Journal articles on the topic 'Sr optical lattice clock'

To see the other types of publications on this topic, follow the link: Sr optical lattice clock.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Sr optical lattice clock.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Lin, Y., Q. Wang, Y. Li, F. Meng, B. Lin, E. Zang, Z. Sun, F. Fang, T. Li, and Z. Fang. "The NIM Sr Optical Lattice Clock." Journal of Physics: Conference Series 723 (June 2016): 012021. http://dx.doi.org/10.1088/1742-6596/723/1/012021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hill, I. R., R. Hobson, W. Bowden, E. M. Bridge, S. Donnellan, E. A. Curtis, and P. Gill. "A low maintenance Sr optical lattice clock." Journal of Physics: Conference Series 723 (June 2016): 012019. http://dx.doi.org/10.1088/1742-6596/723/1/012019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Li, Ting, Tao Wang, Ye-Bing Wang, Ben-Quan Lu, Xiao-Tong Lu, Mo-Juan Yin, and Hong Chang. "Experimental observation of quantum tunneling in shallow optical lattice." Acta Physica Sinica 71, no. 7 (2022): 073701. http://dx.doi.org/10.7498/aps.71.20212038.

Full text
Abstract:
For a one-dimensional optical lattice clock built in the horizontal direction, when the stability and uncertainty of the system reach the order of 10<sup>–18</sup> or more, the clock frequency shift caused by the quantum tunneling effect becomes not negligible. In the shallow optical lattice, the quantum tunneling effect will cause the clock transition spectrum to be significantly broadened. So, in this paper the quantum tunneling phenomenon in the shallow optical lattice is studied, laying a foundation for the evaluation of uncertainty of <sup>87</sup>Sr atomic optical lattice clock system. In this experiment, on the platform of one-dimensional <sup>87</sup>Sr atomic optical lattice clock, the narrow-linewidth <sup>1</sup>S<sub>0</sub>(<inline-formula><tex-math id="M4">\begin{document}$ \left|g \right\rangle $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20212038_M4.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20212038_M4.png"/></alternatives></inline-formula>)→<sup>3</sup>P<sub>0</sub>(<inline-formula><tex-math id="M5">\begin{document}$ \left|e \right\rangle $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20212038_M5.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20212038_M5.png"/></alternatives></inline-formula>) transition (that is, the clock transition) is excited by an ultra-stable and ultra-narrow linewidth 698 nm laser, and the distribution of strontium atoms in a specific quantum state is prepared. In the deep optical lattice, after the cold <sup>87</sup>Sr atoms in preparation reach a <inline-formula><tex-math id="M6">\begin{document}$ \left|e,{n}_{z}=1 \right\rangle $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20212038_M6.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20212038_M6.png"/></alternatives></inline-formula> state, the lattice depth of the optical lattice is adiabatically reduced. Then, the carrier-sideband resolved clock transition spectral line is detected in the shallow optical lattice. The obvious splitting of the carrier spectral line is observed from the clock transition spectral line, which indicates that the strontium atom has an obvious quantum tunneling phenomenon between the adjacent lattice sites of the optical lattice. In addition, when the lattice potential lattice depth is reduced, owing to the incommensurability of lattice light wavelength (813 nm) and clock laser wavelength (698 nm), the tunneling of atoms between adjacent lattice points will lead to spin-orbit coupling effect. Owing to the exceptionally long lifetime (120(3) s) of <sup>3</sup>P<sub>0</sub> state, it can not only suppress the decoherence, but also reduce the atomic loss rate caused by spontaneous emission. This has a natural advantage for studying the spin-orbit coupling of fermions. Therefore, the understanding of quantum tunneling mechanism in optical lattice is not only conducive to improving the uncertainty of the <sup>87</sup>Sr atomic optical lattice clock, but also lays the foundation for observing the spin-orbit coupling effect of fermions on this platform.
APA, Harvard, Vancouver, ISO, and other styles
4

Wang, Qiang, Yi-Ge Lin, Ye Li, Bai-Ke Lin, Fei Meng, Er-Jun Zang, Tian-Chu Li, and Zhan-Jun Fang. "Observation of Spin Polarized Clock Transition in 87 Sr Optical Lattice Clock." Chinese Physics Letters 31, no. 12 (December 2014): 123201. http://dx.doi.org/10.1088/0256-307x/31/12/123201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Fouche, M., R. Le Targat, X. Baillard, A. Brusch, O. Tcherbakoff, G. D. Rovera, and P. Lemonde. "Accuracy Evaluation of a $^{87}\hbox{Sr}$ Optical Lattice Clock." IEEE Transactions on Instrumentation and Measurement 56, no. 2 (April 2007): 336–40. http://dx.doi.org/10.1109/tim.2007.891137.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wang, Qiang, Yi-Ge Lin, Fei Meng, Ye Li, Bai-Ke Lin, Er-Jun Zang, Tian-Chu Li, and Zhan-Jun Fang. "Magic Wavelength Measurement of the 87 Sr Optical Lattice Clock at NIM." Chinese Physics Letters 33, no. 10 (October 2016): 103201. http://dx.doi.org/10.1088/0256-307x/33/10/103201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

IDO, Tetsuya, Atsushi YAMAGUCHI, and Michi KOIDE. "A Sr Lattice Clock at NICT and A Design of An Optical Cavity to Stabilize Clock Lasers." Review of Laser Engineering 38, no. 7 (2010): 493–99. http://dx.doi.org/10.2184/lsj.38.493.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

MUSHA, Mitsuru. "Frequency Measurement of A Sr Optical Lattice Clock Using A 120-km Precision Optical Fiber Link." Review of Laser Engineering 38, no. 7 (2010): 505–11. http://dx.doi.org/10.2184/lsj.38.505.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

De-Huan, Kong, Guo Feng, Li Ting, Lu Xiao-Tong, Wang Ye-Bing, and Chang Hong. "Evaluation of systematic uncertainty for transportable 87Sr optical lattice clock." Acta Physica Sinica 70, no. 3 (2021): 030601. http://dx.doi.org/10.7498/aps.70.20201204.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hong, F. L., M. Musha, M. Takamoto, H. Inaba, S. Yanagimachi, A. Takamizawa, K. Watabe, et al. "Measuring the frequency of a Sr optical lattice clock using a 120 km coherent optical transfer." Optics Letters 34, no. 5 (February 27, 2009): 692. http://dx.doi.org/10.1364/ol.34.000692.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Ludlow, A. D., T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, et al. "Sr Lattice Clock at 1 x 10-16 Fractional Uncertainty by Remote Optical Evaluation with a Ca Clock." Science 319, no. 5871 (February 14, 2008): 1805–8. http://dx.doi.org/10.1126/science.1153341.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

YE, JUN, SEBASTIAN BLATT, MARTIN M. BOYD, SETH M. FOREMAN, ERIC R. HUDSON, TETSUYA IDO, BENJAMIN LEV, et al. "PRECISION MEASUREMENT BASED ON ULTRACOLD ATOMS AND COLD MOLECULES." International Journal of Modern Physics D 16, no. 12b (December 2007): 2481–94. http://dx.doi.org/10.1142/s0218271807011826.

Full text
Abstract:
Ultracold atoms and molecules provide ideal stages for precision tests of fundamental physics. With microkelvin neutral strontium atoms confined in an optical lattice, we have achieved a fractional resolution of 4 × 10-15 on the 1S0–3P0 doubly forbidden 87 Sr clock transition at 698 nm. Measurements of the clock line shifts as a function of experimental parameters indicate systematic errors below the 10-15 level. The ultrahigh spectral resolution permits resolving the nuclear spin states of the clock transition at small magnetic fields, leading to measurements of the 3P0 magnetic moment and metastable lifetime. In addition, photoassociation spectroscopy performed on the narrow 1S0–3P1 transition of 88 Sr shows promise for efficient optical tuning of the ground state scattering length and production of ultracold ground state molecules. Lattice-confined Sr 2 molecules are suitable for constraining the time variation of the proton–electron mass ratio. In a separate experiment, cold, stable, ground state polar molecules are produced from Stark decelerators. These cold samples have enabled an order-of-magnitude improvement in the measurement precision of ground state, Λ doublet microwave transitions in the OH molecule. Comparing the laboratory results to those from OH megamasers in interstellar space will allow a sensitivity of 10-6 for measuring the potential time variation of the fundamental fine structure constant Δα/α over 1010 years. These results have also led to improved understandings of the molecular structure. The study of the low magnetic field behavior of OH in its 2Π3/2 ro-vibronic ground state precisely determines a differential Landé g factor between opposite parity components of the Λ doublet.
APA, Harvard, Vancouver, ISO, and other styles
13

Guo, Kai, Guangfu Wang, and Anpei Ye. "Dipole polarizabilities and magic wavelengths for a Sr and Yb atomic optical lattice clock." Journal of Physics B: Atomic, Molecular and Optical Physics 43, no. 13 (June 22, 2010): 135004. http://dx.doi.org/10.1088/0953-4075/43/13/135004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Guo, Feng, Wei Tan, Chi-hua Zhou, Jian Xia, Ying-xin Chen, Ting Liang, Qiang Liu, et al. "A proof-of-concept model of compact and high-performance 87Sr optical lattice clock for space." AIP Advances 11, no. 12 (December 1, 2021): 125116. http://dx.doi.org/10.1063/5.0064087.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Hisai, Yusuke, Daisuke Akamatsu, Takumi Kobayashi, Sho Okubo, Hajime Inaba, Kazumoto Hosaka, Masami Yasuda, and Feng-Lei Hong. "Development of 8-branch Er:fiber frequency comb for Sr and Yb optical lattice clocks." Optics Express 27, no. 5 (February 20, 2019): 6404. http://dx.doi.org/10.1364/oe.27.006404.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Takamoto, Masao, Ichiro Ushijima, Manoj Das, Nils Nemitz, Takuya Ohkubo, Kazuhiro Yamanaka, Noriaki Ohmae, et al. "Frequency ratios of Sr, Yb, and Hg based optical lattice clocks and their applications." Comptes Rendus Physique 16, no. 5 (June 2015): 489–98. http://dx.doi.org/10.1016/j.crhy.2015.04.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Hong, Feng-Lei, Masao Takamoto, Ryoichi Higashi, Yasuhiro Fukuyama, Jie Jiang, and Hidetoshi Katori. "Frequency measurement of a Sr lattice clock using an SI-second-referenced optical frequency comb linked by a global positioning system (GPS)." Optics Express 13, no. 14 (2005): 5253. http://dx.doi.org/10.1364/opex.13.005253.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Ohmae, Noriaki, Filippo Bregolin, Nils Nemitz, and Hidetoshi Katori. "Direct measurement of the frequency ratio for Hg and Yb optical lattice clocks and closure of the Hg/Yb/Sr loop." Optics Express 28, no. 10 (May 4, 2020): 15112. http://dx.doi.org/10.1364/oe.391602.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Ido, Tetsuya. "Optical Lattice Clock." MAPAN 27, no. 1 (March 2012): 9–12. http://dx.doi.org/10.1007/s12647-012-0008-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Lin Yi-Ge and Fang Zhan-Jun. "Strontium optical lattice clock." Acta Physica Sinica 67, no. 16 (2018): 160604. http://dx.doi.org/10.7498/aps.67.20181097.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Takamoto, Masao, Feng-Lei Hong, Ryoichi Higashi, and Hidetoshi Katori. "An optical lattice clock." Nature 435, no. 7040 (May 2005): 321–24. http://dx.doi.org/10.1038/nature03541.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Vogt, Stefan, Sebastian Häfner, Jacopo Grotti, Silvio Koller, Ali Al-Masoudi, Uwe Sterr, and Christian Lisdat. "A transportable optical lattice clock." Journal of Physics: Conference Series 723 (June 2016): 012020. http://dx.doi.org/10.1088/1742-6596/723/1/012020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Poli, N., M. G. Tarallo, M. Schioppo, C. W. Oates, and G. M. Tino. "A simplified optical lattice clock." Applied Physics B 97, no. 1 (April 2, 2009): 27–33. http://dx.doi.org/10.1007/s00340-009-3488-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Zheng, Xin, Jonathan Dolde, Varun Lochab, Brett N. Merriman, Haoran Li, and Shimon Kolkowitz. "Differential clock comparisons with a multiplexed optical lattice clock." Nature 602, no. 7897 (February 16, 2022): 425–30. http://dx.doi.org/10.1038/s41586-021-04344-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Stajic, Jelena. "Making a denser optical lattice clock." Science 358, no. 6359 (October 5, 2017): 76.1–76. http://dx.doi.org/10.1126/science.358.6359.76-a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Poli, N., M. Schioppo, S. Vogt, St Falke, U. Sterr, Ch Lisdat, and G. M. Tino. "A transportable strontium optical lattice clock." Applied Physics B 117, no. 4 (October 8, 2014): 1107–16. http://dx.doi.org/10.1007/s00340-014-5932-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Ludlow, Andrew D., and Jun Ye. "Progress on the optical lattice clock." Comptes Rendus Physique 16, no. 5 (June 2015): 499–505. http://dx.doi.org/10.1016/j.crhy.2015.03.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Meng Fei, 孟飞, 曹士英 Cao Shiying, 赵光贞 Zhao Guangzhen, 赵阳 Zhao Yang, and 方占军 Fang Zhanjun. "Application of an Er:Doped Fiber Comb for Sr Lattice Clock." Chinese Journal of Lasers 42, no. 7 (2015): 0702012. http://dx.doi.org/10.3788/cjl201542.0702012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Zhao Fang-Jing, Gao Feng, Han Jian-Xin, Zhou Chi-Hua, Meng Jun-Wei, Wang Ye-Bing, Guo Yang, Zhang Shou-Gang, and Chang Hong. "Miniaturization of physics system in Sr optical clock." Acta Physica Sinica 67, no. 5 (2018): 050601. http://dx.doi.org/10.7498/aps.67.20172584.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Takamoto, Masao, Feng-Lei Hong, Ryoichi Higashi, and Hidetoshi Katori. "Absolute frequency measurement of optical lattice clock." Review of Laser Engineering 34, Supplement (2006): 5–6. http://dx.doi.org/10.2184/lsj.34.5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

YASUDA, Masami, Takuya KOHNO, Kazumoto HOSAKA, Hajime INABA, and Feng-Lei HONG. "Development of An 171Yb Optical Lattice Clock." Review of Laser Engineering 38, no. 7 (2010): 500–504. http://dx.doi.org/10.2184/lsj.38.500.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Belotelov, G. S., V. D. Ovsiannikov, D. V. Sutyrin, A. Yu Gribov, O. I. Berdasov, V. G. Pal’chikov, S. N. Slyusarev, and I. Yu Blinov. "Lattice light shift in strontium optical clock." Laser Physics 30, no. 4 (March 25, 2020): 045501. http://dx.doi.org/10.1088/1555-6611/ab7be1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Guo Yang, Yin Mo-Juan, Xu Qin-Fang, Wang Ye-Bing, Lu Ben-Quan, Ren Jie, Zhao Fang-Jing, and Chang Hong. "Interrogation of spin polarized clock transition in strontium optical lattice clock." Acta Physica Sinica 67, no. 7 (2018): 070601. http://dx.doi.org/10.7498/aps.67.20172759.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Lodewyck, Jérôme, Sławomir Bilicki, Eva Bookjans, Jean-Luc Robyr, Chunyan Shi, Grégoire Vallet, Rodolphe Le Targat, et al. "Optical to microwave clock frequency ratios with a nearly continuous strontium optical lattice clock." Metrologia 53, no. 4 (July 8, 2016): 1123–30. http://dx.doi.org/10.1088/0026-1394/53/4/1123.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Wang, Yebing, Xiaotong Lu, Benquan Lu, Dehuan Kong, and Hong Chang. "Recent Advances Concerning the 87Sr Optical Lattice Clock at the National Time Service Center." Applied Sciences 8, no. 11 (November 8, 2018): 2194. http://dx.doi.org/10.3390/app8112194.

Full text
Abstract:
We review recent experimental progress concerning the 87Sr optical lattice clock at the National Time Service Center in China. Hertz-level spectroscopy of the 87Sr clock transition for the optical lattice clock was performed, and closed-loop operation of the optical lattice clock was realized. A fractional frequency instability of 2.8 × 10−17 was attained for an averaging time of 2000 s. The Allan deviation is found to be 1.6 × 10−15/τ1/2 and is limited mainly by white-frequency-noise. The Landé g-factors of the (5s2)1S0 and (5s5p)3P0 states in 87Sr were measured experimentally; they are important for evaluating the clock’s Zeeman shifts. We also present recent work on the miniaturization of the strontium optical lattice clock for space applications.
APA, Harvard, Vancouver, ISO, and other styles
36

Campbell, S. L., R. B. Hutson, G. E. Marti, A. Goban, N. Darkwah Oppong, R. L. McNally, L. Sonderhouse, et al. "A Fermi-degenerate three-dimensional optical lattice clock." Science 358, no. 6359 (October 5, 2017): 90–94. http://dx.doi.org/10.1126/science.aam5538.

Full text
Abstract:
Strontium optical lattice clocks have the potential to simultaneously interrogate millions of atoms with a high spectroscopic quality factor of 4 × 1017. Previously, atomic interactions have forced a compromise between clock stability, which benefits from a large number of atoms, and accuracy, which suffers from density-dependent frequency shifts. Here we demonstrate a scalable solution that takes advantage of the high, correlated density of a degenerate Fermi gas in a three-dimensional (3D) optical lattice to guard against on-site interaction shifts. We show that contact interactions are resolved so that their contribution to clock shifts is orders of magnitude lower than in previous experiments. A synchronous clock comparison between two regions of the 3D lattice yields a measurement precision of 5 × 10–19 in 1 hour of averaging time.
APA, Harvard, Vancouver, ISO, and other styles
37

Band, Y. B., and A. Vardi. "Collisional shifts in an optical-lattice atomic clock." Laser Physics 18, no. 3 (March 2008): 308–13. http://dx.doi.org/10.1134/s1054660x08030195.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Smart, Ashley G. "Optical-lattice clock sets new standard for timekeeping." Physics Today 67, no. 3 (March 2014): 12–14. http://dx.doi.org/10.1063/pt.3.2294.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

De Sarlo, L., M. Favier, R. Tyumenev, and S. Bize. "A mercury optical lattice clock at LNE-SYRTE." Journal of Physics: Conference Series 723 (June 2016): 012017. http://dx.doi.org/10.1088/1742-6596/723/1/012017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Ovsyannikov, V. D., S. I. Marmo, S. N. Mokhnenko, and V. G. Pal'chikov. "Nonlinear optical higher-order effects in an optical lattice clock." Quantum Electronics 47, no. 5 (May 30, 2017): 412–20. http://dx.doi.org/10.1070/qel16347.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Ohtsubo, Nozomi, Ying Li, Nils Nemitz, Hidekazu Hachisu, Kensuke Matsubara, Tetsuya Ido, and Kazuhiro Hayasaka. "Frequency ratio of an 115In+ ion clock and a 87Sr optical lattice clock." Optics Letters 45, no. 21 (October 26, 2020): 5950. http://dx.doi.org/10.1364/ol.404940.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Yu, Dai-Hyuk, Chang Yong Park, Won-Kyu Lee, Sangkyung Lee, Sang Eon Park, Jongchul Mun, Sang-Bum Lee, and Taeg Yong Kwon. "An Yb optical lattice clock: Current status at KRISS." Journal of the Korean Physical Society 63, no. 4 (August 2013): 883–89. http://dx.doi.org/10.3938/jkps.63.883.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Mishin, Denis, Daniil Provorchenko, Dmitry Tregubov, Nikolai Kolachevsky, and Artem Golovizin. "Continuous operation of a bicolor thulium optical lattice clock." Applied Physics Express 14, no. 11 (November 1, 2021): 112006. http://dx.doi.org/10.35848/1882-0786/ac3186.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Kolkowitz, S., S. L. Bromley, T. Bothwell, M. L. Wall, G. E. Marti, A. P. Koller, X. Zhang, A. M. Rey, and J. Ye. "Spin–orbit-coupled fermions in an optical lattice clock." Nature 542, no. 7639 (December 21, 2016): 66–70. http://dx.doi.org/10.1038/nature20811.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Kohno, Takuya, Masami Yasuda, Kazumoto Hosaka, Hajime Inaba, Yoshiaki Nakajima, and Feng-Lei Hong. "One-Dimensional Optical Lattice Clock with a Fermionic171Yb Isotope." Applied Physics Express 2 (June 19, 2009): 072501. http://dx.doi.org/10.1143/apex.2.072501.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Westergaard, P., J. Lodewyck, and P. Lemonde. "Minimizing the dick effect in an optical lattice clock." IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 57, no. 3 (March 2010): 623–28. http://dx.doi.org/10.1109/tuffc.2010.1457.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Baillard, X., M. Fouché, R. Le Targat, P. G. Westergaard, A. Lecallier, F. Chapelet, M. Abgrall, et al. "An optical lattice clock with spin-polarized 87Sr atoms." European Physical Journal D 48, no. 1 (December 7, 2007): 11–17. http://dx.doi.org/10.1140/epjd/e2007-00330-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Rey, A. M., A. V. Gorshkov, C. V. Kraus, M. J. Martin, M. Bishof, M. D. Swallows, X. Zhang, et al. "Probing many-body interactions in an optical lattice clock." Annals of Physics 340, no. 1 (January 2014): 311–51. http://dx.doi.org/10.1016/j.aop.2013.11.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Matsubara, Kensuke, Hidekazu Hachisu, Ying Li, Shigeo Nagano, Clayton Locke, Asahiko Nogami, Masatoshi Kajita, Kazuhiro Hayasaka, Tetsuya Ido, and Mizuhiko Hosokawa. "Direct comparison of a Ca^+ single-ion clock against a Sr lattice clock to verify the absolute frequency measurement." Optics Express 20, no. 20 (September 11, 2012): 22034. http://dx.doi.org/10.1364/oe.20.022034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Dörscher, S., N. Huntemann, R. Schwarz, R. Lange, E. Benkler, B. Lipphardt, U. Sterr, E. Peik, and C. Lisdat. "Optical frequency ratio of a 171Yb+ single-ion clock and a 87Sr lattice clock." Metrologia 58, no. 1 (January 8, 2021): 015005. http://dx.doi.org/10.1088/1681-7575/abc86f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography