Journal articles on the topic 'Sr2Fe2O5'

To see the other types of publications on this topic, follow the link: Sr2Fe2O5.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Sr2Fe2O5.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Auckett, Josie E., Wai Tung Lee, Kirrily C. Rule, Alexey Bosak, and Chris D. Ling. "Order, Disorder, and Dynamics in Brownmillerite Sr2Fe2O5." Inorganic Chemistry 58, no. 18 (August 23, 2019): 12317–24. http://dx.doi.org/10.1021/acs.inorgchem.9b01846.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Grenier, Jean-Claude, Norbert Ea, Michel Pouchard, and Paul Hagenmuller. "Structural transitions at high temperature in Sr2Fe2O5." Journal of Solid State Chemistry 58, no. 2 (July 1985): 243–52. http://dx.doi.org/10.1016/0022-4596(85)90241-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Adler, P., U. Schwarz, K. Syassen, A. P. Milner, M. P. Pasternak, and M. Hanfland. "Structural Phase Transitions in Sr2Fe2O5 under High Pressure." Journal of Solid State Chemistry 155, no. 2 (December 2000): 381–88. http://dx.doi.org/10.1006/jssc.2000.8928.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Schmidt, M., and S. J. Campbell. "Crystal and Magnetic Structures of Sr2Fe2O5 at Elevated Temperature." Journal of Solid State Chemistry 156, no. 2 (February 2001): 292–304. http://dx.doi.org/10.1006/jssc.2000.8998.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Borgekov, Daryn B., Artem L. Kozlovskiy, Rafael I. Shakirzyanov, Ainash T. Zhumazhanova, Maxim V. Zdorovets, and Dmitriy I. Shlimas. "Properties of Perovskite-like Lanthanum Strontium Ferrite Ceramics with Variation in Lanthanum Concentration." Crystals 12, no. 12 (December 9, 2022): 1792. http://dx.doi.org/10.3390/cryst12121792.

Full text
Abstract:
The purpose of this work is to study the effect of lanthanum (La) concentration on the phase formation, conductivity, and thermophysical properties of perovskite-like strontium ferrite ceramics. At the same time, the key difference from similar studies is the study of the possibility of obtaining two-phase composite ceramics, the presence of various phases in which will lead to a change in the structural, strength, and conductive properties. To obtain two-phase composite ceramics by mechanochemical solid-phase synthesis, the method of the component molar ratio variation was used, which, when mixed, makes it possible to obtain a different ratio of elements and, as a result, to vary the phase composition of the ceramics. Scanning electron microscopy, X-ray phase analysis, and impedance spectroscopy were used as research methods, the combination of which made it possible to comprehensively study the properties of the synthesized ceramics. Analysis of phase changes depending on lanthanum concentration change can be written as follows: (La0.3Sr0.7)2FeO4/LaSr2Fe3O8 → (La0.3Sr0.7)2FeO4/LaSr2Fe3O8/Sr2Fe2O5 → (La0.3Sr0.7)2FeO4/Sr2Fe2O5. Results of impedance spectroscopy showed that with an increase in lanthanum concentration from 0.10 to 0.25 mol in the synthesized ceramics, the value of the dielectric permittivity increases significantly from 40.72 to 231.69, the dielectric loss tangent increases from 1.07 to 1.29 at a frequency of 10,000 Hz, and electrical resistivity decreases from 1.29 × 108 to 2.37 × 107 Ω∙cm.
APA, Harvard, Vancouver, ISO, and other styles
6

Waerenborgh, J. C., E. V. Tsipis, J. E. Auckett, C. D. Ling, and V. V. Kharton. "Magnetic structure of Sr2Fe2O5 brownmillerite by single-crystal Mössbauer spectroscopy." Journal of Solid State Chemistry 205 (September 2013): 5–9. http://dx.doi.org/10.1016/j.jssc.2013.06.030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Saib, F., M. Mekiri, B. Bellal, M. Chibane, and M. Trari. "Photoelectrochemical properties of the brownmillerite Sr2Fe2O5: Application to electrochemical oxygen evolution." Russian Journal of Physical Chemistry A 91, no. 8 (July 15, 2017): 1562–70. http://dx.doi.org/10.1134/s0036024417080295.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sullivan, Eirin, and Colin Greaves. "Fluorine insertion reactions of the brownmillerite materials Sr2Fe2O5, Sr2CoFeO5, and Sr2Co2O5." Materials Research Bulletin 47, no. 9 (September 2012): 2541–46. http://dx.doi.org/10.1016/j.materresbull.2012.05.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zhu, Feng, Ye Wu, Xiaojing Lai, Shan Qin, Ke Yang, Jing Liu, and Xiang Wu. "Experimental and theoretical investigations on high-pressure phase transition of Sr2Fe2O5." Physics and Chemistry of Minerals 41, no. 6 (June 16, 2013): 449–59. http://dx.doi.org/10.1007/s00269-013-0604-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Rakshit, S. K., S. C. Parida, S. Dash, Z. Singh, B. K. Sen, and V. Venugopal. "Thermodynamic studies on SrFe12O19(s), SrFe2O4(s), Sr2Fe2O5(s) and Sr3Fe2O6(s)." Journal of Solid State Chemistry 180, no. 2 (February 2007): 523–32. http://dx.doi.org/10.1016/j.jssc.2006.11.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Auckett, Josie E., Andrew J. Studer, and Chris D. Ling. "Single-Crystal Neutron Diffraction Study of Superstructure Ordering and Domain Behaviour in Brownmillerite-Type Ca2Fe2O5." Australian Journal of Chemistry 67, no. 12 (2014): 1824. http://dx.doi.org/10.1071/ch14358.

Full text
Abstract:
We show that large single crystals of brownmillerite-type Ca2Fe2O5 can be grown using the floating-zone method under ambient pressure conditions, provided that the feed rods are pre-annealed to a very high density. Neutron diffraction data collected from these crystals show the emergence of a long-range ordered incommensurate phase at high temperature. The observation of this phase for the first time using neutrons proves that the incommensurate ordering of tetrahedral chains upon heating Ca2Fe2O5 is a truly long-range and bulk phenomenon. The results are used to compare and contrast the structures of Ca2Fe2O5 and Sr2Fe2O5, and are consistent with experimental observations of significantly higher oxide ionic conduction in the latter material.
APA, Harvard, Vancouver, ISO, and other styles
12

Auckett, Josie E., Andrew J. Studer, Eric Pellegrini, Jacques Ollivier, Mark R. Johnson, Helmut Schober, Wojciech Miiller, and Chris D. Ling. "Combined Experimental and Computational Study of Oxide Ion Conduction Dynamics in Sr2Fe2O5 Brownmillerite." Chemistry of Materials 25, no. 15 (July 22, 2013): 3080–87. http://dx.doi.org/10.1021/cm401278m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Fisher, Craig A. J., and M. Saiful Islam. "Mixed ionic/electronic conductors Sr2Fe2O5 and Sr4Fe6O13: atomic-scale studies of defects and ion migration." Journal of Materials Chemistry 15, no. 31 (2005): 3200. http://dx.doi.org/10.1039/b418567f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Auckett, Josie E., Andrew J. Studer, Neeraj Sharma, and Chris D. Ling. "Floating-zone growth of brownmillerite Sr2Fe2O5 and the observation of a chain-ordered superstructure by single-crystal neutron diffraction." Solid State Ionics 225 (October 2012): 432–36. http://dx.doi.org/10.1016/j.ssi.2012.01.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Hou, Yuanhao, Xinyu Wang, Ming Chen, Xiangyu Gao, Yongzhuo Liu, and Qingjie Guo. "Sr1-xKxFeO3 Perovskite Catalysts with Enhanced RWGS Reactivity for CO2 Hydrogenation to Light Olefins." Atmosphere 13, no. 5 (May 8, 2022): 760. http://dx.doi.org/10.3390/atmos13050760.

Full text
Abstract:
The catalytic hydrogenation of CO2 to light olefins (C2–C4) is among the most practical approaches to CO2 utilization as an essential industrial feedstock. To achieve a highly dispersed active site and enhance the reactivity of the reverse water–gas shift (RWGS) reaction, ABO3-type perovskite catalysts Sr1-xKxFeO3 with favorable thermal stability and redox activity are reported in this work. The role of K-substitution in the structure–performance relationship of the catalysts was investigated. It indicated that K-substitution expedited the oxygen-releasing process of the SrFeO3 and facilitated the synchronous formation of active-phase Fe3O4 for the reverse water–gas shift (RWGS) reaction and Fe5C2 for the Fischer–Tropsch synthesis (FTS). At the optimal substitution amount, the conversion of CO2 and the selectivity of light olefins achieved 30.82% and 29.61%, respectively. Moreover, the selectivity of CO was up to 45.57% even when H2/CO2=4 due to CO2-splitting reactions over the reduced Sr2Fe2O5. In addition, the reversibility of perovskite catalysts ensured the high dispersion of the active-phase Fe3O4 and Fe5C2 in the SrCO3 phase. As the rate-determining step of the CO2 hydrogenation reaction to light olefins over Sr1-xKxFeO3 perovskite catalysts, FTS should be further tailored by partial substitution of the B site. In sum, the perovskite-derived catalyst investigated in this work provided a new idea for the rational design of a catalyst for CO2 hydrogenation to produce light olefins.
APA, Harvard, Vancouver, ISO, and other styles
16

Baladi, Mahin, Qahtan A. Yousif, Movlud Valian, and Masoud Salavati-Niasari. "Auto-combustion synthesis of Sr2Fe2O5/Dy3Fe5O12 nanocomposite using Hordeum vulgare L extract: Preparation, structural analysis and evaluation of its photocatalytic and electrochemical behaviors." Journal of Alloys and Compounds 896 (March 2022): 163032. http://dx.doi.org/10.1016/j.jallcom.2021.163032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Kim, Namhoon, Nicola H. Perry, and Elif Ertekin. "Atomic Modeling and Electronic Structure of Mixed Ionic–Electronic Conductor SrTi1–xFexO3–x/2+δ Considered as a Mixture of SrTiO3 and Sr2Fe2O5." Chemistry of Materials 31, no. 1 (December 6, 2018): 233–43. http://dx.doi.org/10.1021/acs.chemmater.8b04284.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Hassan, Dhifaf Hussain, and Sabah Jalal Fathi. "Structural and Magnetic Properties of Nano Composite (Ni1-xSrx Fe12 O19) Prepared by Sol-gel." NeuroQuantology 19, no. 10 (November 17, 2021): 20–28. http://dx.doi.org/10.14704/nq.2021.19.10.nq21152.

Full text
Abstract:
The compound was prepared by sol-gel method for spontaneous combustion with certain weight ratios (x=0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9), the samples were calcined at a temperature (900oC) for a period of two hours(2h), then studied its structural and magnetic properties.one of the most prominent results that we obtained from the X-ray diffraction technique (XRD) is that compound has several phases. Where the sample (NiFe2O4) appeared to be polycrystalline and the dominant phase in it is the cubic phase, while the other phase is (Hematite)(Fe2O3) A crystal structure rhomboid (Rhombohedral), in addition to these two phases, the phase with the existing quaternary structure appeared (Sr2Fe2O5) its called (Orthorhombic). The results of the magnetic properties that were obtained through the (VSM) device, and one of the most important of these properties is the magnetic hysteresis loop by analyzing the magnetic hysteresis loop at (x=0.3), where the least area of the hysteresis loop or the least width of the hysteresis loop One of the most important parameters of the magnetic properties is the saturation magnetism (μS) and its value ranges from (19.76-3.86) (emu/gr), the highest value was at (X=0.3) and its value is (19.76emu/gr) and in general its value decreases with increasing concentration of strontium. The residual magnetism (Mr) ranges between (7.45-1.58) (emu/gr), where it reached its highest value at (x=0.3) and its value is (7.45emu/gr), and generally its value decreases with increasing concentration of strontium. In addition to that, there is another parameter which is coercion or Magnetic coercivity (Hc) ranges in value (1751.104-209.26) (Oe), reaching its lowest value at (x=0.3), and then increases with increasing strontium concentration until it reaches its highest value at (x=0.9), where it reached its value is (1751.104Oe). The square rate represented by the symbol (μi) has high values. This means that there is a mutual coupling between the soft and hard magnetic phases, which was the highest value at (x=0.3) and its value is (4.93).
APA, Harvard, Vancouver, ISO, and other styles
19

Perkins, N. B., S. Di Matteo, and G. Jackeli. "An effective spin–orbital Hamiltonian for Sr2FeWO6." Journal of Magnetism and Magnetic Materials 272-276 (May 2004): 132–33. http://dx.doi.org/10.1016/j.jmmm.2003.11.069.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Maryanowska, A., J. Pietrzak, and W. Zarek. "Magnetic properties of Sr2FeVO6−δ single crystals." Journal of Magnetism and Magnetic Materials 140-144 (February 1995): 1581–82. http://dx.doi.org/10.1016/0304-8853(94)01164-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Ma, B., U. Balachandran, J. P. Hodges, J. D. Jorgensen, D. J. Miller, and J. W. Richardson. "Synthesis, conductivity and oxygen diffusivity of Sr2Fe3Ox." Materials Letters 35, no. 5-6 (June 1998): 303–8. http://dx.doi.org/10.1016/s0167-577x(97)00270-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Dann, S. E., M. T. Weller, and D. B. Currie. "The synthesis and structure of Sr2FeO4." Journal of Solid State Chemistry 92, no. 1 (May 1991): 237–40. http://dx.doi.org/10.1016/0022-4596(91)90263-h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

de la Cruz, Fernando P., Néstor E. Massa, José Antonio Alonso, Marı́a Jesús Martı́nez-Lope, and Marı́a Teresa Casais. "Infrared absorption and reflectivity of double perovskite Sr2FeWO6." Solid State Communications 127, no. 11 (September 2003): 703–6. http://dx.doi.org/10.1016/s0038-1098(03)00623-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Kawanaka, H., I. Hase, S. Toyama, and Y. Nishihara. "Iron spin state of double perovskite oxide Sr2FeWO6." Physica B: Condensed Matter 281-282 (June 2000): 518–20. http://dx.doi.org/10.1016/s0921-4526(99)01198-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Kawanaka, Hirofumi, Izumi Hase, Shunichiro Toyama, and Yoshikazu Nishihara. "Electronic State of Fe in Double Perovskite Oxide Sr2FeWO6." Journal of the Physical Society of Japan 68, no. 9 (September 15, 1999): 2890–93. http://dx.doi.org/10.1143/jpsj.68.2890.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Zhong, W., W. Liu, X. L. Wu, N. J. Tang, W. Chen, C. T. Au, and Y. W. Du. "Magnetocaloric effect in the ordered double perovskite Sr2FeMo1−xWxO6." Solid State Communications 132, no. 3-4 (October 2004): 157–62. http://dx.doi.org/10.1016/j.ssc.2004.07.060.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Fang, Tsang-Tse, and Tsun-Fa Ko. "Factors Affecting the Preparation of Sr2Fe2−xMoxO6." Journal of the American Ceramic Society 86, no. 9 (September 2003): 1453–55. http://dx.doi.org/10.1111/j.1151-2916.2003.tb03495.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Adler, P. "Properties of K2NiF4-Type Oxides Sr2FeO∼4." Journal of Solid State Chemistry 108, no. 2 (February 1994): 275–83. http://dx.doi.org/10.1006/jssc.1994.1043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Mellenne, B., R. Retoux, C. Lepoittevin, M. Hervieu, and B. Raveau. "Oxygen Nonstoichiometry in Sr4Fe6O13-δ: The Derivatives [Sr8Fe12O26]·[Sr2Fe3O6]n." Chemistry of Materials 16, no. 24 (November 2004): 5006–13. http://dx.doi.org/10.1021/cm040127d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Fu, Z. M., and W. X. Li. "Phase transition and crystal structure of a new compound - Sr2FeWO6." Acta Crystallographica Section A Foundations of Crystallography 49, s1 (August 21, 1993): c279. http://dx.doi.org/10.1107/s0108767378092211.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Zhao, X., R. C. Yu, Y. Yu, F. Y. Li, Z. X. Liu, G. D. Tang, and C. Q. Jin. "Structure and magnetic properties in the compounds of Sr2FeMo1−xNbxO6." Materials Science and Engineering: B 111, no. 2-3 (August 2004): 101–6. http://dx.doi.org/10.1016/j.mseb.2004.03.021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Kawanaka, H., I. Hase, S. Toyama, and Y. Nishihara. "Anomalous spin state of Fe in double perovskite oxide Sr2FeWO6." Physica B: Condensed Matter 284-288 (July 2000): 1428–29. http://dx.doi.org/10.1016/s0921-4526(99)02640-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Chan, T. S., R. S. Liu, G. Y. Guo, and C. Y. Huang. "Synthesis and Characterization of Double Perovskites Sr2FeMO6 (M = Mo, W)." International Journal of Modern Physics B 17, no. 18n20 (August 10, 2003): 3500–3502. http://dx.doi.org/10.1142/s0217979203021289.

Full text
Abstract:
We have investigated the magnetic and magnetotransport properties of monophasic double perovskites Sr 2 FeMO 6( M = Mo , W ). Magnetic measurements indicate that SFMO is a ferromagnet and SFWO is an antiferromagnet with TN = 35 K at H = 5 T . Large magnetoresistance ratio (MR) of ~ 22% (H = 3 T ) at room temperature (RT) was observed in the SFWO compound. However, the SFMO compound did not show any significant MR even at high fields and RT (MR~1%; H = 3 T and 300 K). The changes observed by physical measurements are supported by band structure calculations to explain the interaction between the 3d (Fe) , 4d (Mo) and 5d (W) orbitals of transition metal ions and oxygen ions.
APA, Harvard, Vancouver, ISO, and other styles
34

Tassel, Cédric, Liis Seinberg, Naoaki Hayashi, Subodh Ganesanpotti, Yoshitami Ajiro, Yoji Kobayashi, and Hiroshi Kageyama. "Sr2FeO3 with Stacked Infinite Chains of FeO4 Square Planes." Inorganic Chemistry 52, no. 10 (May 8, 2013): 6096–102. http://dx.doi.org/10.1021/ic400444u.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Maryanowska, A., and J. Pietrzak. "A Study of Phase Transitions in Sr2FeVO6-δ by X-Ray Diffraction." Le Journal de Physique IV 07, no. C1 (March 1997): C1–369—C1–370. http://dx.doi.org/10.1051/jp4:19971151.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Hussain, Imad, S. N. Khan, Tentu Nageswara Rao, Riyaz Uddin, Jong Woo Kim, and Bon Heun Koo. "Tailoring the Magnetic Properties and Magnetocaloric Effect in Double Perovskites Sr2FeMo1–xNbxO6." Science of Advanced Materials 12, no. 3 (March 1, 2020): 391–97. http://dx.doi.org/10.1166/sam.2020.3648.

Full text
Abstract:
The crystal structure, magnetic and magnetocaloric properties of the Sr2FeMo1–xNbxO6 (0 ≤ x ≤ 0.3) samples prepared by solid state reaction method were investigated using X-ray diffraction (XRD) and magnetic measurements. The room temperature XRD profiles obtained for all the samples revealed the formation of the double perovskite tetragonal structure with I4/mmm symmetry. Maximum values of spontaneous magnetization (17.6 emu/g at 150 K) and Curie temperature, TC (380 K) were observed in the Sr2FeMo0.9Nb0.1O6 sample indicating that low Niobium (Nb) substitution (x = 0.1) at the Mo site in the host material resulted in higher magnetization and TC. Lower values of magnetization and TC were recorded in the samples with higher Nb concentration (x = 0.2, 0.3) that was attributed to the decrease in orbital hybridization and increase in anti-site disorder resulting from heavy doping. A second order of the magnetic phase transition in each sample was confirmed by the magnetization measurements and Arrott plots. The maximum magnetic entropy change and relative cooling power (RCP) were enhanced in lowest Nb doped sample (x = 0.1) suggesting that this compound can be used in magnetic refrigeration technology.
APA, Harvard, Vancouver, ISO, and other styles
37

Chan, T. S., R. S. Liu, S. F. Hu, and J. G. Lin. "Structure and physical properties of double perovskite compounds Sr2FeMO6 (M=Mo, W)." Materials Chemistry and Physics 93, no. 2-3 (October 2005): 314–19. http://dx.doi.org/10.1016/j.matchemphys.2005.03.060.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Chen, Lihang, Jing Xu, Xin Wang, and Kui Xie. "Sr2Fe1.5+xMo0.5O6-δ cathode with exsolved Fe nanoparticles for enhanced CO2 electrolysis." International Journal of Hydrogen Energy 45, no. 21 (April 2020): 11901–7. http://dx.doi.org/10.1016/j.ijhydene.2020.02.140.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Rozenberg, G. Kh, M. P. Pasternak, A. P. Milner, M. Amanowicz, G. R. Hearne, K. E. Brister, and P. Adler. "Magnetic-Electronic, Conductivity, and Structural Pressure Studies of Sr2FeO4 and Sr3Fe2O7." REVIEW OF HIGH PRESSURE SCIENCE AND TECHNOLOGY 7 (1998): 653–55. http://dx.doi.org/10.4131/jshpreview.7.653.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Pasternak, M. P., M. Amanowicz, A. P. Milner, G. Kh Rozenberg, R. D. Taylor, G. R. Hearne, and K. E. Brister. "High-pressure p-p band closure of the negative-Δ Sr2FeO4 perovskite." Journal of Magnetism and Magnetic Materials 177-181 (January 1998): 1377–78. http://dx.doi.org/10.1016/s0304-8853(97)00610-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Suzuki, Shugo, and Makoto Tsuyama. "First-Principles Study of Double Perovskite Sr2FeXO6 (X = Mo, Re) Ultrathin Films and Heterostructures." Journal of the Physical Society of Japan 86, no. 12 (December 15, 2017): 124707. http://dx.doi.org/10.7566/jpsj.86.124707.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Rosas, J. L., J. León-Flores, R. Escamilla, J. M. Cervantes, E. Carvajal, E. Verdín, and M. Romero. "LDA+U study of the electronic and magnetic properties of the Sr2FeMo1-xNbxO6 compound." Materials Today Communications 23 (June 2020): 101155. http://dx.doi.org/10.1016/j.mtcomm.2020.101155.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Iranmanesh, M., M. Lingg, M. Stir, and J. Hulliger. "Sol gel and ceramic synthesis of Sr2FeMo1−xWxO6 (0 ≤ x ≤ 1) double perovskites series." RSC Advances 6, no. 48 (2016): 42069–75. http://dx.doi.org/10.1039/c6ra03923e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Sánchez, D., J. A. Alonso, M. García-Hernández, M. J. Martínez-Lope, and M. T. Casais. "Hole doping effects in Sr2FeMo1−xWxO6(0 ≤x≤ 1) double perovskites: a neutron diffraction study." Journal of Physics: Condensed Matter 17, no. 23 (May 27, 2005): 3673–88. http://dx.doi.org/10.1088/0953-8984/17/23/019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Mazumdar, SC, AT Trina, F. Alam, MJ Miah, and MNI Khan. "Effect of Sr-substitution on the structural and magnetoelectric properties of Ni-Zn ferrites." Bangladesh Journal of Physics 26, no. 2 (September 20, 2020): 1–20. http://dx.doi.org/10.3329/bjphy.v26i2.49302.

Full text
Abstract:
Spinel type polycrystalline Ni0.6-xZn0.4SrxFe2O4 (x = 0.0, 0.05, 0.10, 0.15 and 0.20) ferrites are synthesized by solid state reaction method. X-ray diffraction (XRD) pattern reveals the formation of spinel structure with two secondary phases Sr2FeO4 and SrFe12O19 for higher concentration of Sr (0.15 and 0.20). An increase in lattice constant is observed with the increase of Sr content in the lattice. The density of the samples is found to decrease whereas porosity increases with the substitution of Sr2+ ions. Microstructural investigation shows that the grain size increases with the increase of Sr content. Magnetic hysteresis is investigated at room temperature. All the samples exhibit lower coercivity values indicating that the materials belong to the class of soft ferrites. The saturation magnetization is found to decrease with Sr content which is attributed to Néel’s two sub-lattice model of ferrites. The real permeability of the samples remains almost constant up to a certain frequency and then falls rapidly. Improved dielectric constant is observed in the Sr2+ substituted samples. The electrical conduction in these ferrites is explained on the basis of hopping mechanism between the Fe2+ and Fe3+ ions. Bangladesh Journal of Physics, 26(2), 1-20, December 2019
APA, Harvard, Vancouver, ISO, and other styles
46

Gibb, T. C., and M. Matsuo. "A study of the oxygen-deficient perovskite system Sr2Fe2−xCrxO5+y by Mössbauer spectroscopy." Journal of Solid State Chemistry 86, no. 2 (June 1990): 164–74. http://dx.doi.org/10.1016/0022-4596(90)90131-g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Cussen, Edmund J., Jaap F. Vente, Peter D. Battle, and Terence C. Gibb. "Neutron diffraction study of the influence of structural disorder on the magnetic properties of Sr2FeMO6 (M=Ta, Sb)." Journal of Materials Chemistry 7, no. 3 (1997): 459–63. http://dx.doi.org/10.1039/a607083c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Retuerto, M., F. Jiménez-Villacorta, M. J. Martínez-Lope, Y. Huttel, E. Roman, M. T. Fernández-Díaz, and J. A. Alonso. "Study of the valence state and electronic structure in Sr2FeMO6 (M = W, Mo, Re and Sb) double perovskites." Physical Chemistry Chemical Physics 12, no. 41 (2010): 13616. http://dx.doi.org/10.1039/c004370b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Gui, Hong, Xin Li, Zhenjie Zhao, and Wenhui Xie. "Pressure-induced structural and magnetic transitions in the infinite-chains iron oxide Sr2FeO3: a first-principle investigation." Journal of Physics D: Applied Physics 49, no. 5 (December 23, 2015): 055303. http://dx.doi.org/10.1088/0022-3727/49/5/055303.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Lü, Minfeng, Junjie Li, Xianfeng Hao, Zheng Yang, Defeng Zhou, and Jian Meng. "Hole doping double perovskites Sr2FeMo1−xO6(x= 0, 0.03, 0.04, 0.06) and their Mössbauer, crystal structure and magnetic properties." Journal of Physics: Condensed Matter 20, no. 17 (April 7, 2008): 175213. http://dx.doi.org/10.1088/0953-8984/20/17/175213.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography