Academic literature on the topic 'Square-tiled surfaces'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Square-tiled surfaces.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Square-tiled surfaces"

1

Johnson, Charles C. "Cutting sequences on square-tiled surfaces." Geometriae Dedicata 190, no. 1 (February 9, 2017): 53–80. http://dx.doi.org/10.1007/s10711-017-0227-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hillairet, Luc. "Spectral decomposition of square-tiled surfaces." Mathematische Zeitschrift 260, no. 2 (November 22, 2007): 393–408. http://dx.doi.org/10.1007/s00209-007-0280-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hubert, Pascal, Samuel Lelièvre, Luca Marchese, and Corinna Ulcigrai. "The Lagrange spectrum of some square-tiled surfaces." Israel Journal of Mathematics 225, no. 2 (April 2018): 553–607. http://dx.doi.org/10.1007/s11856-018-1667-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chen, Dawei. "Square-tiled surfaces and rigid curves on moduli spaces." Advances in Mathematics 228, no. 2 (October 2011): 1135–62. http://dx.doi.org/10.1016/j.aim.2011.06.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Shrestha, Sunrose T. "Counting Formulae for Square-tiled Surfaces in Genus Two." Annales Mathématiques Blaise Pascal 27, no. 1 (August 26, 2020): 83–123. http://dx.doi.org/10.5802/ambp.392.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Colognese, Paul, and Mark Pollicott. "Minimizing entropy for translation surfaces." Conformal Geometry and Dynamics of the American Mathematical Society 26, no. 6 (August 17, 2022): 97–110. http://dx.doi.org/10.1090/ecgd/374.

Full text
Abstract:
In this note we consider the entropy by Dankwart [On the large-scale geometry of flat surfaces, 2014, PhD thesis. https://bib.math.uni-bonn.de/downloads/bms/BMS-401.pdf] of unit area translation surfaces in the S L ( 2 , R ) SL(2, \mathbb R) orbits of square tiled surfaces that are the union of squares, where the singularities occur at the vertices and the singularities have a common cone angle. We show that the entropy over such orbits is minimized at those surfaces tiled by equilateral triangles where the singularities occur precisely at the vertices. We also provide a method for approximating the entropy of surfaces in the orbits.
APA, Harvard, Vancouver, ISO, and other styles
7

Wright, Alex. "Schwarz triangle mappings and Teichmüller curves: Abelian square-tiled surfaces." Journal of Modern Dynamics 6, no. 3 (2012): 405–26. http://dx.doi.org/10.3934/jmd.2012.6.405.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lidjan, Edin, and Ðordje Baralic. "Homology of polyomino tilings on flat surfaces." Applicable Analysis and Discrete Mathematics, no. 00 (2021): 31. http://dx.doi.org/10.2298/aadm210307031l.

Full text
Abstract:
The homology group of a tiling introduced by M. Reid is studied for certain topological tilings. As in the planar case, for finite square grids on topological surfaces, the method of homology groups, namely the non-triviality of some specific element in the group allows a ?coloring proof? of impossibility of a tiling. Several results about the non-existence of polyomino tilings on certain square-tiled surfaces are proved in the paper.
APA, Harvard, Vancouver, ISO, and other styles
9

Vincent DELECROIX, Elise GOUJARD, Peter ZOGRAF, Anton ZORICH, and Philip ENGEL. "Contribution of one-cylinder square-tiled surfaces to Masur-Veech volumes." Astérisque 415 (2020): 223–74. http://dx.doi.org/10.24033/ast.1107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Vincent DELECROIX, Elise GOUJARD, Peter ZOGRAF, Anton ZORICH, and Philip ENGEL. "Contribution of one-cylinder square-tiled surfaces to Masur-Veech volumes." Astérisque 415 (2020): 223–74. http://dx.doi.org/10.24033/ast.11107.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Square-tiled surfaces"

1

Yakovlev, Ivan. "Graphes en rubans métriques." Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0143.

Full text
Abstract:
Cette thèse présente quelques contributions à l’étude des fonctions de comptage des graphes en rubans métriques. Un graphe en ruban, aussi connu sous le nom de carte combinatoire, est un plongement cellulaire d’un graphe dans une surface. On peut le représenter via le recollements de polygones ou encore via des factorisations de permutations. Une métrique sur un graphe en rubans est l’attribution d’une longueur strictement positive à chaque arête. Les fonctions de comptage donnent le nombre de graphes en rubans avec une métrique entière et combinatoire fixée (genre de la surface, degré des sommets, nombre de bords) en fonction des périmètres des bords. Notre approche à l’étude de ces fonctions est purement combinatoire et repose sur l’utilisation des bijections et chirurgies pour les graphes en rubans. Dans un premier temps, on montre que ces fonctions sont (quasi-)polynomiales par morceaux, et on précise les régions de (quasi-)polynomialité. Ensuite, on étudie les cas où leur termes de plus haut degré sont de vrais polynômes. Notre intérêt dans ces cas vient du fait que les polynômes correspondants sont utiles pour l’énumération des surfaces à petits carreaux, qui correspondent aux points entiers des strates des surfaces de (demi-)translation (de manière équivalent, states des différentielles sur les surfaces de Riemann). Par conséquent, on peut donner des formules raffinées/alternatives pour les volumes de Masur-Veech des strates. Un exemple connu sont les polynômes de Kontsevich, qui comptent les graphes en rubans métriques trivalents de genre et périmètres des bords fixés. Ils ont été utilisés récemment par Delecroix, Goujard, Zograf et Zorich pour obtenir une formule combinatoire pour les volumes des strates principales des différentielles quadratiques. On se concentre sur les graphes en rubans métriques face-bipartis, qui apparaissent dans l’étude des différentielles Abéliennes. On montre que pour les graphes à un sommet, les termes de plus haut degré des fonctions de comptage sur certains sous-espaces sont des polynômes explicites. En conséquence, on obtient la série génératrice des contributions des surfaces à petits carreaux à n cylindres aux volumes des strates minimales des différentielles Abéliennes, raffinant un résultat précédent de Sauvaget. Ensuite, on présente un résultat de polynomialité similaire pour les deux sous-familles de graphes qui correspondent ou composants connexes de strates minimales de parité spin paire/impaire. Cela donne un raffinement d’une formule pour les différences des volumes correspondants obtenue précédemment par Chen, Möller, Sauvaget et Zagier. Puis on conjecture que le phénomène de polynomialité reste vrai pour les familles de graphes à plusieurs sommets, si chaque graphe est pondéré par le comptage de certains arbres couvrants. On prouve cette conjecture dans le cas planaire. En chemin, on construit des familles d’arbres plans qui correspondent à certaines triangulations de produits de simplexes qui représentent un intérêt du point de vue de la théorie des polytopes. Finalement, on présente une contribution au projet commun avec Duryev et Goujard, où la formule combinatoire de Delecroix, Goujard, Zograf et Zorich est généralisée aux strates des différentielles quadratiques aux singularités impaires. La contribution est une preuve combinatoire de la formule pour les coefficients qui comptent certaines dégénérescences des graphes en ruban métriques non-face-biparti
This thesis presents several contributions to the study of counting functions for metric ribbon graphs. Ribbon graphs, also known as combinatorial maps, are cellular embeddings of graphs in surfaces modulo homeomorphisms. They are combinatorial objects that can be represented as gluings of polygons or factorizations of permutations. Metric on a ribbon graph is an assignment of positive lengths to its edges. The counting functions give the number of integral metric ribbon graphs with fixed combinatorics (genus of the surface, degrees of vertices, number of boundaries) as a function of the perimeters of the boundaries. Our approach to their study is purely combinatorial and relies on bijections and surgeries for ribbon graphs. Firstly, we show that these functions are piecewise (quasi-)polynomials, specifying exactly the regions of (quasi-)polynomiality. We then study the cases when their top-degree terms are honest polynomials. Our interest in such cases comes from the fact that the corresponding polynomials can be used for refined enumeration of square-tiled surfaces, which correspond to integer points in the strata of (half-)translations surfaces (equivalently, strata of differentials on Riemann surfaces). Consequently, one can give refined/alternative formulas for Masur-Veech volumes of strata. One known example are the Kontsevich polynomials, counting trivalent metric ribbon graphs of given genus and perimeters of boundaries. They were recently used by Delecroix, Goujard, Zograf and Zorich to give a combinatorial formula for the volumes of principal strata of quadratic differentials. We concentrate on face-bipartite metric ribbon graphs, which appear in the study of Abelian differentials. We show that in the case of one-vertex graphs the top-degree terms of the counting functions on certain subspaces are in fact (explicit) polynomials. As a consequence, we deduce the generating function for the contributions of n-cylinder square-tiled surfaces to the volumes of minimal strata of Abelian differentials, refining a previous result of Sauvaget. We then present a similar polynomiality result for the two subfamilies of graphs corresponding to even/odd spin connected components of the minimal strata. This also gives a refinement of a formula for the corresponding volume differences previously obtained by Chen, Möller, Sauvaget and Zagier. Next we conjecture that the polynomiality phenomenon holds for families of graphs with several vertices, if each graph is weighted by the count of certain spanning trees. We prove the conjecture in the planar case. In the process, we construct families of plane trees which correspond to certain triangulations of the product of two simlpices, which are interesting from the point of view of the theory of polytopes. Finally, we present a contribution to a joint work with Duryev and Goujard, where the combinatorial formula of Delecroix, Goujard, Zograf and Zorich is generalized to all strata of quadratic differentials with odd singularities. The contribution is a combinatorial proof of the formula for coefficients counting certain degenerations of (non-face-bipartite) metric ribbon graphs
APA, Harvard, Vancouver, ISO, and other styles
2

Cheboui, Smail. "Intersection Algébrique sur les surfaces à petits carreaux." Electronic Thesis or Diss., Montpellier, 2021. http://www.theses.fr/2021MONTS006.

Full text
Abstract:
ON étudie la quantité notée Kvol définie par KVol(X,g) = Vol(X,g)*sup_{alpha,beta} frac{Int(alpha,beta)}{l_g (alpha)l_g(beta)} où X est une surface compacte de genre s, Vol(X,g) est le volume (l'aire) de la surface par rapport à la métrique g et alpha, beta deux courbes simples fermées sur la surface X. Les résultats principaux de cette thèse se trouvent dans les chapitres 3 et 4. Dans le chapitre 3 intitulé "Algebraic intersection for translation surfaces in the stratum H(2)" on s'intéresse à la suite des kvol des surfaces L(n,n) et on montre que KVol(L(n,n)) tend vers 2 quand n tend vers l'infini.Dans le chapitre 4 intitulé "Algebraic intersection for translation surfaces in a family of Teichmüller disks" on s'intéresse au Kvol des surfaces appartenant à la strate H(2s-2) qui sont des revêtements ramifiés à n feuillets d'un tore plat. On s'intéresse aussi aux surfaces St(2s-1) et on montre que kvol(St(2s-1))=2s-1 où s est le genre de la surface St(2s-1). On s'intéresse aussi au minimum du Kvol sur le disque de Teichmüller de la surface St(2s-1) qui sera (2s-1)sqrt{frac{143}{144}} et il est atteint aux deux points (pm frac{9}{14}, frac{sqrt{143}}{14})
We study the quantity denoted Kvol defined by KVol(X,g) = Vol(X,g)*sup_{alpha,beta} frac{Int(alpha,beta)}{l_g (alpha)l_g(beta)} where X is a compact surface of genus s, Vol(X,g) is the volume (area) of the surface with respect to the metric g and alpha, beta two simple closed curves on the surface X.The main results of this thesis can be found in Chapters 3 and 4. In Chapter 3 titled "Algebraic intersection for translation surfaces in the stratum H(2)" we are interested in the sequence of kvol of surfaces L(n,n) and we provide that KVol(L(n,n)) goes to 2 when n goes to infinity. In Chapter 4 titled "Algebraic intersection for translation surfaces in a family of Teichmüller disks" we are interested in the Kvol for a surfaces belonging to the stratum H(2s-2) wich is an n-fold ramified cover of a flat torus. We are also interested in the surfaces St(2s-1) and we show that kvol(St(2s-1))=2s-1. We are also interested in the minimum of Kvol on the Teichmüller disk of the surface St(2s-1) which will be (2s-1)sqrt {frac {143}{ 144}} and it is achieved at the two points (pm frac{9}{14}, frac{sqrt{143}}{14})
APA, Harvard, Vancouver, ISO, and other styles
3

Saadi, Fayssal. "Dynamique sur les espaces de modules." Electronic Thesis or Diss., Lyon, École normale supérieure, 2024. http://www.theses.fr/2024ENSL0039.

Full text
Abstract:
Dans cette thèse, nous nous intéressons à la dynamique de sous-groupes modulaires sur la variété des U(2)- caractères . Plus précisément, nous étudions des questions d'ergodicité de l'action de sous-groupes G du groupe modulaire Mod(g,n) d'une surface compacte S(g,n) de genre g et n composantes de bord. Ces questions ont été naturellement posées après la preuve de Goldman de l'ergodicité du groupe modulaire sur la variété des caractères. Le premier résultat général dans cette direction est dû à Funar et Marché, en montrant que le premier sous-groupe de Johnson agit de manière ergodique sur la variété des caractères, pour toute surface fermée S(g). D'un autre coté, Brown a montré l'existence de points fixes elliptiques pour tout sous-groupe généré par un homéomorphimse pseudo-Anosov sur le tore épointé S(1,1). Ceci a permis de démontrer la non-ergodicité de tels sous-groupes par Forni, Goldman, Lawton et Matheus en appliquant la théorie KAM. Dans la première partie de la thèse, nous étudions une dynamique naturelle sur l'espace des modules des triangles sphériques de la sphère de dimension 2 en reliant cette dynamique à la dynamique du groupe modulaire SL(2, Z) sur la variété des caractères du tore épointé. La deuxième partie est consacrée à l'étude de l'existence de points fixes elliptiques pour les homéo\-morphismes pseudo-Anosov sur les variétés de caractères des surfaces épointée S(g,n), où g est égal à 0 ou 1. On montre que dans le cas de la variété des caractères relative correspondant à un niveau k du tore épointé, pour un ensemble de mesure positive et dense de niveaux de la fonction invariante k, il existe une famille d'élements pseudo-Anosov qui n'agissent pas érgodiquement sur ces niveaux. dans le cas du tore épointé S(1,1). Un résultat similaire est démontré pour un ensemble de paramètres B dans le cas de la sphère à quatre trous. Ces résultats sont peuvent être combinés pour construire une famille d'éléments pseudo-Anosov sur le tore à deux trous S(1,2), qui admettent un point fixe elliptique. Nous discutons ensuite de l'action d'un groupe G généré par des twists de Dehn le long d'une paire de multi-courbes qui remplissent la surface ou plus généralement le long d'une famille des courbes qui remplissent S(g). Nous montrons dans cette partie qu'il existe deux multi-courbes qui remplissent la surface de genre deux S(2) dont les twists de Dehn associées génèrent un groupe G agissant de manière non-ergodique sur la variété des representations, en trouvant des fonctions rationnelles invariantes explicites. De même, nous montrons l’existence de fonctions rationnelles invariantes par conjugaison et invariantes par un sous-groupe G générées par des twists de Dehn le long d'une famille des courbes qui remplissent la surface fermée non-orientable de genre 4
In this thesis, we are interested in the dynamics of the mapping class subgroups on the U(2) character variety. More precisely, we deal with ergodicity questions of a subgroup G of the mapping class group Mod(g,n) of a compact surface S(g,n) of genus g and n boundary components. These questions were naturally raised after Goldman's proof of the ergodicity of mapping class groups on the SU(2)-character variety. The first general result in this direction is due to Funar and Marché by showing that the first Johnson subgroups act ergodically on the character variety, for any closed surfaces S(g). On the other hand, Brown showed the existence of an elliptic fixed point (or a double elliptic fixed point) for any subgroup generated by a pseudo-Anosov element on the punctured torus S(1,1). This led to the proof of the non-ergodicity of such subgroups by Forni, Goldman, Lawton, and Mateus by applying KAM theory. In the first part of the thesis, we study the natural dynamics of the moduli space of spherical triangles on the 2-sphere relating these dynamics to the dynamics of the mapping class group on the SU(2)-character variety of the punctured torus.The second part is devoted to the study of the existence of elliptic fixed points for pseudo-Anosov homeomorphisms on the character varieties of punctured surfaces S(g,n), where g is 0 or 1. By showing that near any relative character variety of the once punctured torus, for a set of positive measure and dense of levels k, there exists a family of pseudo-Anosov elements that do not act ergodically on that level, in the case of the punctured torus S(1,1). A similar result holds for a set of parameters B in the case of the four-punctured sphere S(0,4). Then these results can be combined to construct a family of pseudo-Anosov elements on the twice-punctured torus S(1,2) that admit an elliptic fixed point.We discuss then the action of a group G generated by Dehn-twist along a pair of filling multi-curves or along a family of filling curves on S(g). We show in this part that there exist two filling multi-curves on the surface of genus two S(2) whose associated Dehn twists generate a group G acting non-ergodically on representation variety by finding explicit invariant rational functions. Similarly, We found invariant rational functions of a subgroup G generated by Dehn-twists along a family of filling loops on the character variety of the non-orientable surface of genus 4
APA, Harvard, Vancouver, ISO, and other styles
4

Gatse, Franchel. "Spectre ordonné et branches analytiques d'une surface qui dégénère sur un graphe." Electronic Thesis or Diss., Orléans, 2020. http://www.theses.fr/2020ORLE3205.

Full text
Abstract:
Dans ce travail, nous donnons un cadre général de surfaces riemanniennes qui dégénèrent sur des graphes métriques que nous appelons surfaces décomposables en cylindres et en jonctions. Les surfaces décomposables en cylindres et en jonctions dépendent d’un paramètre t qui traduit le mécanisme d’écrasement sur le graphe. Quand le paramètre t tend vers 0, les circonférences des cylindres tendent vers 0 et leurs longueurs restent fixes. On obtient ainsi les arêtes du graphe limite. Les jonctions, elles, sont écrasées dans toutes les directions et donc dégénèrent sur les sommets du graphe limite. Nous étudions alors le comportement asymptotique du spectre de ces variétés lors de cette déformation. Nous adoptons les points de vue de la convergence des valeurs propres ordonnées et de celle des branches analytiques. Ces deux approches sont fondamentalement différentes. Le cas des valeurs propres ordonnées est assez classique et nous retrouvons la convergence vers le spectre du graphe limite. L’étude des branches analytiques est plus original. Nous montrons la convergence et donnons une caractérisation des limites possibles. Ces résultats s’appliquent dans le cas des surfaces de translations qui possèdent une direction complètement périodique
In this work, we give a general framework of Riemannian surfaces that can degenerate on metric graphs and that we call surfaces made from cylinders and connecting pieces. The latter depend on a parameter t that describes the degeneration. When t goes to 0, the waists of the cylinders go to 0 but their lengths stay fixed. We thus obtain the edges of the limiting graph. The connecting pieces are squeezed in all directions and degenerate on the vertices of the limiting graph. We then study the asymptotic behaviour of the spectrum of these surfaces when t varies from two different points of view, considering the spectrum either as a sequence of ordered eigenvalues or as a collection of analytic eigenbranches. In the case of ordered eigenvalues, we recover a rather classical statement, and prove that the spectrum converges to the spectrum of the limiting object. The study of the analytic eigenbranches is more original. We prove that any such eigenbranch converges and we give a characterisation of the possible limits. These results apply to translation surfaces on which there is a completely periodic direction
APA, Harvard, Vancouver, ISO, and other styles
5

Gutiérrez, Rodolfo. "Combinatorial theory of the Kontsevich–Zorich cocycle." Thesis, Sorbonne Paris Cité, 2019. https://theses.md.univ-paris-diderot.fr/GUTIERREZ_Rodolfo_2_complete_20190408.pdf.

Full text
Abstract:
En ce travail, trois questions liées au cocycle de Kontsevich–Zorich dans l'espaces de modules des différentielles quadratiques sont étudies avec des techniques combinatoires.Les deux premières impliquent la structure des groupes de Rauzy–Veech des différentielles abéliennes et quadratiques, respectivement. Ces groupes encodent l'action homologique des orbites presque fermées du flot géodésique de Teichmüller dans une composante connexe donnée d'une strate via le cocycle de Kontsevich–Zorich. Pour le cas abélien, on classifie complètement ces groupes et on montre qu'ils sont des sous-groupes explicites des groupes symplectiques, et qu'ils sont commensurables avec des réseaux arithmétiques. Pour le cas quadratique, on montre qu'ils sont aussi commensurables avec des réseaux arithmétiques si certaines conditions sur les ordres des singularités sont satisfaites.La troisième question implique la réalisabilité de certain groupes algébriques comme adhérences de Zariski des groupes de monodromie des surfaces à petits carreaux. En fait, on montre que quelques groupes de la forme SO*(2d) sont réalisables comme telles adhérences
In this work, three questions related to the Kontsevich--Zorich cocycle in the moduli space of quadratic differentials are studied by using combinatorial techniques.The first two deal with the structure of the Rauzy--Veech groups of Abelian and quadratic differentials, respectively. These groups encode the homological action of almost-closed orbits of the Teichmüller geodesic flow in a given component of a stratum via the Kontsevich--Zorich cocycle. For Abelian differentials, we completely classify such groups, showing that they are explicit subgroups of symplectic groups that are commensurable to arithmetic lattices. For quadratic differentials, we show that they are also commensurable to arithmetic lattices of symplectic groups if certain conditions on the orders of the singularities are satisfied.The third question deals with the realisability of certain algebraic groups as Zariski-closures of monodromy groups of square-tiled surfaces. Indeed, we show that some groups of the form SO*(2d) are realisable as such Zariski-closures
APA, Harvard, Vancouver, ISO, and other styles
6

Cabrol, Jonathan. "Origamis infinis : groupe de veech et flot linéaire." Thesis, Aix-Marseille, 2012. http://www.theses.fr/2012AIXM4323/document.

Full text
Abstract:
Un origami, ou encore une surface à petits carreaux, est l'exemple le plus simple d'une surface de translation. Il s'obtient en collant entre eux un nombre fini de carreaux identiques. Le point le plus intéressant est l'étude du flot linéaire sur un origami, qui est un système dynamique continu lié à la dynamique des billards ou encore celle des échanges d'intervalles. Nous pouvons aussi nous intéresser au stabilisateur de l'action naturelle du groupe spécial linéaire sur les origamis, que nous appelons groupe de Veech de l'origami. Le but de cette thèse est l'étude de ces deux notions sur des exemples d'origamis infinis, obtenus en collant une infinité dénombrable de carreaux entre eux. Ces exemples sont obtenus comme revêtement galoisiens d'origamis finis, avec comme groupe de Galois des groupes abéliens, nilpotents ou plus compliqués
An origami, or a square-tiled surface, is the simplest example of translation surface. An origami can be viewed as a finite collection of identical squares, glued together along their edges. We can study the linear flow on this origami, which is the geodesic flow for this kind of surfaces. This dynamical system is related to the dynamical system of billiard, or interval exchange transformations. We can also study the Veech group of an origami. The special linear group acts on the space of translation surface, and the Veech group of an origami is the stabilizer of this origami under this action. We know in particular that the Veech group is a fuchsian group. In this thesis, we work on some example of infinite origamis. These origamis are constructed as Galois covering of finite origamis. In these examples, the deck group will be an abelian group, a niltpotent group or something more difficult
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Square-tiled surfaces"

1

Erlandsson, Viveka, and Juan Souto. "Counting Square-Tiled Surfaces." In Progress in Mathematics, 159–67. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-08705-9_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zorich, Anton. "Square Tiled Surfaces and Teichmüller Volumes of the Moduli Spaces of Abelian Differentials." In Rigidity in Dynamics and Geometry, 459–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04743-9_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography