To see the other types of publications on this topic, follow the link: Sr/Nd isotopes.

Journal articles on the topic 'Sr/Nd isotopes'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Sr/Nd isotopes.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Jo, Hui Je, Hyo Min Lee, Go-Eun Kim, Won Myung Choi, and Taehoon Kim. "Determination of Sr–Nd–Pb Isotopic Ratios of Rock Reference Materials Using Column Separation Techniques and TIMS." Separations 8, no. 11 (November 10, 2021): 213. http://dx.doi.org/10.3390/separations8110213.

Full text
Abstract:
Thermal ionization mass spectrometry (TIMS) can provide highly accurate strontium (Sr), neodymium (Nd), and lead (Pb) isotope measurements for geological and environmental samples. Traces of these isotopes are useful for understanding crustal reworking and growth. In this study, we conducted a sequential separation of Sr, Nd, and Pb and subsequently measured the 87Sr/86Sr, 143Nd/144Nd, 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios of 13 widely used rock certified reference materials (CRMs), namely BCR-2, BHVO-2, GSP-2, JG-1a, HISS-1, JLk-1, JSd-1, JSd-2, JSd-3, LKSD-1, MAG-1, SGR-1, and 4353A, using TIMS. In particular, we reported the first isotopic ratios of Sr, Nd, and Pb in 4353A, Sr and Nd in HISS-1 and SGR-1, and Sr in JLk-1, JSd-2, JSd-3, and LKSD-1. The Sr–Nd–Pb isotopic compositions of most in-house CRMs were indistinguishable from previously reported values, although the Sr and Pb isotopic ratios of GSP-2, JSd-2, JSd-3, and LKSD-1 obtained in different aliquots and/or batches varied slightly. Hence, these rock reference materials can be used for monitoring the sample accuracy and assessing the quality of Sr–Nd–Pb isotope analyses.
APA, Harvard, Vancouver, ISO, and other styles
2

Zhang, Bang-Lu, Zhi-Cheng Lv, Zhi-Guo Dong, Xin Zhang, Xiao-Fei Yu, Yong-Sheng Li, Shi-Min Zhen, and Chang-Le Wang. "Source Characteristics of the Carboniferous Ortokarnash Manganese Deposit in the Western Kunlun Mountains." Minerals 12, no. 7 (June 21, 2022): 786. http://dx.doi.org/10.3390/min12070786.

Full text
Abstract:
The specific source of ancient sedimentary manganese (Mn) deposits is commonly complex. Here we use systematic major and trace element data with strontium (Sr) and neodymium (Nd) isotopic analyses of the Ortokarnash Mn(II) carbonate ores and associated carbonate rocks from the Upper Carboniferous Kalaatehe Formation (ca. 320 Ma) in order to constrain the Mn source. This formation consists of three members: the first member is a volcanic breccia limestone, the second member is a sandy limestone, and the third member is a black marlstone with the Mn(II) carbonate interlayers. Petrographic observations in combination with low Al2O3 (<3.0 wt%) and Hf (<0.40 ppm) contents and the lack of correlations between the Al2O3 and 87Sr/86Sr ratios as well as εNd(t) values demonstrate a negligible influence of terrigenous detrital contamination on both Sr and Nd isotopic compositions of the Mn(II) carbonate ores. The Sr isotopes of Mn(II) carbonate ores are most likely affected by post-depositional alteration, while Nd isotopes remain unaltered. The initial 87Sr/86Sr ratios in the associated carbonate rocks are likely the result of a mixture of the chemical components (i.e., seawater) and the Al-rich components (e.g., volcanoclastic material), while the detrital effects on Nd isotopes are negligible. In addition, both Sr and Nd isotopes in these non-mineralized wall rocks remained unchanged during post-depositional processes. The relatively low Th/Sc ratios and positive εNd(t) values suggest that the aluminosilicate fraction in the calcarenite and sandy limestone was mainly derived from the weathering of a depleted mafic source, representing the riverine input into the seawater. Given that the Mn(II) carbonate ores are characterized by negative εNd(t) values, these suggest that seafloor-vented hydrothermal fluids derived from interaction with the underlying old continental crust mainly contribute to the source of the Mn(II) carbonates.
APA, Harvard, Vancouver, ISO, and other styles
3

PE-PIPER, GEORGIA, and DAVID J. W. PIPER. "Late Cenozoic, post-collisional Aegean igneous rocks: Nd, Pb and Sr isotopic constraints on petrogenetic and tectonic models." Geological Magazine 138, no. 6 (November 2001): 653–68. http://dx.doi.org/10.1017/s0016756801005957.

Full text
Abstract:
Nd isotopic composition has been determined for 16 igneous rocks, representing the wide geochemical, spatial and temporal range of post-collisional, late Cenozoic magmas in the Aegean area. Nd isotopes are used to further interpret previously published Pb and Sr isotope data. The overall pattern of late Cenozoic volcanism resulted from rapid extension, with thermal effects causing melting of hydrated, enriched, subcontinental lithosphere to produce widespread K-rich magmas. Slab break-off and intrusion of hot asthenosphere caused partial melting of rift-related continental margin basalts at the detachment point to generate adakitic magmas. Further outboard, mafic magma from enriched lithospheric mantle melted thickened lower crust to produce the granitoid plutons of the Cyclades. Nd isotopic variation in these varied rock types correlates with pre-Cenozoic palaeo-geography. Proterozoic subduction-related enrichment in Th and U, together with other large-ion lithophile elements, produced distinctive Pb isotope composition. This was later modified where Mesozoic subduction of terrigenous sediment was important, whereas subduction of oceanic carbonate sediments produced enrichment in radiogenic Sr and low Ce/Sr ratios. Late Cenozoic magmas sourced in eastern Pelagonian zone sub-continental lithospheric mantle have Nd model ages of about 1.0 Ga, and generally high 87Sr/86Sr and high 207Pb/204Pb (∼ 15.68) and 208Pb/204Pb (∼ 39.0) for low 206Pb/204Pb (∼ 18.6), but rocks to the west have more radiogenic Pb and higher Ce/Sr as a result of greater subduction of terrigenous sediment from the northern Pindos ocean. Magmas sourced from sub-continental lithosphere beneath the Apulian continental block were strongly influenced by subduction of oceanic crust and sediments north of the passive margin of north Africa. Subduction of Nile-derived terrigenous sediment in the east resulted in Nd model ages of 0.7 to 0.8 Ga and radiogenic Pb isotopes. Greater subduction of oceanic carbonate in the west resulted in magmas with higher 87Sr/86Sr and lower Ce/Sr. The strongly negative εNd for adakites in the central Aegean rules out a source from subducted oceanic basalt, and the adakite magma was probably derived from melting of hydrated Triassic sub-alkaline basalt of continental origin. Where trachytic rocks are succeeded by nepheline-normative basalts (e.g. Samos), Nd isotope data imply that early partial melting of the enriched subcontinental lithospheric mantle involved hydrous amphibole and phlogopite, but once these minerals were consumed, younger magmas were produced by partial melting dominated by olivine and orthopyroxene.
APA, Harvard, Vancouver, ISO, and other styles
4

Alatarvas, Raisa, Ninna Immonen, and Kari Strand. "Clay mineral and Nd, Pb, and Sr isotope provenance of a MIS 4-3 sediment record from the Lomonosov Ridge, central Arctic Ocean." Bulletin of the Geological Society of Finland 95, no. 1 (June 22, 2023): 35–46. http://dx.doi.org/10.17741/bgsf/95.1.003.

Full text
Abstract:
Modern techniques for detrital mineral provenance were applied to sediment core 96/12-1pc from the Lomonosov Ridge in the central Arctic Ocean. The techniques include quantitative clay mineralogy analysis combined with determination of Nd, Pb, and Sr isotopes from clay fraction. The clay mineral assemblage and the isotope signatures depict distinct changes during the Marine Isotope Stage (MIS) 4-3 transition corresponding to the Middle Weichselian deglaciation. This transition is characterised by a homogenous, 48 cm thick, dark grey, silty clay layer with a distinctive IRD concentration, forming a prominent marker bed for the central Arctic Ocean sediments. The elevated smectite and kaolinite contents in the transitional interval are possible weathering products of the Siberian basaltic rocks, such as the Putorana Plateau, feeding the shelves of the Kara Sea and the western Laptev Sea. The Nd and Sr isotope values are compatible with input from the basaltic rocks and fall within the isotopic range of sediments from these shelves. The abrupt changes in the Nd, Pb and Sr isotopic data from the distinct grey layer attributed to the MIS 4-3 transition likely mark a pronounced deglaciation event. An increase in coarse debris in the grey layer indicates a change in the sedimentation regime with a strong iceberg rafting component. This change may also be related to a sudden release of meltwater from a large ice-dammed lake in the northern Siberia.
APA, Harvard, Vancouver, ISO, and other styles
5

Jin, Luying, Kezhang Qin, Guangming Li, Junxing Zhao, Zhenzhen Li, Zhuyin Chu, and Guoxue Song. "Formation of the Chalukou High Fluorine-Type Mo (–Zn–Pb) Deposit, NE China: Constraints from Fluorite and Sphalerite Rare Earth Elements and Sr–Nd Isotope Compositions." Minerals 13, no. 1 (January 3, 2023): 77. http://dx.doi.org/10.3390/min13010077.

Full text
Abstract:
Fluorite is a widespread mineral in porphyry and hydrothermal vein Mo-polymetallic deposits. Here, fluorite is utilised as a probe to trace the fluid source and reveal the fluid evolution process in the Chalukou giant Mo (Pb‒Zn) deposit, Northeast China, which is characterised as early porphyry Mo and later vein-style Zn–Pb mineralisation. A detailed rare earth element (REE) and Sr–Nd isotope study of fluorite combined with Sr isotopes of sphalerite is conducted for the Chalukou deposit. The chondrite-normalised REE patterns of fluorites from molybdenite veins show light REE (LREE)-enriched patterns, with negative Eu anomalies (δEu = 0.60) and weakly negative Y anomalies (Y/Y* = 0.72). The fluorites associated with sphalerite veins exhibit rare earth element (REE)-flat patterns with negative Eu anomalies (δEu = 0.65 to 0.99) and positive Y anomalies (Y/Y* = 1.37 to 3.08). In addition, during the progression from Mo to Zn–Pb mineralisation, the total concentration of REEs decreases from 839 ppm to 53.7 ppm, and Y/Ho ratios increase from 22.1 to 92.5. These features may be explained by the different mobilities of REE complexes during fluid migration. The Eu anomalies are considered to be inherited from source fluids. All the initial 87Sr/86Sr ratios of fluorite and sphalerite are between those of ore-forming porphyries and wall rocks (rhyolite), with fluorite ratios ranging from 0.706942 to 0.707386 and sphalerite ratios varying from 0.705221 to 0.710417. The majority of εNd(t) values of fluorite varying from −6.4 to −3.6 are also located between the ratios exhibited by ore-forming porphyries and rhyolite, whereas three εNd(t) values of fluorites ranging from −0.26 to 0.36 are close to those of ore-forming porphyries. All the isotopic features indicate that the Sr-Nd isotope ratios of hydrothermal fluid are derived from porphyries and disturbed by fluid–rock reactions. Together with a two-stage Sr–Nd isotope mixing model, we suggest that different sources and fluid‒rock interactions (syn-ore intrusions and strata) finally influence the Sr–Nd isotopes of the ore-forming fluids, which are recorded by the majority of fluorite and sphalerite.
APA, Harvard, Vancouver, ISO, and other styles
6

Linghu, Miaomiao, Zimu Li, Jinfeng Sun, and Jiheng Zhang. "Magma Source and Petrogenesis of the Early Cretaceous Granites in The Liaodong Peninsula: Evidence from In Situ Apatite Sr-Nd and Zircon Hf-O Isotopes." Minerals 13, no. 4 (April 12, 2023): 545. http://dx.doi.org/10.3390/min13040545.

Full text
Abstract:
Apatite Sr-Nd and zircon Hf-O isotopes are broadly used to trace magma sources and constrain magma evolution processes, further improving our understanding of the origin of granitoids. We present zircon U-Pb ages, whole-rock major and trace elements, and whole-rock Sr-Nd-Hf, zircon Hf-O, and apatite Sr-Nd isotopic data for the coarse-grained quartz monzonite, biotite monzogranite, and granite porphyry in the Yushulinzi pluton in the Liaodong Peninsula, the eastern North China Craton, to establish their magma sources and petrogenesis. The coarse-grained quartz monzonite, biotite monzogranite, and granite porphyry were formed contemporaneously, with zircon U-Pb ages of 123–119 Ma. They share enriched whole-rock Sr-Nd-Hf and zircon Hf isotopic compositions, and the coarse-grained quartz monzonite has crust-like δ18O values (5.7–6.7‰). The coarse-grained quartz monzonite and biotite monzogranite have variable apatite (87Sr/86Sr)i ratios and negative apatite εNd(t) values. These isotopic characteristics indicate that the different rock types in the Yushulinzi pluton were derived from the partial melting of ancient crustal material in the North China Craton. Their geochemical and petrographic characteristics indicate that the crystal-melt segregation model can be employed to elucidate the genetic links among different rock types, with the coarse-grained quartz monzonite representing crystal accumulation and the biotite monzogranite and granite porphyry representing interstitial melts extracted from a crystal-rich magma chamber. Furthermore, the variable apatite Sr isotopic compositions and subtle differences in the peak zircon εHf(t) values of the studied rock samples confirm the possibility of a contribution from shallow crustal components and materials with high εHf(t) values during magma evolution, which is not readily revealed by their whole-rock Sr-Nd-Hf isotopic compositions. These results demonstrate that in situ apatite Sr-Nd and zircon Hf-O isotopic analyses have the potential to provide distinctive insights into the magma sources and evolution of magmatic systems.
APA, Harvard, Vancouver, ISO, and other styles
7

Bonev, Nikolay, Zornitsa Dotseva, and Massimo Chiaradia. "Comparative Nd-Sr-Pb isotopes geochemistry of the eastern Circum-Rhodope belt ophiolitic mafic suites, Greece-Bulgaria." Review of the Bulgarian Geological Society 83, no. 3 (December 2022): 69–72. http://dx.doi.org/10.52215/rev.bgs.2022.83.3.69.

Full text
Abstract:
We report on the isotopic compositions of the Jurassic supra-subduction zone Evros ophiolite mafic rocks exposed in the eastern Circum-Rhodope Belt in the Thrace region of northeastern Greece. These mafic units consist of low-Ti gabbroic and basaltic rocks, which Nd-Sr-Pb isotopes are compatible with dominant mantle-derived Mid-Ocean Ridge Basalt (MORB) component mixed with a detectable amount of crustal material and/or sediment involved in their melt source in the subduction zone. These isotopic features are consistent with an intra-oceanic arc origin of the mafic ophiolite rocks, and the Evros ophiolite Nd and Pb isotopes are comparable to those of the counterpart mafic rocks from the Mandritsa Unit in the eastern Rhodope Massif of southern Bulgaria.
APA, Harvard, Vancouver, ISO, and other styles
8

He, Jun, Xiaochun Xu, Zhongyang Fu, Yuhua An, Tianhu Chen, Qiaoqin Xie, and Fukun Chen. "Decoupling of Sr-Nd Isotopic Composition Induced by Potassic Alteration in the Shapinggou Porphyry Mo Deposit of the Qinling–Dabie Orogenic Belt, China." Minerals 11, no. 8 (August 23, 2021): 910. http://dx.doi.org/10.3390/min11080910.

Full text
Abstract:
In our previous study on petrogenesis of quartz syenite and granite porphyry, the host rocks of the Late Mesozoic Shapinggou Mo deposit in the Qinling–Dabie orogenic belt, we found that the initial Sr isotopic composition of the host rocks is strongly affected by the degree of K-alteration. Here, we provide further isotopic evidence of the host rocks and their minerals to investigate the geochemical behaviour of trace elements and isotopes during the alteration and to explain the phenomenon of decoupling of Sr–Nd isotopic composition. The quartz syenite and granite porphyry are altered by K-alteration in varying degrees and have high K2O and Rb contents and low Na2O, CaO, Sr, and Ba contents. Rock samples of both quartz syenite and granite porphyry have variable Rb/Sr ratios and initial 87Sr/86Sr values (even < 0.70) but contain quite homogeneous εNd(t) values (−12.8 to −14.8). Minerals from the rocks of moderate to intense K-alteration have very low initial 87Sr/86Sr values (even < −17), while those from the weakly altered rocks have 87Sr/86Sr(t) values of 0.7044 to 0.7084. The same phenomenon of the decoupling in Sr–Nd isotopic composition can be observed from several Mo deposits within the eastern Qinling–Dabie orogenic belt. This fact suggests similar hydrothermal features and a comparable origin for both the magmatic rocks and hydrothermal fluids in this belt. A comparison between porphyry Mo and porphyry Cu deposits shows that elements and the Rb–Sr isotope system have different behaviours during the K-alteration, implying distinct material sources and igneous rocks for porphyry Mo and porphyry Cu deposits, respectively.
APA, Harvard, Vancouver, ISO, and other styles
9

Hindshaw, Ruth S., Nicholas J. Tosca, Alexander M. Piotrowski, and Edward T. Tipper. "Clay mineralogy, strontium and neodymium isotope ratios in the sediments of two High Arctic catchments (Svalbard)." Earth Surface Dynamics 6, no. 1 (March 5, 2018): 141–61. http://dx.doi.org/10.5194/esurf-6-141-2018.

Full text
Abstract:
Abstract. The identification of sediment sources to the ocean is a prerequisite to using marine sediment cores to extract information on past climate and ocean circulation. Sr and Nd isotopes are classical tools with which to trace source provenance. Despite considerable interest in the Arctic Ocean, the circum-Arctic source regions are poorly characterised in terms of their Sr and Nd isotopic compositions. In this study we present Sr and Nd isotope data from the Paleogene Central Basin sediments of Svalbard, including the first published data of stream suspended sediments from Svalbard. The stream suspended sediments exhibit considerable isotopic variation (εNd = −20.6 to −13.4; 87Sr ∕ 86Sr = 0.73421 to 0.74704) which can be related to the depositional history of the sedimentary formations from which they are derived. In combination with analysis of the clay mineralogy of catchment rocks and sediments, we suggest that the Central Basin sedimentary rocks were derived from two sources. One source is Proterozoic sediments derived from Greenlandic basement rocks which are rich in illite and have high 87Sr ∕ 86Sr and low εNd values. The second source is Carboniferous to Jurassic sediments derived from Siberian basalts which are rich in smectite and have low 87Sr ∕ 86Sr and high εNd values. Due to a change in depositional conditions throughout the Paleogene (from deep sea to continental) the relative proportions of these two sources vary in the Central Basin formations. The modern stream suspended sediment isotopic composition is then controlled by modern processes, in particular glaciation, which determines the present-day exposure of the formations and therefore the relative contribution of each formation to the stream suspended sediment load. This study demonstrates that the Nd isotopic composition of stream suspended sediments exhibits seasonal variation, which likely mirrors longer-term hydrological changes, with implications for source provenance studies based on fixed end-members through time.
APA, Harvard, Vancouver, ISO, and other styles
10

Huang, Chao, Yue-Heng Yang, Jin-Hui Yang, and Lie-Wen Xie. "In situ simultaneous measurement of Rb–Sr/Sm–Nd or Sm–Nd/Lu–Hf isotopes in natural minerals using laser ablation multi-collector ICP-MS." Journal of Analytical Atomic Spectrometry 30, no. 4 (2015): 994–1000. http://dx.doi.org/10.1039/c4ja00449c.

Full text
Abstract:
This study presents a combined methodology of simultaneously measuring Rb–Sr/Sm–Nd or Sm–Nd/Lu–Hf isotopes in natural minerals by a means of two multiple collector inductively coupled plasma mass spectrometers connected to a 193 nm excimer laser ablation system.
APA, Harvard, Vancouver, ISO, and other styles
11

Falloon, Trevor J., Kaj Hoernle, Bruce F. Schaefer, Ilya N. Bindeman, Stanley R. Hart, Dieter Garbe-Schonberg, and Robert A. Duncan. "Petrogenesis of Lava from Christmas Island, Northeast Indian Ocean: Implications for the Nature of Recycled Components in Non-Plume Intraplate Settings." Geosciences 12, no. 3 (March 3, 2022): 118. http://dx.doi.org/10.3390/geosciences12030118.

Full text
Abstract:
Lava samples from the Christmas Island Seamount Province (CHRISP) record an extreme range in enriched mantle (EM) type Sr-Nd-Pb-Hf isotope signatures. Here we report osmium isotope data obtained on four samples from the youngest, Pliocene petit-spot phase (Upper Volcanic Series, UVS; ~4.4 Ma), and four samples from the earlier, Eocene (Lower Volcanic Series, LVS; ~40 Ma) shield building phase of Christmas Island. Osmium concentrations are low (5–82 ppt) with initial Os isotopic values (187Os/188Osi) ranging from (0.1230–0.1679). Along with additional new geochemical data (major and trace elements, Sr-Nd-Pb isotopes, olivine δ18O values), we demonstrate the following: (1) The UVS is consistent with melting of shallow Indian mid-ocean ridge basalt (MORB) mantle enriched with both lower continental crust (LCC) and subcontinental lithospheric mantle (SCLM) components; and (2) The LVS is consistent with recycling of SCLM components related to Gondwana break-up. The SCLM component has FOZO or HIMU like characteristics. One of the LVS samples has less radiogenic Os (γOs –3.4) and provides evidence for the presence of ancient SCLM in the source. The geochemistry of the Christmas Island lava series supports the idea that continental breakup causes shallow recycling of lithospheric and lower crustal components into the ambient MORB mantle.
APA, Harvard, Vancouver, ISO, and other styles
12

Aleinikoff, John N., G. Lang Farmer, Robert O. Rye, and Warren J. Nokleberg. "Isotopic evidence for the sources of Cretaceous and Tertiary granitic rocks, east-central Alaska: implications for the tectonic evolution of the Yukon-Tanana Terrane." Canadian Journal of Earth Sciences 37, no. 6 (June 1, 2000): 945–56. http://dx.doi.org/10.1139/e00-006.

Full text
Abstract:
Magnetotelluric traverses across the southern Yukon-Tanana terrane (YTT) reveal the presence of a thick conductive layer (or layers) beneath Paleozoic crystalline rocks. These rocks have been interpreted to be flysch of probable Mesozoic age, on the basis of the occurrence of Jurassic-Cretaceous flysch in the Kahiltna assemblage and Gravina-Nutzotin belt flanking the YTT to the southwest and southeast, respectively. The Pb, Nd, Sr, and O isotopes in Cretaceous and Tertiary granitic rocks that crop out throughout the YTT were measured to determine if these rocks do in fact contain a component of flysch. Previous limited analyses indicated that the Pb isotopes of the granitic rocks could be a mixture of radiogenic Pb derived from Paleozoic crystalline rocks of the YTT with an increasing component of relatively nonradiogenic Pb with decreasing age. Our Nd, Sr, and O data, along with additional Pb isotope data, eliminate flysch as a likely source and strongly suggest that the nonradiogenic end-member was derived from mafic rocks, either directly from mantle magma or by melting of mafic crust. The lack of a sedimentary component in the granitic plutons suggests either that the plutons did not incorporate significant amounts of flysch during intrusion or that the conductive layer beneath the YTT crystalline rocks is not flysch.
APA, Harvard, Vancouver, ISO, and other styles
13

Abraham, Anne-Claude, Don Francis, and Mireille Polvé. "Origin of Recent alkaline lavas by lithospheric thinning beneath the northern Canadian Cordillera." Canadian Journal of Earth Sciences 42, no. 6 (June 1, 2005): 1073–95. http://dx.doi.org/10.1139/e04-092.

Full text
Abstract:
Recent alkaline lavas that have erupted across the disparate terranes of the northern Canadian Cordillera provide natural probes with which to interrogate the underlying lithosphere. The lavas range between two compositional end members, olivine nephelinite (NEPH) and hypersthene-normative olivine (Hy-NORM) basalt. The chemical signature of amphibole in the incompatible element enriched NEPH end member indicates that it is derived in the lithospheric mantle. The Hy-NORM end member is characterized by lower incompatible trace element contents but is still relatively enriched relative to primitive mantle. Although the Hy-NORM end member is always more radiogenic in Pb and Sr isotopes and less radiogenic in Nd isotopes than the NEPH end member, its isotopic signature varies with tectonic belt. In particular, Hy-NORM basalts in the Omineca Belt are strikingly more radiogenic in Sr and Pb isotopes and less radiogenic in Nd isotopes than otherwise equivalent Hy-NORM basalts in the adjacent Intermontane Belt, indicating the existence of a major lithospheric boundary between the two belts. Cordilleran and other continental Hy-NORM basalts have distinctly low Ca and high Na contents compared with their equivalents in oceanic hot spots or at mid-ocean ridges. A comparison with experimental melts of mantle peridotite indicates that these characteristics reflect smaller degrees of partial melting (<10%) in the stability field of garnet in the lower lithospheric mantle beneath the northern Cordillera. Contrary to the conclusion commonly drawn from experimental results, the Cordilleran NEPH lavas may be derived from similar or shallower depths than coeval Hy-NORM basalts.
APA, Harvard, Vancouver, ISO, and other styles
14

Li, Piyou, Yuzhao Hu, Zhendong Tian, Shenjin Guan, and Huijun Fan. "Multi-Phase Hydrothermal Fluid Events in the Giant Lannigou Gold Deposit, SW China: Insights from Calcite Sm–Nd Age, Trace Elements, and C-O-Sr Isotopes." Minerals 13, no. 11 (November 8, 2023): 1420. http://dx.doi.org/10.3390/min13111420.

Full text
Abstract:
The Nanpanjiang basin hosts the world’s second-largest concentration of Carlin-type gold deposits. To decipher the origin and evolution of hydrothermal fluid, this study conducted Sm–Nd dating, in-situ trace element, and C-O-Sr isotopic analyses on three types of calcite samples from the giant Lannigou gold deposit in the Nanpanjiang basin, SW China. The type-I calcite, intergrown with Au-bearing arsenian pyrite, has an Sm–Nd isochron age of 213 ± 7 Ma (MSWD = 0.81), indicating that gold mineralization occurred in Late Triassic. The type-II calcite, which coexists with high-maturity bitumens and cut through the main-stage gold orebodies, yields an Sm–Nd age of 188 ± 14 Ma (MSWD = 0.34), representing a post-ore hydrocarbon accumulation event. The type-I and type-II calcite samples have low REE contents (5.28–51.6 ppm) and exhibit MREE-enriched and LREE-/HREE-depleted patterns. Combined with their identical C-O-Sr isotopes, we suggest that hydrothermal fluids responsible for the precipitation of type-I and type-II calcite samples were derived from a mixed metamorphic fluid and meteoric water source. In contrast, the type-III calcite samples, associated with realgar and orpiment, have distinct Mn, Sr, and As contents, REE patterns, and C-O-Sr isotopic composition from the type-I and II calcites, suggestive of different fluid sources. Based on our and previously published data, we propose that the fluid evolution, gold mineralization, and hydrocarbon accumulation in the Nanpanjiang basin are closely related to the Indosinian and Yanshanian orogenies in South China.
APA, Harvard, Vancouver, ISO, and other styles
15

Du, Zhiheng, Jiao Yang, Lei Wang, Ninglian Wang, Anders Svensson, Zhen Zhang, Xiangyu Ma, et al. "A database of radiogenic Sr–Nd isotopes at the “three poles”." Earth System Science Data 14, no. 12 (December 9, 2022): 5349–65. http://dx.doi.org/10.5194/essd-14-5349-2022.

Full text
Abstract:
Abstract. The radiogenic isotope compositions of strontium (Sr) and neodymium (Nd) on the surface of the Earth are powerful tools for tracing dust sources and sinks on the Earth's surface. To differentiate between the spatial variabilities in eolian dust sources in key cryospheric regions at the three poles (the Arctic; Antarctica; and the “third pole”, covering the high mountainous area in Asia), a dataset of Sr–Nd isotopic compositions from extremely cold or arid terrestrial environments was compiled, similar to the method of Blanchet (2019). The database includes Holocene and Quaternary snow, ice, sand, soil (loess), sediment, and rock samples from the three poles based on 90 different references and our own measurement data, with a total of 1989 data points, comprising 206 data points with different grain sizes and 212 data points with fraction measurements. There are 485 data points from the third pole, 727 data points from the Arctic, and 777 data points from Antarctica. The sampling and measurement methods of these data are introduced. For each pole, geographical coordinates and other information are provided. The main scientific purpose of this dataset is to provide a Sr–Nd dataset based on collective documentation and our own measurements, which will be useful for determining the sources and transport pathways of dust in snow, ice, rivers, and oceans at or near the three poles as well as to investigate whether multiple dust sources are present at each of the poles. This dataset provides exhaustive detailed documentation of the isotopic signatures at the three poles during specific time intervals in the Quaternary period, which are useful for understanding the sources or sinks of eolian dust and sediments at the three poles. The dataset is available from the National Tibetan Plateau Data Center (https://doi.org/10.11888/Cryos.tpdc.272100, Du, 2022).
APA, Harvard, Vancouver, ISO, and other styles
16

Wang, Zeng-Zhen, Xuan-Hua Chen, Zhao-Gang Shao, Bing Li, Hong-Xu Chen, Wei-Cui Ding, Yao-Yao Zhang, and Yong-Chao Wang. "Geochronology, geochemistry and tectonic implications of early Carboniferous plutons in the southwestern Alxa Block." Geological Magazine 159, no. 3 (November 12, 2021): 372–88. http://dx.doi.org/10.1017/s0016756821000984.

Full text
Abstract:
AbstractThe southeastern Central Asian Orogenic Belt (CAOB) records the assembly process between several micro-continental blocks and the North China Craton (NCC), with the consumption of the Paleo-Asian Ocean (PAO), but whether the S-wards subduction of the PAO beneath the northern NCC was ongoing during Carboniferous–Permian time is still being debated. A key issue to resolve this controversy is whether the Carboniferous magmatism in the northern NCC was continental arc magmatism. The Alxa Block is the western segment of the northern NCC and contiguous to the southeastern CAOB, and their Carboniferous–Permian magmatism could have occurred in similar tectonic settings. In this contribution, new zircon U–Pb ages, elemental geochemistry and Sr–Nd isotopic analyses are presented for three early Carboniferous granitic plutons in the southwestern Alxa Block. Two newly identified aluminous A-type granites, an alkali-feldspar granite (331.6 ± 1.6 Ma) and a monzogranite (331.8 ± 1.7 Ma), exhibit juvenile and radiogenic Sr–Nd isotopic features, respectively. Although a granodiorite (326.2 ± 6.6 Ma) is characterized by high Sr/Y ratios (97.4–139.9), which is generally treated as an adikitic feature, this sample has highly radiogenic Sr–Nd isotopes and displays significantly higher K2O/Na2O ratios than typical adakites. These three granites were probably derived from the partial melting of Precambrian continental crustal sources heated by upwelling asthenosphere in lithospheric extensional setting. Regionally, both the Alxa Block and the southeastern CAOB are characterized by the formation of early Carboniferous extension-related magmatic rocks but lack coeval sedimentary deposits, suggesting a uniform lithospheric extensional setting rather than a simple continental arc.
APA, Harvard, Vancouver, ISO, and other styles
17

McBIRNEY, A. R. "The Skaergaard Layered Series, Part VII: Sr and Nd Isotopes." Journal of Petrology 44, no. 4 (April 1, 2003): 757–71. http://dx.doi.org/10.1093/petrology/44.4.757.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Niu, Xiaolu, Yildirim Dilek, Fei Liu, Guangying Feng, and Jingsui Yang. "Early Devonian ultrapotassic magmatism in the North China Craton: geochemical and isotopic evidence for subcontinental lithospheric mantle metasomatism by subducted sediment-derived fluids." Geological Magazine 158, no. 1 (August 6, 2019): 158–74. http://dx.doi.org/10.1017/s0016756819000797.

Full text
Abstract:
AbstractWe report new U–Pb zircon age data, zircon in situ oxygen isotope, mineral chemistry, whole-rock geochemistry and Sr–Nd isotopic compositions from the Early Devonian ultrapotassic Gucheng pluton in the North China Craton, and discuss its petrogenesis. The Gucheng pluton is exposed in the northern part of the North China Craton and forms a composite intrusion, consisting of K-feldspar-bearing clinopyroxenite, clinopyroxene-bearing syenite and alkali-feldspar syenite. Mineral phases in these lithologies include clinopyroxene (Wo43–48En19–35Fs18–38), sanidine (An0Ab3–11Or89–97), and subordinate titanite, andradite and Na-feldspar. These rocks show homogeneous Sr but variable Nd isotopic compositions, and have relatively high zircon in situ oxygen isotopes (δ18O = 5.2–6.7). The Gucheng plutonic rocks formed through fractional crystallization and accumulation from ultrapotassic magmas, which were originated from partial melting of metasomatic vein systems in the subcontinental lithospheric mantle of the North China Craton. These vein networks developed as a result of the reactions of fluids derived from subducted pelitic sediments on the downgoing Palaeo-Asian ocean floor with the enriched, subcontinental lithospheric mantle peridotites. Sensitive high-resolution ion microprobe (SHRIMP) U–Pb zircon dating has revealed a crystallization age of 415 Ma for the timing of the emplacement of the Gucheng pluton that marks the early stages of alkaline magmatism associated with the Andean-type continental margin evolution along the northern edge of the North China Craton facing the Palaeo-Asian Ocean.
APA, Harvard, Vancouver, ISO, and other styles
19

Armstrong, Richard Lee, Randall R. Parrish, Peter van der Heyden, Krista Scott, Dita Runkle, and Richard L. Brown. "Early Proterozoic basement exposures in the southern Canadian Cordillera: core gneiss of Frenchman Cap, Unit I of the Grand Forks Gneiss, and the Vaseaux Formation." Canadian Journal of Earth Sciences 28, no. 8 (August 1, 1991): 1169–201. http://dx.doi.org/10.1139/e91-107.

Full text
Abstract:
The protolith age of high-grade metamorphic rocks exposed in structurally deep parts of the Omineca Crystalline Belt has been the subject of investigation and controversy for decades. We have applied multiple isotopic dating techniques to rocks of three structural culminations: the Monashee complex (which includes the Frenchman Cap and Thor–Odin gneiss domes), the Grand Forks horst, and the Vaseaux Formation, which lies in the footwall of the Okanagan Valley fault.Frenchman Cap core gneisses contain highly radiogenic Sr that scatters about a 2206 ± 117 Ma (1σ) Rb–Sr isochron with 87Sr/86Sr initial ratio of 0.700 ± 0.002. Monazite and zircon dates for the same rocks are 1851 ± 7 to 2103 ± 16 Ma (only U–Pb dates are given with 2σ errors), with lower intercepts from about 100 to 300 Ma. Sm–Nd whole-rock and crustal-residence (TDM) dates are 2.3 ± 0.2 Ga. Mafic–felsic layering in the core gneiss is also of Early Proterozoic age. There is no geochronometric evidence for Late Proterozoic or Mesozoic migmatization.Frenchman Cap mantling gneisses, including samples from above the Monashee décollement, have radiogenic Sr and unradiogenic Nd compositions that are not consistent with current inferences of a Late Proterozoic to Paleozoic depositional age. Two intrusive granitic rocks, which cut mantling gneiss, are either Early Proterozoic or Mesozoic–Cenozoic with a Proterozoic Sr isotopic signature acquired by assimilation of core gneiss. One other intrusive studied is probably Paleocene Ladybird granite. The age of the mantling gneiss is not yet consistently resolved.Grand Forks Gneiss Unit I paragneiss gives radiogenic whole-rock Sr, zircon U–Pb upper intercept, and Sm–Nd whole-rock crustal-residence dates of 1.7 ± 0.4 Ga, 1681 ± 3 Ma (2σ, but the apparent high precision is very dependent on the assumption made about the time of Pb loss), and 1.9 ± 0.3 Ga, respectively. Unit II and younger Grand Forks Gneiss units are Late Proterozoic or Phanerozoic. All isotope systems have been considerably reset on a centimetre to metre scale by Mesozoic–Cenozoic regional metamorphism. Grand Forks Sr, Pb, and Nd isotope data are much like those for Spokane area pre-Purcell basement.Vaseaux Formation micaceous schist and gneiss give radiogenic whole-rock Sr, zircon U–Pb upper intercept, and Sm–Nd crustal-residence dates of 2.1 ± 0.6 Ga, 1899 ± 49 Ma (2σ), and 2.2 ± 0.1 Ga, respectively. Hornblende-bearing schist and gneiss contain much less radiogenic Sr and more radiogenic Nd. The latter are either tectonic intercalations of Late Proterozoic to Paleozoic eugeosynclinal rocks or Mesozoic–Cenozoic mixtures of mantle-derived magma and older crustal rock. The Vaseaux Formation paragneiss is similar isotopically to paragneiss in the Frenchman Cap core gneiss. This may indicate a similar age, or that Vaseaux sedimentary rocks could be much younger and isochemically derived from a basement of Frenchman Cap character. The first alternative is favored because the three isotope systems are usually not preserved in unison through sedimentary processes. Sr isotopes, in particular, do not usually preserve a provenance age.In all three areas, late Mesozoic to early Cenozoic metamorphic monazite, hornblende, muscovite, and biotite dates provide a record of cooling from a Cretaceous to Paleocene culmination of regional metamorphism, with particularly rapid cooling during Paleocene to Eocene crustal extension and tectonic unroofing.The localities studied are tectonic windows on structural culminations that expose basement that we infer to be part of North America. Their ages fit the pattern of basement ages established for the stable craton. Their extent is consistent with the reconstruction of compressed miogeoclinal rocks. The eastern half of the Cordilleran region on both sides of the United States – Canada border is underlain by Early Proterozoic basement that was attenuated in Late Proterozoic time, compressed during Mesozoic–Cenozoic orogeny, and finally extended in early Cenozoic collapse of the thickened crust. During Mesozoic–Cenozoic orogeny the sedimentary cover of that basement was pushed approximately 200 km eastward and replaced by allochthonous terranes. The tectonic displacements documented in the southern Canadian Cordillera are truly exceptional.
APA, Harvard, Vancouver, ISO, and other styles
20

Molnár, Kata, Pierre Lahitte, Stéphane Dibacto, Zsolt Benkó, Samuele Agostini, Boglárka Döncző, Artur Ionescu, et al. "The westernmost Late Miocene–Pliocene volcanic activity in the Vardar zone (North Macedonia)." International Journal of Earth Sciences 111, no. 3 (December 24, 2021): 749–66. http://dx.doi.org/10.1007/s00531-021-02153-2.

Full text
Abstract:
AbstractLate Miocene to Pleistocene volcanism within the Vardar zone (North Macedonia) covers a large area, has a wide range in composition, and is largely connected to the tectonic evolution of the South Balkan extensional system, the northern part of the Aegean extensional regime. The onset of the scattered potassic to ultrapotassic volcanism south from the Scutari-Peć transverse zone occurred at ca. 8.0 Ma based on this study. Here, we focused on three volcanic centers located on deep structures or thrust faults along the western part of the Vardar zone, for which there is none to very little geochronological and geochemical data available. Pakoševo and Debrište localities are represented as small remnants of lava flows cropping out at the southern edge of Skopje basin and at the western edge of Tikveš basin, respectively. Šumovit Greben center is considered as part of the Kožuf-Voras volcanic system, and it is located on its westernmost side, at the southern edge of Mariovo basin, which is largely composed of volcaniclastic sediments. We present new eruption ages applying the unspiked Cassignol-Gillot K–Ar technique on groundmass, as well as petrological and geochemical data, supplemented with Sr and Nd isotopes to complement and better understand the Neogene-Pleistocene volcanism in the region. Eruption ages on these rocks interlayered between sedimentary formations allow to better constrain the evolution of those sedimentary basins. Rocks from the three volcanic centers belong to the high-K calc-alkaline–shoshonitic series based on their elevated K content. The oldest center amongst these three localities, as well as other Late Miocene centers within the region, is the trachyandesitic Debrište, which formed at ca. 8.0 Ma, and exhibits the highest Nd and lowest Sr isotopic ratios (0.512441–0.512535 and 0.706759–0.706753, respectively). The basaltic trachyandesite Pakoševo center formed at ca. 3.8 Ma and its Nd and Sr isotopic ratios (0.512260 and 0.709593, respectively) bear the strongest signature of crustal contamination. The rhyolitic Šumovit Greben center is a composite volcanic structure formed at ca. 3.0–2.7 Ma. Its youngest eruption unit has a slightly higher Nd and lower Sr isotopic ratios (0.512382 and 0.709208, respectively) representing a magma with a lesser extent of crustal assimilation than the other samples from this center. The overall trend through time in the Sr and Nd isotopic ratios of the Late Miocene to Pleistocene mafic volcanic centers in the region implies an increasing rate of metasomatism of the lithospheric mantle.
APA, Harvard, Vancouver, ISO, and other styles
21

Sun, Xiang, Yongjun Lu, Qiang Li, and Ruyue Li. "A Downgoing Indian Lithosphere Control on Along-Strike Variability of Porphyry Mineralization in the Gangdese Belt of Southern Tibet." Economic Geology 116, no. 1 (November 23, 2020): 29–46. http://dx.doi.org/10.5382/econgeo.4768.

Full text
Abstract:
Abstract The E-trending Gangdese porphyry copper belt in southern Tibet is a classic example of porphyry mineralization in a continental collision zone. New zircon U-Pb geochronological, zircon Hf-O, and bulk-rock Sr-Nd isotope data for the Miocene mineralizing intrusions from the Qulong, Zhunuo, Jiru, Chongjiang, and Lakange porphyry copper deposits and Eocene igneous rocks from the western Gangdese belt, together with literature data, show that both Paleocene-Eocene igneous rocks and Miocene granitoids exhibit coupled along-arc isotopic variations, characterized by bulk-rock ɛNd(t) and zircon ɛHf(t) values increasing from ~84° to ~92°E and then decreasing toward ~95°E. These are interpreted to reflect increasing contributions of subducted Indian continental materials from ~92° to ~84°E and from ~92° to ~95°E, respectively. The Miocene mineralizing intrusions were derived from subduction-modified Tibetan lower crust represented isotopically by the Paleocene-Eocene intrusions, with contributions from Indian plate-released fluids and mafic melts derived from mantle metasomatized by subducted Indian continental materials. Involvement of isotopically ancient Indian continental materials increased from east (Qulong) to west (Zhunuo), which is interpreted to reflect an increasingly shallower angle of the downgoing Indian slab from east to west, consistent with geophysical imaging. Exploration of Gangdese Miocene porphyry copper deposits should focus on the Paleocene-Eocene arc where the subarc mantle was mainly enriched by fluids from the subducted Neo-Tethyan oceanic slab. Neodymium-Hf isotope data for mineralizing igneous rocks from porphyry copper deposits globally show no obvious correlations with Cu endowment. Although Nd-Hf isotopes are useful for imaging lithospheric architecture through time, caution must be taken when using Nd-Hf isotopes to evaluate the potential endowment of porphyry copper deposits, because other factors such as tectonic setting, crustal thickening, magma differentiation, fluid exsolution, and ore-forming processes all play roles in determining Cu endowments and grades.
APA, Harvard, Vancouver, ISO, and other styles
22

Speziale, Sergio, Francesca Castorina, Paolo Censi, Celso de Barros Gomes, Leila Soares Marques, and Piero Comin-Chiaramonti. "Carbonatites from the southern Brazilian Platform: A review. II: Isotopic evidences." Open Geosciences 12, no. 1 (August 21, 2020): 678–702. http://dx.doi.org/10.1515/geo-2020-0032.

Full text
Abstract:
AbstractEarly and Late Cretaceous alkaline and alkaline–carbonatitic complexes from southern Brazil are located along the main tectonic lineaments of the South America Platform. Calcium-, magnesium-, and ferrocarbonatites are well represented and frequently associated even in the same complex. Primary carbonates present significant variations in C–O isotopic compositions, which are mainly due to isotope exchange with H2O–CO2-rich hydrothermal fluids, whereas fractional crystallization or liquid immiscibility probably affects the δ18O and δ13C values by no more than 2δ‰. Our isotope exchange model implies that the most significant isotopic variations took place in a hydrothermal environment, e.g., in the range 400–80°C, involving fluids with the CO2/H2O ratio ranging from 0.8 to 1. Sr–Nd–Pb isotope systematics highlight heterogeneous mixtures between HIMU and EMI mantle components, similar to the associated alkaline rocks and the flood tholeiites from southern Brazil. In spite of the strong variation shown by C–O isotopes, Sr–Nd–Pb–Os isotopic systematics could be related to an isotopically enriched source where the chemical heterogeneities reflect a depleted mantle “metasomatized” by small-volume melts and fluids rich in incompatible elements. These fluids are expected to have promoted crystallization of K-rich phases in the mantle, which produced a veined network variously enriched in LILE and LREE. The newly formed veins (enriched component) and peridotite matrix (depleted component) underwent a different isotopic evolution with time as reflected by the carbonatites. These conclusions may be extended to the whole Paraná–Etendeka system, where isotopically distinct parent magmas were generated following two main enrichment events of the subcontinental lithospheric mantle at 2.0–1.4 and 1.0–0.5 Ga, respectively, as also supported by Re–Os systematics. The mantle sources preserved the isotopic heterogeneities over a long time, suggesting a nonconvective lithospheric mantle beneath different cratons or intercratonic regions. Overall, the data indicate that the alkaline–carbonatitic magmatism originated from a locally heterogeneous subcontinental mantle.
APA, Harvard, Vancouver, ISO, and other styles
23

Tang, Yu-Wei, Long Chen, Zi-Fu Zhao, and Yong-Fei Zheng. "Geochemical evidence for the production of granitoids through reworking of the juvenile mafic arc crust in the Gangdese orogen, southern Tibet." GSA Bulletin 132, no. 7-8 (November 7, 2019): 1347–64. http://dx.doi.org/10.1130/b35304.1.

Full text
Abstract:
Abstract Although continental crust is characterized by the widespread occurrence of granitoids, the causal relationship between continental crust growth and granitic magmatism still remains enigmatic. While fractional crystallization of basaltic magmas (with or without crustal contamination) and partial melting of mafic lower crust are two feasible mechanisms for the production of granitoids in continental arc regions, the problem has been encountered in discriminating between the two mechanisms by whole-rock geochemistry. This can be resolved by an integrated study of zircon U-Pb ages and Hf-O isotopes together with whole-rock major-trace elements and Sr-Nd-Pb isotopes, which is illustrated for Mesozoic granitoids from the Gangdese orogen in southern Tibet. The results provide geochemical evidence for prompt reworking of the juvenile mafic arc crust in the newly accreted continental margin. The target granitoids exhibit high contents of SiO2 (65.76–70.75 wt%) and Na2O + K2O (6.38–8.15 wt%) but low contents of MgO (0.19–0.98 wt%), Fe2O3 (0.88–3.13 wt%), CaO (2.00–3.82 wt%), Ni (&lt;5.8 ppm), and Cr (≤10 ppm). They are enriched in large ion lithophile elements, Pb, and light rare earth elements but depleted in high field strength elements. The granitoids are relatively depleted in whole-rock Sr-Nd isotope compositions with low (87Sr/86Sr)i ratios of 0.7043–0.7048 and positive εNd(t) values of 0.5–2.6, and have relatively low 207Pb/204Pb and 208Pb/204Pb ratios at given 206Pb/204Pb ratios. Laser ablation–inductively coupled plasma–mass spectrometry and secondary ion mass spectrometry U-Pb dating on synmagmatic zircons yield ages of 77 ± 2–81 ± 1 Ma in the Late Cretaceous for their emplacement. Relict zircons have two groups of U-Pb ages in the late Mesozoic and the late Paleozoic, respectively. The whole-rock Sr-Nd isotopes in the granitoids are quite similar to those of Late Cretaceous mafic rocks in the Gangdese batholith. In addition, both synmagmatic zircons and relict zircons with Late Cretaceous U-Pb ages exhibit almost the same Hf-O isotope compositions to those of the slightly earlier mafic rocks. All these observations indicate that the granitoids were mainly derived from partial melting of the juvenile mafic arc crust. Therefore, reworking of the juvenile mafic arc crust is the mechanism for the origin of isotopically depleted granitoids in southern Tibet. It is this process that leads to differentiation of the juvenile mafic arc crust toward the felsic lithology in the continental arc. In this regard, the granitoids with depleted radiogenic isotope compositions do not necessarily contribute to the crustal growth at convergent plate boundaries.
APA, Harvard, Vancouver, ISO, and other styles
24

Neumann, E. R., J. S. Marsh, C. Y. Galerne, S. Polteau, H. Svensen, and S. Planke. "Co-existing low-Ti and high-Ti dolerites in two large dykes in the Gap Dyke swarm, southeastern Karoo Basin (South Africa)." South African Journal of Geology 123, no. 1 (March 1, 2020): 19–34. http://dx.doi.org/10.25131/sajg.123.0003.

Full text
Abstract:
Abstract This paper presents major, trace element and Sr-Nd isotope data on two large, east-west trending dolerite dykes in the southeastern part of the Karoo Basin, the South Gap (155 km long, ≤275 m wide) and the North Gap (150 km long, ≤190 m wide) dykes. The Gap dykes represent a rare case in the Karoo Large Igneous Province (LIP) where low-Ti (Gap1: &lt;1.7 wt% TiO2, &lt;130 ppm Zr, 200 to 330 ppm Sr, 6 to 17 ppm La, 87Sr/86Sr183: 0.7045 to 0.7075, ɛNd183: +0.31 to -7.5, ΔNb: +0.4 to -0.2) and high-Ti rocks (Gap2: 2.4 to 3.1 wt% TiO2, 110 to 240 ppm Zr, 260 to 390 ppm Sr, 12 to 24 ppm La, 87Sr/86Sr183: 0.7066 to 0.7074, ɛNd183: -3.2 to -4.1, ΔNb: +0.2 to -0.4) alternate along the same dykes. The aim of the study is to unravel the origin and petrogenesis of the two rock groups. The sample groups show the chemical traces of fractional crystallization in increasing concentrations of incompatible trace elements with decreasing MgO, and pivot points where elements such as Ti, Ca, P, and Sc change from trends of increasing to decreasing concentrations with decreasing MgO. Trends of increasing 87Sr/86Sr183 with decreasing ɛNd183 ratios indicate crustal contamination. However, three Gap1 samples from the South Gap dyke with the least enriched Sr-Nd isotope ratios and highest ΔNb may be derived from uncontaminated plume-type mantle melts. Modelling of Sr-Nd isotopes indicate that the Gap1 samples were subjected to assimilation of crustal melts (≤8%) and fractional crystallization in deep crustal magma chambers. There are no restrictions on the mantle source for the Gap2 rocks. However, because both geochemical signatures occur at different localities along the two Gap dykes, we favor a SA (South African) type mantle source for the two groups. The Gap2 rocks appear to have a two-stage assimilation history with one stage in the SCLM (subcontinental lithospheric mantle) or deep crust (decreasing the ɛNd183, increasing the 87Sr/86Sr183 ratios, and inducing the high-Ti character), followed by a second stage of contamination and fractional crystallization in the upper crust (increasing Sr isotope and (Sm/Yb)N ratios, with only minor decrease in ɛNd183).
APA, Harvard, Vancouver, ISO, and other styles
25

BONEV, NIKOLAY, YILDIRIM DILEK, JOHN M. HANCHAR, KAMEN BOGDANOV, and LASLO KLAIN. "Nd–Sr–Pb isotopic composition and mantle sources of Triassic rift units in the Serbo-Macedonian and the western Rhodope massifs (Bulgaria–Greece)." Geological Magazine 149, no. 1 (September 26, 2011): 146–52. http://dx.doi.org/10.1017/s0016756811000938.

Full text
Abstract:
AbstractWe report on the field occurrence and isotopic compositions of metamafic rocks exposed in the Serbo-Macedonian (Volvi and Therma bodies) and western Rhodope (Rila Mountains) massifs of Bulgaria and Greece. These metamafic units consist of high- and low-Ti gabbroic and basaltic rocks, whose Nd–Sr–Pb isotopes are compatible with mantle-derived MORB and OIB components with a small amount of crustal material involved in their melt source. These isotopic features combined with the field observations are consistent with an intra-continental rift origin of the metamafic rocks protolith, and are comparable to those of the Triassic rift-related mafic rocks in the northern Aegean region.
APA, Harvard, Vancouver, ISO, and other styles
26

Uras, Y., A. V. Nikiforov, F. Oner, and O. Parlak. "Geochemistry and Nd, Sr isotopes of the Pohrenk fluorites (Kırsehir-Turkey)." Geochemistry International 55, no. 3 (March 2017): 263–81. http://dx.doi.org/10.1134/s0016702917030090.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Martin, E. E., and B. A. Haley. "Fossil fish teeth as proxies for seawater Sr and Nd isotopes." Geochimica et Cosmochimica Acta 64, no. 5 (March 2000): 835–47. http://dx.doi.org/10.1016/s0016-7037(99)00376-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Condie, Kent C., and Richard C. Aster. "Refinement of the supercontinent cycle with Hf, Nd and Sr isotopes." Geoscience Frontiers 4, no. 6 (November 2013): 667–80. http://dx.doi.org/10.1016/j.gsf.2013.06.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Galán, Gumer, Gloria Gallastegui, Andrés Cuesta, Guillermo Corretgé, Ofelia Suárez, and Luis González-Menéndez. "Contrasting appinites, vaugnerites and related granitoids from the NW Iberian Massif: insight into mantle and crustal sources." European Journal of Mineralogy 35, no. 5 (October 18, 2023): 845–71. http://dx.doi.org/10.5194/ejm-35-845-2023.

Full text
Abstract:
Abstract. Post-collisional Mg–K-rich mafic rocks with associated granitoids appear regularly in most orogens. They are relevant to evaluate the mantle role in the genesis of granitoids and thereby of the continental crust itself. The most characteristic Mg–K mafic rocks in the Variscan Iberian Massif are appinites and vaugnerites. Two examples with associated granitoids from NW Iberia have been compared to assess their mantle and crustal sources and the magmatic processes involved in their formation. Related granitoids are tonalites, granodiorites and monzonitic granites. Available whole-rock major and trace element compositions, as well as Sr and Nd isotopes, were used for this comparison, along with new Sr–Nd isotopic data. The appinite–granitoid association is calc–alkalic, whereas the vaugneritic one is calc–alkalic transitional to alkali–calcic. Vaugnerites are more enriched in Mg and K, compatible and incompatible trace elements and display more fractionated rare-earth element (REE) patterns than appinites. Associated granitoids provide similar differences. Appinites and vaugnerites have Sr and Nd crustal isotopic signatures resulting from partial melting of a different subduction-type metasomatised mantle: amphibole spinel lherzolites for appinites and more refractory and deeper amphibole phlogopite ± garnet peridotites for vaugnerites. Further interaction of these basic melts with coeval granitoids occurred during their ascent and emplacement. The monzonitic granites derived from partial melting of metaigneous acid granulites, without discarding contribution of metasediments and/or an increasing role of biotite incongruent melting in those related to vaugnerites. An assimilation with fractional crystallisation process between appinite magmas and granulites could explain tonalites and granodiorites. This process was not confirmed for granodiorites related to vaugnerites.
APA, Harvard, Vancouver, ISO, and other styles
30

Zhang, Songsong, Xiaoyong Yang, and Lei Liu. "Evolution, Magmatic Source and Metallogenesis of A-Type Granites in the Fanchang Volcanic Basin, Middle and Lower Yangtze Metallogenic Belt: A Review." Minerals 13, no. 4 (April 18, 2023): 571. http://dx.doi.org/10.3390/min13040571.

Full text
Abstract:
The Fanchang volcanic basin (FVB) is located in the Middle and Lower Yangtze Metallogenic Belt (MLYMB) between the ore districts of Ningwu and Tongling. The existing ore deposits in the FVB are relatively small in scale and related to late Mesozoic A-type granites. In this paper, the crystallization age, major and trace element composition, and Sr-Nd and Hf isotope compositions of the A-type granites are summarized from the literature; in addition, the magnetite composition, H and O isotopes of fluid inclusions, and sulfur isotope composition of metal sulfides in some typical ore deposits in the FVB are also summarized to give insights into the petrogenesis and mineralization of the A-type granites intruding into the FVB. The results show that: (1) Orthopyroxene, plagioclase, K-feldspar, and biotite are the main fractionating minerals controlling the evolution of the magmas of A-type granites in the FVB and other areas in the MLYMB. (2) The whole-rock Sr-Nd and zircon Hf isotopic characteristics show that the source of A-type granite magma is complex and includes the enriched mantle, lower crust, and upper crust, probably with stronger participation of Archaean–Paleoproterozoic crustal materials in the FVB granites than in other regions of the MLYMB. (3) The ores in the FVB are dominated by skarn and hydrothermal deposits. H and O isotopes of fluid inclusions indicate that ore-forming fluids have been derived from mixtures of magmatic hydrothermal fluid, meteoric waters, and deep brine related to gypsum layers. S isotopes of metal sulfides indicate that the sulfur may be a mixture of magmatically derived sulfur and sulfur originating from the Triassic gypsum-bearing layers. The deposit and ore characteristics of the main deposits in the FVB are also illustrated, and the evaluation of metal resources indicates that the skarn and hydrothermal iron–zinc ores in the FVB also have potential as sources of Cd, Ga, and Se. In addition, in terms of the oxygen fugacity, rock type, and geochemical characteristics of magmatic rocks, the metallogenic characteristics and potential of the A-type granites in the FVB are evaluated. It is considered that in addition to the dominant constituents of iron and zinc and the minor constituents listed above, the FVB could have the potential for providing copper, gold, molybdenum, uranium, and other metals as well.
APA, Harvard, Vancouver, ISO, and other styles
31

CINTRON FRANQUI, NADJA OMARA, SUNG HI CHOI, and DER-CHUEN LEE. "Peridotites and basaltic rocks within an ophiolitic mélange from the SW igneous province of Puerto Rico: relation to the evolution of the Caribbean Plate." Geological Magazine 154, no. 1 (February 2, 2016): 96–118. http://dx.doi.org/10.1017/s001675681500093x.

Full text
Abstract:
AbstractThe geology of Puerto Rico is divided into three regions: the north, central and SW igneous provinces. Characterized by its Jurassic ophiolitic mélange basement, lithology of the SW Igneous Province (SIP) is not related to either of the other two provinces. The ophiolitic mélange is exposed in three peridotite belts: Monte del Estado, Rio Guanajibo and Sierra Bermeja. We present geochemical data to identify the tectonic setting of the SIP peridotite formation and its relation to the evolution of the Caribbean Plate. Comparisons of spinel Cr no. (13–21), Mg no. (63.3–69.6) and TiO2suggest an abyssal peridotite origin; however, only Sierra Bermeja presents high TiO2characteristics of a mid-ocean-ridge-basalt- (MORB-) like melt reaction. Temperatures determined with two-pyroxene geothermometers indicated a cold thermal regime ofc. 800–1050°C, with characteristics of large-offset transform fault abyssal peridotites. The geochemistry and Sr–Nd–Hf–Pb isotopic compositions of basalts within the mélange were also analysed. Las Palmas amphibolites exhibited normal-MORB-like rare earth element (REE) and trace-element patterns, whereas metabasalts and Lower Cajul basalts exhibited island-arc tholeiitic-like patterns. Highly radiogenic Sr isotopes (0.70339–0.70562) of the basalts suggest seawater alteration; however, Pb–Pb and Nd–Hf isotope correlations represent the primary compositions of a Pacific/Atlantic MORB source for the amphibolites, metabasalts and Lower Cajul basalts. We propose that the SIP ophiolitic mélange was formed along a large-offset transform fault, which initiated subduction and preserved both proto-Pacific and proto-Caribbean lithospheric mantle. Younger Upper Cajul basalts exhibited enriched-MORB-like geochemical and isotopic signatures, which can be attributed to a tectonized Caribbean ocean plateau.
APA, Harvard, Vancouver, ISO, and other styles
32

Antonini, P., P. Comin-chiaramonti, C. B. Gomes, P. Censi, B. F. Riffel, and E. Yamamoto. "The Early Proterozoic carbonatite complex of Angico dos Dias, Bahia State, Brazil: geochemical and Sr-Nd isotopic evidence for an enriched mantle origin." Mineralogical Magazine 67, no. 5 (October 2003): 1039–57. http://dx.doi.org/10.1180/0026461036750142.

Full text
Abstract:
AbstractBorehole samples of carbonatites and phlogopite-pyroxenites from the Angico dos Dias (AdD) intrusive alkaline complex, State of Bahia, Brazil, have been investigated in terms of mineralogy, geochemistry and C-O-Sr-Nd isotopes. The AdD complex, of Early Proterozoic age (2 Ga), intrudes the northern side of the São Francisco Craton. Mineralogy and petrography indicate that the studied rocks only partially preserved their magmatic textural features owing to their metamorphic re-equilibration (greenschist facies). The REE contents and LREE/HREE ratios of the AdD carbonatites are very high (mean 3979±718 ppm and La/Yb = 215±23, respectively), as for most Precambrian magmatic carbonatites. The AdD carbonatites are also enriched in 18O (δ18O = 11.9 to 15.8‰), possibly due to secondary processes (e.g. metamorphism, alteration) whereas carbon isotopes are in the range of ‘primary carbonatites’ (δ13C = –5.7 to –7.1‰). Most of the initial 87Sr/86Sr and 143Nd/144Nd values of the studied carbonatites were not appreciably modified by secondary processes. Their εtSr and εtNd values (20.0 to 25 and 0.7 to –4.5, respectively) indicate enriched mantle sources very different from the ‘depleted’ ones related to many Precambrian carbonatites from North America (0.6 –2.6 Ga) and Africa (0.5 –2.0 Ga). The Early Proterozoic Sr-Nd isotopic signatures of the AdD carbonatites are similar to those of the Early Cretaceous carbonatites from the Paraná basin. The latter carbonatites show a great isotopic variability ranging from Bulk Earth to the related potassic magmatism from Asunción-Sapucai graben in the Eastern Paraguay (K-ASU magmatism: εtSr = 35 to 50 and εtNd = –12 to –20). The very similar isotopic compositions of Precambrian and post-Palaeozoic carbonatites worldwide indicate that the subcontinental mantle variability lasted for long periods of time and indicate a large-scale mantle heterogeneity.
APA, Harvard, Vancouver, ISO, and other styles
33

Li, Runwu, Shangguo Su, Huiyi Sun, Ruibin Liu, and Yutian Xia. "Petrogenesis and Tectonic Significance of Early Permian Intermediate–Felsic Rocks in the Southern Beishan Orogen, Northwest China: Geochronological and Geochemical Constraints." Minerals 14, no. 1 (January 22, 2024): 114. http://dx.doi.org/10.3390/min14010114.

Full text
Abstract:
Permian intermediate–felsic igneous rocks, widely distributed in the southern Beishan orogen, provide crucial constraints on the geodynamic process of the late Paleozoic Paleo-Asian Ocean. New zircon U–Pb dating using LA–ICP–MS determines the age of the northern Qingshan diorites, the Heishantou quartz diorites, and the southern Qingshan biotite granodiorites at 300 Ma, 294 Ma, and 291–286 Ma, respectively. Their whole-rock compositions exhibit arc-like geochemical features. Moreover, their zircon trace elements show the characteristics of continental arc zircons. The diorites, characterized by low SiO2, high MgO with Mg# (50–52), and low Cr, Co, and Ni, display enrichment in Sr-Nd-Hf isotopes (87Sr/86Sr = 0.7060 to 0.7061; ℇNd(t) = −1.4 to −1.7; ℇHf(t) = −4.7 to −0.6), originating from the fractionation process of magma derived from the enriched mantle. The quartz diorites show moderate SiO2 and variable MgO (2.75–3.84 wt%) and exhibit enrichment in Sr-Nd (87Sr/86Sr = 0.7048–0.7050; ℇNd(t) = −1.5–+0.9) and depletion in zircon Hf isotopes (ℇHf(t) = 3.8 to 7.8). Combined with their high Y (20.0–21.0 ppm) and low (La/Yb)N (6.0 to 17.2), we conclude that they originated from the juvenile lower crust previously influenced by oceanic sediments, with the input of enriched mantle-derived materials. The biotite granodiorites display low A/CNK (0.91–0.97), 10000*Ga/Al (1.8–1.9), and Ti-in-zircon temperatures (average 711 °C), indicating that they are I-type granitoids. These rocks show enrichment in Sr-Nd isotopes (87Sr/86Sr = 0.7054 to 0.7061; ℇNd(t) = −2.0 to −1.6) and many variable zircon Hf isotopes (ℇHf(t) = −2.3 to +4.5). Geochemical studies indicate that they originate from the mixing of magmas derived from the enriched mantle and preexisting juvenile lower crust. All these data imply the existence of oceanic subduction in southern Beishan during the early Permian. Integrating these results with previous studies, it is inferred that the retreating subduction of the Liuyuan Ocean contributed to early Permian intermediate–felsic rocks becoming widespread in the Shibanshan unit, the southernmost part of the Beishan orogen, and also why the Paleo-Asian Ocean in southern Beishan did not close during the early Permian.
APA, Harvard, Vancouver, ISO, and other styles
34

Milisenda, C. C., T. C. Liewa, A. W. Hofmanna, and H. Köhler. "Nd isotopic mapping of the Sri Lanka basement: update, and additional constraints from Sr isotopes." Precambrian Research 66, no. 1-4 (February 1994): 95–110. http://dx.doi.org/10.1016/0301-9268(94)90046-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Zhong, Yun, Xu Zhang, Zhilei Sun, Jinnan Liu, Wei Li, Yaoliang Ma, Weiliang Liu, Bin Xia, and Yao Guan. "Sr–Nd–Pb–Hf Isotopic Constraints on the Mantle Heterogeneities beneath the South Mid-Atlantic Ridge at 18–21°S." Minerals 10, no. 11 (November 13, 2020): 1010. http://dx.doi.org/10.3390/min10111010.

Full text
Abstract:
In an attempt to investigate the nature and origin of mantle heterogeneities beneath the South Mid-Atlantic Ridge (SMAR), we report new whole-rock Sr, Nd, Pb, and Hf isotopic data from eight basalt samples at four dredge stations along the SMAR between 18°S and 21°S. Sr, Nd, and Pb isotopic data from SMAR mid-ocean ridge basalts (MORBs) at 18–21°S published by other researchers were also utilized in this study. The SMAR MORBs at 18–21°S feature the following ratio ranges: 87Sr/86Sr = 0.70212 to 0.70410, 143Nd/144Nd = 0.512893 to 0.513177, 206Pb/204Pb = 18.05 to 19.50, 207Pb/204Pb = 15.47 to 15.71, 208Pb/204Pb = 37.87 to 38.64, and 176Hf/177Hf = 0.283001 to 0.283175. The 87Sr/86Sr, 143Nd/144Nd, 206Pb/204Pb, and 176Hf/177Hf ratios of these MORBs varied considerably along the SMAR axis. The variable compositions of the Sr–Nd–Pb–Hf isotopes, combined with the corresponding whole-rock major and trace elemental abundances reported in previous studies, suggest that the SMAR MORBs at 18–21°S were probably derived from a heterogeneous mantle substrate related to a mixture of depleted mantle (DM) materials with a small amount (but variable input) of HIMU (high-μ, where μ = 238U/204Pb)- and enriched (EMII)-type materials. The HIMU-type materials likely originated from the proximal St. Helena plume and may have been transported through “pipe-like inclined sublithospheric channels” into the SMAR axial zone. The EMII-type materials possibly originated from a recycled metasomatized oceanic crust that may have been derived from the early dispersion of other plume heads into the subcontinental asthenosphere prior to the opening of the South Atlantic Ocean. In addition, the contributions of subducted sediments, continental crust, and subcontinental lithospheric mantle components to the formation of the SMAR MORBs at 18–21°S may be nonexistent or negligible.
APA, Harvard, Vancouver, ISO, and other styles
36

Shang, Zhi, and Yongqing Chen. "Zircon U–Pb Geochronology, Geochemistry and Geological Significance of the Anisian Alkaline Basalts in Gejiu District, Yunnan Province." Minerals 10, no. 11 (November 18, 2020): 1030. http://dx.doi.org/10.3390/min10111030.

Full text
Abstract:
The Gejiu Anisian alkaline basalts (GAAB), distributed in the southern part of the Emeishan large igneous province (ELIP), are crucial to understand the tectonomagmatic activity during the Triassic. Geochronological, geochemical, and Sr-Nd-Pb isotopic analyses were systematically applied to explore the origin, petrogenesis, and tectonic setting of the GAAB, and how they relate to the ELIP. Zircon U-Pb dating set the eruption date at 244 Ma. Most of the samples belonged to alkaline basalts and had high TiO2 (2.14–3.23 wt.%) and MgO (4.43–19.58 wt.%) contents. Large ion lithophile elements (LILEs) were enriched relative to high field strength elements (HFSEs). The rare earth elements (REEs) and trace element signatures in the normalized diagrams were similar to oceanic island basalts (OIB) and Emeishan high-Ti basalts. These samples had consistent Sr-Nd isotope compositions: the initial 87Sr/86Sr values ranged from 0.7044 to 0.7048 and εNd(t) = 3.25–4.92. The Pb isotopes were more complex, the (206Pb/204Pb)t, (207Pb/204Pb)t, (208Pb/204Pb)t ratios were 17.493–18.197, 15.530–15.722, and 37.713–38.853, respectively. Our results indicate that the GAAB originated from the deeper enriched mantle with 5% to 15% partial melting of garnet lherzolite and a segregation depth of 2 to 4 GPa (60–120 km). During the formation of the GAAB, clinopyroxene and Ti-Fe oxides were fractionally crystallized with insignificant crustal contamination. The GAAB were formed in a extensional regime that was related to the Gejiu-Napo rift event in the Triassic.
APA, Harvard, Vancouver, ISO, and other styles
37

SHELLNUTT, J. GREGORY, TUNG-YI LEE, CHIH-CHENG YANG, SHIN-TAI HU, JONG-CHANG WU, KUO-LUNG WANG, and CHING-HUA LO. "Late Permian mafic rocks identified within the Doba basin of southern Chad and their relationship to the boundary of the Saharan Metacraton." Geological Magazine 152, no. 6 (May 6, 2015): 1073–84. http://dx.doi.org/10.1017/s0016756815000217.

Full text
Abstract:
AbstractThe Doba gabbro was collected from an exploration well through the Cretaceous Doba basin of southern Chad. The gabbro is composed mostly of plagioclase, clinopyroxene and Fe–Ti oxide minerals and displays cumulus mineral textures. Whole-rock40Ar–39Ar step-heating geochronology yielded a Late Permian plateau age of 257 ± 1 Ma. The major and trace elemental geochemistry shows that the gabbro is tholeiitic in composition and has trace element ratios (i.e. La/YbN> 7; Sm/YbPM> 3.4; Nb/Y > 1; Zr/Y > 5) indicative of a basaltic melt derived from a garnet-bearing mantle source. The moderately enriched Sr–Nd isotopes (i.e. ISr= 0.70495 to 0.70839; ɛNd(T)= −1.0 to −1.3) fall within the mantle array (i.e. OIB-like) and are similar to other Late Permian plutonic rocks of North-Central Africa (i.e. ISr= 0.7040 to 0.7070). The enriched isotopic composition of the Doba gabbro contrasts with the more depleted compositions of the spatially associated Neoproterozoic post-Pan-African within-plate granites. The contrasting Nd isotope composition between the older within-plate granites and the younger Doba gabbro indicates that different mantle sources produced the rocks and thus may mark the southern boundary of the Saharan Metacraton.
APA, Harvard, Vancouver, ISO, and other styles
38

Wei, Feixiang, Bo Pan, and Jiandong Xu. "Sr-Nd-Pb-Ca Isotopes of Holocene Basalts from Jingpohu, NE China: Implications for the Origin of Their Enriched Mantle Signatures." Minerals 11, no. 8 (July 21, 2021): 790. http://dx.doi.org/10.3390/min11080790.

Full text
Abstract:
The geochemistry on Holocene lavas from the Jingpohu volcanic field in NE China are compared with other Cenozoic lavas from across the back-arc rift of NE China, in order to constrain their enriched mantle sources. Holocene lavas within Jingpohu volcanic field comprise two separate “Crater Forest” (CF) and “Frog Pool” (FP) volcanic areas. FP lavas have lower MgO, CaO, and heavy rare earth elements and higher Al2O3, Na2O, K2O, and large-ion lithophile elements than CF lavas. Yet, both CF and FP lavas share similar isotopic signatures, with depleted Sr and Nd isotopes (87Sr/86Sr = 0.703915–0.704556, 143Nd/144Nd = 0.512656–0.512849) and unradiogenic Pb isotopes (208Pb/204Pb = 37.79–38.06, 207Pb/204Pb = 15.45–15.54, 206Pb/204Pb = 17.49–18.15), similar to oceanic island basalts. An important new constraint for the Jingpohu lavas lies in their Ca isotopes of δ44/40Ca from 0.63 to 0.77‰, which are lower than that of the bulk silicate earth (0.94 ± 0.05‰). By comparing the isotopic signatures of sodic lavas with that of the potassic lavas across NE China, we propose a three-component mixing model as the source for the sodic lavas. In consistence with geophysical results, we propose that subducting Pacific plate induces asthenospheric mantle upwelling of an upper depleted mantle (DM), including subducted ancient sediments (EM I), which partially melted upon ascent. These primary melts further interacted with the lithospheric mantle (EM II), before differentiating within crustal magma chambers and erupting.
APA, Harvard, Vancouver, ISO, and other styles
39

Liu, Jun, Zhen Xiu Liao, Ying Chen, Yong Zhan, and You Fei Guan. "Sr-Nd-Pb Isotopic Geochemistry of the Hukeng Granite Body in Jiangxi Province, South China." Applied Mechanics and Materials 353-356 (August 2013): 1187–90. http://dx.doi.org/10.4028/www.scientific.net/amm.353-356.1187.

Full text
Abstract:
The Mesozoic Hukeng granite body locates in southeast limb of Wugongshan compound anticline in Jiangxi Province, South China. This study uses samples from the Hukeng granite body to determine the characteristics of Sr-Nd-Pb isotopes and source of the granite body. The rocks have 87Sr/86Sr ratios as high as 0.84112, suggesting that crustal contamination existed there. The rocks have higher ratios of 87Rb/86Sr, 87Sr/86Sr and (87Sr/86Sr)i, and lower ratios of 147Sm/144Nd, 43Nd/144Nd and lower εNd(t), indicating that the Hukeng granite body possessesEMⅡ-like characteristics. Combined with Pb isotopic values (206Pb/204Pb ratios from 18.5313 to 18.8460, 207Pb/204Pb ratios from 15.6562 to 15.6782 and 208Pb/204Pb ratios from 38.7015 to 38.7565), the Hukeng granite body originated from EMⅡ and suffered crustal contamination in certain extent.
APA, Harvard, Vancouver, ISO, and other styles
40

Sun, Kai, Zhidan Zhao, Linlin Zhang, Lei Qiu, Xiaoyang Liu, Shengfei He, Junping Ren, Lijuan Ye, and Yurong Cui. "Geochronology, petrography and Sr-Nd-Hf isotopes of Mbalizi carbonatite, southwestern Tanzania." Journal of African Earth Sciences 184 (December 2021): 104308. http://dx.doi.org/10.1016/j.jafrearsci.2021.104308.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Hanyu, Takeshi, and Eizo Nakamura. "Constraints on HIMU and EM by Sr and Nd isotopes re-examined." Earth, Planets and Space 52, no. 1 (January 2000): 61–70. http://dx.doi.org/10.1186/bf03351614.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Hemond, Christophe, Nicholas T. Arndt, Uwe Lichtenstein, Albrecht W. Hofmann, Niels Oskarsson, and Sigurdur Steinthorsson. "The heterogeneous Iceland plume: Nd-Sr-O isotopes and trace element constraints." Journal of Geophysical Research 98, B9 (1993): 15833. http://dx.doi.org/10.1029/93jb01093.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Davies, Gareth, Andy Gledhill, and Chris Hawkesworth. "Upper crustal recycling in southern Britain: evidence from Nd and Sr isotopes." Earth and Planetary Science Letters 75, no. 1 (September 1985): 1–12. http://dx.doi.org/10.1016/0012-821x(85)90045-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Wright, Elizabeth, and William M. White. "The origin of Samoa: new evidence from Sr, Nd, and Pb isotopes." Earth and Planetary Science Letters 81, no. 2-3 (January 1987): 151–62. http://dx.doi.org/10.1016/0012-821x(87)90152-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Grousset, Francis E., and Pierre E. Biscaye. "Tracing dust sources and transport patterns using Sr, Nd and Pb isotopes." Chemical Geology 222, no. 3-4 (November 2005): 149–67. http://dx.doi.org/10.1016/j.chemgeo.2005.05.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Sharma, Mukul, Asish R. Basu, and G. V. Nesterenko. "NdSr isotopes, petrochemistry, and origin of the Siberian flood basalts, USSR." Geochimica et Cosmochimica Acta 55, no. 4 (April 1991): 1183–92. http://dx.doi.org/10.1016/0016-7037(91)90177-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Xing, Guangfu, Weizhou Shen, Dezi Wang, and Qingmin Jin. "Sr-Nd-Pb isotopes of Tertiary volcanics of King George Island, Antarctica." Chinese Science Bulletin 42, no. 22 (November 1997): 1913–18. http://dx.doi.org/10.1007/bf02882790.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Yang, Hang, Anlin Liu, Peng Wu, and Feng Wang. "Petrogenesis and Tectonic Implications of the Oligocene Dalongtan Shoshonitic Syenite Porphyry in Central Yunnan, Southeastern Tibetan Plateau: Constraints from Geochronology, Geochemistry and Sr-Nd-Hf Isotopes." Minerals 14, no. 3 (March 8, 2024): 282. http://dx.doi.org/10.3390/min14030282.

Full text
Abstract:
Shoshonitic rocks are widely distributed in post-collisional settings and provide key information on deep geodynamic mechanisms and magmatic evolution. In this paper, we present petrographic, zircon U-Pb age-related, trace elemental, Hf isotopic, bulk-rock elemental, and Sr-Nd isotopic data of the Dalongtan shoshonitic syenite porphyries (DSSPs) in central Yunnan, southeastern Tibet. The DSSPs formed at 33.2 ± 0.3 Ma in a post-collisional setting. They define linear trends on Harker diagrams, and they display similar trace element patterns and enriched bulk-rock Sr-Nd isotopes [(87Sr/86Sr)i = 0.70964–0.70968, εNd(t) = −12.9 to −12.7] and zircon Hf isotopes (εHf(t) = −15.7 to −13.1) to the coeval mantle-derived potassic mafic rocks. This suggests that the DSSPs were fractionated from the lithospheric mantle-derived mafic magmas. The DSSPs, along with the coeval felsic and mafic magmatic rocks (37.2–32.3 Ma), exhibit a planar distribution on the SE Tibet and predate the left-lateral shearing of the Ailaoshan–Red River shear zone (ARSZ) (32–22 Ma), suggesting that there are no genetic relationships between them. The DSSPs have geochemical characteristics similar to those of A-type granites, with high total alkalinity (10.39–11.17 wt.%), HFSE concentrations (Zr + Nb + Ce + Y = 890.2–1054.3 ppm), Ga/Al ratios (10,000 × Ga/Al = 2.95–3.46), whole-rock zircon saturation temperatures (906–947 °C), and oxygen fugacity (ΔFMQ = +3.30–+4.65), indicating that they are products of the high-temperature melting of the lithosphere as a result of asthenosphere upwelling in extensional settings. Based on our data and regional observations, it is proposed that the generation of the DSSPs may be linked to the convective thinning of the thickened lithospheric mantle following the India–Asia collision.
APA, Harvard, Vancouver, ISO, and other styles
49

Sakhno, V. G., and L. S. Tsurikova. "Isotopic and geochemical features of the genesis of igneous complexes and ore-magmatic systems in the Chukotka sector of the Russian Arctic coast." LITHOSPHERE (Russia) 20, no. 2 (April 25, 2020): 196–211. http://dx.doi.org/10.24930/1681-9004-2020-20-2-196-211.

Full text
Abstract:
Research subject. The isotopic composition (Pb-Pb, Sm-Nd, Rb-Sr, Os/Os, Hf/Hf, 3 He/4 He, etc.) of magmatic complexes and ore-magmatic systems (OMS) of two ore clusters (Kupolsky and Ilirneysky) located in the subpolar Western Chukotka was studied. These ore clusters differ from each other both in their structural position and the age of their magmatic complexes, within which the largest deposits of Au-Ag type are known. Materials and methods. The Pb-Pb, Rb-Sr, SmNd, Re-Os, Lu-Hf, 3 He/4 He, 40Ar/36Ar and sulphur isotopic systems were studied at the VSEGEI centre for isotopic studies (St. Petersburg), as well as at the Institute of Geology, Geochemistry and Ore Deposits (IGEM, Moscow) and the Laboratory of Stable Isotopes of the Far Eastern Geological Institute (FEGI, Vladivostok). Re and Os were measured using an ELEMENT-2 inductively coupled plasma single-collector mass spectrometer. Sulphur isotopic ratios were measured using a Finnigan MAT 253 isotope mass spectrometer. Results and conclusions. On the basis of the isotope-geochemical data obtained, an assumption was made that various deep sources participated in the magma generation, and the differentiated composition of late melts may reflect the melting processes of the crust upper horizons. When comparing the data on the magmatism of the Ilirneysky and Kupolsky ore clusters, a different degree of crustal rock influence on melt generation was revealed. The Kupolsky ore cluster is characterised by a large influence of mantle sources in intraplate magmatism associated with ore formation processes. This is likely to have determined a greater amount of mineralisation in the Kupolsky cluster compared to the Ilirneysky ore cluster.
APA, Harvard, Vancouver, ISO, and other styles
50

Nagatsuka, Naoko, Nozomu Takeuchi, Ki-Cheol Shin, and Takanori Nakano. "Spatial variations of Sr–Nd isotopic ratios, mineralogical and elemental compositions of cryoconite in an Alaskan glacier." Annals of Glaciology 59, no. 77 (December 2018): 147–58. http://dx.doi.org/10.1017/aog.2019.2.

Full text
Abstract:
ABSTRACTTo understand the geological origins of minerals in cryoconite and the nutrients sources for microbes on glaciers, we analyzed the Sr–Nd isotopic ratios of the four mineral fractions in cryoconites including saline, carbonate, phosphate, silicate and the organic fraction obtained from Gulkana Glacier in Alaska. The isotopes in the silicate mineral fraction exhibited spatial variation within the glacier (87Sr/86Sr: 0.704533–0.709563, εNd (0): −16.0 to 0.5), which can be explained by the different mixing ratios of the two distinct sources: one of the sources is lateral and terminal moraines or soil, and the other is the medial moraine of the glacier. The minerals in the cryoconite at the lower sites in the glacier are likely derived from the former source, whereas those at the upper sites are from latter sources. The mineralogical and elemental compositions also support mixing of the silicate minerals from the two local sources. The Sr isotopic ratios of the organic fraction also showed spatial variation on the glacier in the middle sites – a trend similar to those of the phosphate fraction. The results suggest that the organic matter is mostly the byproducts of microbes using the phosphate minerals as a nutrient source.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography