2 pnictides and EuB6 probed by infrared spectroscopy under high-pressure and low-temperatures / Abid Karim. Betreuer: Christine A. Kuntscher." Augsburg : Universität Augsburg, 2014. http://d-nb.info/1077704267/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wattiaux, Alain. "Etude du comportement électrocatalytique relatif au dégagement de l'oxygène des pérovskites non-stoechiométriques La1-xSrFe1-zCOzO3-y." Phd thesis, Université Sciences et Technologies - Bordeaux I, 1985. http://tel.archives-ouvertes.fr/tel-00574567.

Full text
Abstract:
La mise au point d'une méthodologie : les mesures électrochimiques sur céramiques a été réalisée dans le but d'étudier, de façon qualitative ou quantitative, le comportement électrocatalytique des perovskites non-stoechiométriques de type La1-xSrFe1-zCOzO3-y, vis à vis de la réaction de dégagement de l'oxygène. Un mécanisme réactionnel à cinq étapes élémentaires a été proposé, et les étapes limitantes ont été discutées sur la base de calculs cinétiques et thermodynamiques. On en a déduit des critères d'amélioration des performances électrocatalytiques de ce type de matériaux.
APA, Harvard, Vancouver, ISO, and other styles
10

Darracq, Stéphane. "Contribution à l'étude des corrélations entre stoechiométrie, structure, liaison chimique et propriétes physico-chimiques de perovskites oxygénées renfermant un élément 3d a un degrè d'oxydation inusuel (Cu(III), Cu(IV), Fe(IV))." Phd thesis, Université Sciences et Technologies - Bordeaux I, 1993. http://tel.archives-ouvertes.fr/tel-00136172.

Full text
Abstract:
Ce mémoire concerne l'influence d'un degré d'oxydation inusuel d' un element de transition (Cu(III), Cu(IV), Fe(IV)) sur les proprietes physico-chimiques des réseaux oxygènes dérivés de structure perovskite. Les différentes structures du compose du cuivre trivalent LaCuO3 (formes basse et haute pression) ont été étudiées. Le role de plusieurs facteurs sur les propriétés physiques de ce matériau a pu etre mis en évidence, en particulier: 1) l'accroissement de la covalence moyenne de la liaison Cu-O du a la stabilisation de la valence mixte Cu(III)/Cu(IV) obtenue par substitution du Sr au La; 2) la distorsion structurale induite par substitution de l'yttrium au lanthane; 3) la pression d'oxygène de synthèse. La seconde partie de ce travail permet, au travers d' une étude Mössbauer par sonde diamagnétique locale (119Sn), d' expliquer le mécanisme de dismutation du fer tétravalent au sein d'un réseau perovskite AFeO3 (A=Ca, Sr)
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "SrFeO"

1

Liang, Chong, De An Yang, Jian Jing Song, and Ming Xia Xu. "Oxygen Sensitivity of SrFeO3-δ Thin Films Prepared by Sol-Gel Method." In High-Performance Ceramics III, 315–18. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-959-8.315.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Morimoto, S., K. Kuzushita, and S. Nasu. "Mössbauer Study of Ba Doped Cubic Perovskite SrFeO3." In Hyperfine Interactions (C), 177–80. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0281-3_44.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ali, Hassan, Hassan Soleimani, Noorhana Yahya, and Mohammed Falalu Hamza. "Simulation and Experimental Study for Electromagnetic Absorption in Sandstone with SrFeO3 Nanofluid." In Proceedings of the 6th International Conference on Fundamental and Applied Sciences, 393–401. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-4513-6_34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Patrakeev, M. V., V. L. Kozhevnikov, I. A. Leonidov, J. A. Bahteeva, and E. B. Mitberg. "Phase Transitions and Ion Transport in SrFe1-XMXO2.5, where M = Ga, Cr." In Mixed Ionic Electronic Conducting Perovskites for Advanced Energy Systems, 163–68. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2349-1_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Xu, Zh J., R. Q. Chu, S. C. Cui, and J. S. Zhang. "Synthesis of Mixed Conducting Oxides SrFeCo0.5Oy Powder by Citrate Method." In Key Engineering Materials, 971–73. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-410-3.971.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Xu, Zh J., R. Q. Chu, S. C. Cui, Long Zhi Zhao, and J. S. Zhang. "Change of Microwave Dielectric Loss during the Solid-Reaction Synthesis of SrFeCo0.5Oy." In High-Performance Ceramics V, 183–84. Stafa: Trans Tech Publications Ltd., 2008. http://dx.doi.org/10.4028/0-87849-473-1.183.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kobayashi, Tatsuya. "Electronic Phase Diagram and Superconducting Property of $$\text {SrFe}_2\text {(As}_{1-x}\text {P}_x)_2$$." In Study of Electronic Properties of 122 Iron Pnictide Through Structural, Carrier-Doping, and Impurity-Scattering Effects, 19–36. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4475-5_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zhang, Heng, Xin Fa Dong, and Wei Ming Lin. "Preparation of SrFe0.6Cu0.3Ti0.1O3-δ Mixed Oxygen-Ionic and Electronic Conductor." In High-Performance Ceramics V, 259–62. Stafa: Trans Tech Publications Ltd., 2008. http://dx.doi.org/10.4028/0-87849-473-1.259.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Miller, Miroslav, and Aleksandra Matraszek. "Vaporization and Thermochemical Study of SrCeO3(s) and SrCe0.95Yb0.05O3(s) by Knudsen Effusion Mass Spectrometry." In Solid State Phenomena, 319–30. Stafa: Trans Tech Publications Ltd., 2008. http://dx.doi.org/10.4028/3-908451-49-3.319.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ram, S. "Magnetic and Magnetic Resonance Studies on Oxygen-Deficient SrFeO 3-y Perovskites." In May 16, 55–62. De Gruyter, 1988. http://dx.doi.org/10.1515/9783112495223-006.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "SrFeO"

1

Sendilkumar, A., S. Srinath, Dinesh K. Aswal, and Anil K. Debnath. "Magnetization And ESR Study Of SrFeO[sub 3-δ] Systems." In INTERNATIONAL CONFERENCE ON PHYSICS OF EMERGING FUNCTIONAL MATERIALS (PEFM-2010). AIP, 2010. http://dx.doi.org/10.1063/1.3530505.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Manimuthu, P., D. Paul Joseph, S. Philip Raja, M. Kovendhan, C. Venkateswaran, Alka B. Garg, R. Mittal, and R. Mukhopadhyay. "Investigation of the Less Oxygen Deficient SrFeO[sub 3-δ]." In SOLID STATE PHYSICS, PROCEEDINGS OF THE 55TH DAE SOLID STATE PHYSICS SYMPOSIUM 2010. AIP, 2011. http://dx.doi.org/10.1063/1.3606286.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sendilkumar, A., V. R. Reddy, M. Manivel Raja, P. D. Babu, A. Gupta, and S. Srinath. "Mössbauer effect in tetragonal SrFeO3-δ." In SOLID STATE PHYSICS: Proceedings of the 56th DAE Solid State Physics Symposium 2011. AIP, 2012. http://dx.doi.org/10.1063/1.4710461.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Prabhu, E., K. I. Gnanasekar, V. Jayaraman, and T. Gnanasekaran. "Studies on the oxygen sensing characteristics of SrFe1−xTixO3-δ." In 2015 2nd International Symposium on Physics and Technology of Sensors (ISPTS). IEEE, 2015. http://dx.doi.org/10.1109/ispts.2015.7220140.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Prabhu, E., K. I. Gnanasekar, V. Jayaraman, and T. Gnanasekaran. "Studies on the oxygen sensing characteristics of SrFe1−xTixO3-δ." In 2015 2nd International Symposium on Physics and Technology of Sensors (ISPTS). IEEE, 2015. http://dx.doi.org/10.1109/ispts.2015.7220150.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Su, Kai, and Yin Li. "Discussion of SRFEM with Mohr-Coulomb Plasticity Model in Slope Stability Analysis." In 2012 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). IEEE, 2012. http://dx.doi.org/10.1109/appeec.2012.6307001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Dongil Shin and R. J. Gambino. "Magnetic properties of exchange spring magnets in the system of Ni/SrFe/sub 12/O/sub 19/." In IEEE International Magnetics Conference. IEEE, 1999. http://dx.doi.org/10.1109/intmag.1999.837751.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Okamoto, J. "Magnetic Circular X-ray Dichroism Study of Paramagnetic and Anti-Ferromagnetic States in SrFeO3 Using a 10-T Superconducting Magnet." In SYNCHROTRON RADIATION INSTRUMENTATION: Eighth International Conference on Synchrotron Radiation Instrumentation. AIP, 2004. http://dx.doi.org/10.1063/1.1757993.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jaiswal, Shivendra Kumar, and Jitendra Kumar. "Sol-Gel Synthesis and Magnetic, Optical and Impedance Behaviour of Strontium Ferrite Powder." In ASME 2011 International Manufacturing Science and Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/msec2011-50067.

Full text
Abstract:
An attempt has been made to synthesize SrFeO3-δ powder by sol-gel process involving oxalate formation, its digestion for 4h, drying at 150°C for 24h, and decomposition at 800°C for 10h. The resulting powder is shown to a) exhibit a single phase with a perovskite-type cubic structure and lattice parameter a = 3.862±0.002A˚, b) contain irregular shape particles, and c) display optical absorption peaks corresponding to charge transfer from oxygen to iron (3.73 and 3.41eV), t2g to eg transition of Fe3+ (1.57eV), and crystal field (3d-3d) charge transfer of Fe3+ (1.25eV). Impedance over a wide frequency range of 20Hz-2MHz at 118–318K has contributions from two parallel ‘RC’ circuits belonging to bulk and grain boundaries with the later displaying significant space charge polarization. The relaxation time of polarization follows an Arrhenius behaviour (τ = τo exp[Ea/kBT]) with τo as ∼10−8s and activation energy Ea as ∼50meV. Further, the sample having magnetic character with transition temperature as 853K, coercivity (Hc) = 3748Oe and magnetization 0.09 μB per iron atom (at 17kOe). The zero field cooled and field cooled magnetization versus temperature data in conjunction with constricted hysteresis loops near the origin suggest core-shell morphology for the particles, core being antiferromagnetic with net uncompensated moment and shell conforming to disordered disposition of spins.
APA, Harvard, Vancouver, ISO, and other styles
10

Thakur, Ajay D., A. K. Yadav, A. Thamizhavel, C. V. Tomy, S. Ramakrishnan, and A. K. Grover. "Vortex pinning mechanism in single crystal of iron arsenide superconductor SrFe[sub 1.7]Co[sub 0.3]As[sub 2]." In SOLID STATE PHYSICS: PROCEEDINGS OF THE 57TH DAE SOLID STATE PHYSICS SYMPOSIUM 2012. AIP, 2013. http://dx.doi.org/10.1063/1.4791467.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography