Academic literature on the topic 'Spray and Atomization'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Spray and Atomization.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Spray and Atomization"
Panão, Miguel. "Ultrasonic Atomization: New Spray Characterization Approaches." Fluids 7, no. 1 (January 7, 2022): 29. http://dx.doi.org/10.3390/fluids7010029.
Full textSapit, Azwan, Takashi Yano, Yoshiyuki Kidoguchi, and Yuzuru Nada. "Effect of Wall Configuration on Atomization of Rapeseed Oil Diesel Spray Impinging on the Wall." Applied Mechanics and Materials 315 (April 2013): 320–24. http://dx.doi.org/10.4028/www.scientific.net/amm.315.320.
Full textPost, Scott L., and Andrew J. Hewitt. "Flat-Fan Spray Atomization Model." Transactions of the ASABE 61, no. 4 (2018): 1249–56. http://dx.doi.org/10.13031/trans.12572.
Full textGhahremani, Amirreza, Mohammad Ahari, Mojtaba Jafari, Mohammad Saidi, Ahmad Hajinezhad, and Ali Mozaffari. "Experimental and theoretical study on spray behaviors of modified bio-ethanol fuel employing direct injection system." Thermal Science 21, no. 1 Part B (2017): 475–88. http://dx.doi.org/10.2298/tsci160108253g.
Full textMohandas, Anu, Hongrong Luo, and Seeram Ramakrishna. "An Overview on Atomization and Its Drug Delivery and Biomedical Applications." Applied Sciences 11, no. 11 (June 2, 2021): 5173. http://dx.doi.org/10.3390/app11115173.
Full textChen, J. L., M. Wells, and J. Creehan. "Primary Atomization and Spray Analysis of Compound Nozzle Gasoline Injectors." Journal of Engineering for Gas Turbines and Power 120, no. 1 (January 1, 1998): 237–43. http://dx.doi.org/10.1115/1.2818082.
Full textGhaffar, Zulkifli Abdul, Ahmad Hussein Abdul Hamid, and Mohd Syazwan Firdaus Mat Rashid. "Spray Characteristics of Swirl Effervescent Injector in Rocket Application: A Review." Applied Mechanics and Materials 225 (November 2012): 423–28. http://dx.doi.org/10.4028/www.scientific.net/amm.225.423.
Full textZhang, Zhen, Yusong Yu, and Jie Cao. "Effect of Upstream Valve Opening Process on Dynamic Spray Atomization of Bipropellant Thruster Injector." Micromachines 13, no. 4 (March 27, 2022): 527. http://dx.doi.org/10.3390/mi13040527.
Full textSphicas, Panos, and Apostolos Pesyridis. "Diesel Spray Liquid Length Imaging at High Pressure." Energies 16, no. 6 (March 20, 2023): 2874. http://dx.doi.org/10.3390/en16062874.
Full textLi, Shougen, Chongchong Chen, Yaxiong Wang, Feng Kang, and Wenbin Li. "Study on the Atomization Characteristics of Flat Fan Nozzles for Pesticide Application at Low Pressures." Agriculture 11, no. 4 (April 2, 2021): 309. http://dx.doi.org/10.3390/agriculture11040309.
Full textDissertations / Theses on the topic "Spray and Atomization"
Abbas, Fakhar. "Numerical Studies of Spray Atomization for Multiphase Flows." Thesis, The University of Sydney, 2022. https://hdl.handle.net/2123/29953.
Full textKhuong, Anh Dung. "The Eulerian-Lagrangian Spray Atomization (ELSA) Model of the Jet Atomization in CFD Simulations: Evaluation and Validation." Doctoral thesis, Universitat Politècnica de València, 2012. http://hdl.handle.net/10251/17237.
Full textKhuong ., AD. (2012). The Eulerian-Lagrangian Spray Atomization (ELSA) Model of the Jet Atomization in CFD Simulations: Evaluation and Validation [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/17237
Palancia
Aftel, Robert. "Effect of atomization gas properties on droplet atomization in an "air-assist" atomizer." Master's thesis, Virginia Tech, 1996. http://hdl.handle.net/10919/32599.
Full textAir, nitrogen, argon and carbon dioxide were used as the atomizing gas in an 'air-assist' spray nozzle to determine the effect of these gases on mean droplet size, number density, velocity and their distributions in kerosene fuel spays and spray flames using a two dimensional phase Doppler interferometer. Data have been obtained with these atomizing gases using a base, air assisted case as a reference, since this is the most commonly used atomizing fluid in almost all applications. Comparisons were made between the gases on a mass and momentum flux basis. Both burning and nonburning sprays were investigated. The results show significant differences in atomization characteristics from the atomizer with different gases and under conditions of constant mass and momentum flux of the gas. The results also show that the presence of oxygen in the air atomized sprays assists in the combustion process, since it produces smaller and faster moving droplets, especially at locations near to the nozzle exit. In nonburning sprays, droplets had similar size and velocity. Lighter gases such as nitrogen more effectively atomized the fuel in comparison to the denser gases. Argon and carbon dioxide produced larger, slower moving droplets than air and nitrogen assisted cases in both the burning and nonburning sprays. Flame photographs revealed the argon and carbon dioxide atomized flames to have greater luminosity than air or nitrogen atomized flames.
Master of Science
Singh, Gajendra. "Atomization and Combustion Characterization of Sprays." Thesis, University of Sydney, 2020. https://hdl.handle.net/2123/23135.
Full textBURROUGHS, ERIC WILLIAM. "DEVELOPMENT OF A HIGH-RESOLUTION MECHANICAL SPRAY PATTERNATOR FOR THE CHARACTERIZATION OF FUEL SPRAYS." University of Cincinnati / OhioLINK, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1132346171.
Full textValencia, Bejarano Maritza. "Experimental investigation of droplet coalescence in a poly-disperse full-cone spray." Thesis, The University of Sydney, 2003. https://hdl.handle.net/2123/27907.
Full textDowner, Roger Anthony. "The impact of spray modifiers on pesticide dose transfer." Thesis, University of Portsmouth, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.327001.
Full textFLOHRE, NICHOLAS MATTHEW. "EXPERIMENTAL INVESTIGATION OF SPRAY ATOMIZATION PROPERTIES OF AN AIRCRAFT ENGINE SWIRL CUP." University of Cincinnati / OhioLINK, 2003. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1054322000.
Full textPandal, Blanco Adrián. "Implementation and Development of an Eulerian Spray Model for CFD simulations of diesel Sprays." Doctoral thesis, Universitat Politècnica de València, 2016. http://hdl.handle.net/10251/68490.
Full text[ES] El objetivo principal de este trabajo es el modelado de chorros diésel en condiciones de motor, incluyendo los fenómenos de atomización, transporte y evaporación fundamentales en la formación y desarrollo del chorro. Para este fin, se implementa un modelo de spray euleriano de tipo monofluido en un entorno RANS en la plataforma CFD OpenFOAM. El enfoque de modelado aplicado aquí sigue la idea de un modelo del tipo ⅀-Y. El modelo se fundamenta en la hipótesis de separación de escalas del flujo. En los sistemas de inyección actuales, es posible asumir que el flujo que sale de la tobera opera a altos números de Reynolds y Webber y por tanto, es posible considerar la independencia de fenómenos como el transporte de masa (grandes escalas del flujo) de los procesos de atomización que ocurren a escalas menores. La mezcla líquido/gas se trata como un pseudo-fluido con densidad variable y que fluye según un único campo de velocidad. Además, la geometría promedio de las estructuras de líquido se puede caracterizar mediante el modelado de la superficie de la interfase líquido/gas por unidad de volumen. Completando el modelo de chorro, se ha desarrollado un modelo de evaporación alrededor de las características particulares de las tecnologías actuales de los motores. Esto supone que el proceso de evaporación está controlado por mezcla aire-combustible y las gotas de combustible se evaporan siempre que exista suficiente aire para calentarlas y evaporarlas. Debido a esto, el modelo de evaporación implementado está basado en el enfoque de Flujos Localmente Homogéneos (LHF). Considerando una mezcla adiabática, en la región líquido/vapor, se supone que el chorro tiende a las condiciones adiabáticas de saturación y para determinar este equilibrio entre fases, se utiliza la ley ideal de Raoult. Finalmente, el modelo de chorro se acopla con un modelo avanzado de combustión basado en llamas de difusión aproximadas (ADF), que reduce el coste computacional especialmente para combustibles complejos y supone el paso lógico en el desarrollo del modelo para simular chorros diesel. En primer lugar, el modelo se aplica al cálculo de un caso básico de flujo externo no evaporativo, muy adecuado tanto por la extensa base de datos experimentales disponible como por la simetría geométrica que presenta, permitiendo una importante simplificación de la simulación. Los resultados obtenidos presentan un buen acuerdo con los experimentos, lo cual estimula su aplicación en configuraciones más complejas. En segundo lugar, el modelo se aplica al cálculo del "Spray A" del Engine Combustion Network (ECN), no evaporativo, para reproducir la estructura interna del chorro diesel así como predecir tamaños de gota (SMD) de forma precisa. Finalmente, se realizan estudios evaporativos del "Spray A" junto con la condición nominal reactiva de esta base de datos. La penetración de vapor, la longitud líquida, velocidad, el tiempo de retraso y la longitud de despegue de llama calculados se comparan con los datos experimentales y se analizan en detalle.
[CAT] L'objectiu principal d'aquest treball és el modelatge de dolls dièsel en condicions de motor, incloent els fenòmens d'atomització, transport i evaporació fonamentals en la formació i desenvolupament del doll. Amb aquesta finalitat, s'implementa un model de doll eulerià de tipus monofluid en un entorn RANS a la plataforma CFD OpenFOAM. L'enfocament de modelatge aplicat ací segueix la idea d'un model del tipus ⅀-Y. El model es fonamenta en la hipòtesi de separació d'escales del flux. En els sistemes d'injecció actuals, és possible assumir que el flux que surt de la tovera opera a alts nombres de Reynolds i Webber, i per tant és possible considerar la independència de fenòmens com el transport de massa (grans escales del flux) dels processos d'atomització que ocorren a escales menors. La mescla líquid / gas es tracta com un pseudo-fluid amb densitat variable i que flueix segons un únic camp de velocitat. A més, la geometria mitjana de les estructures de líquid es pot caracteritzar mitjançant el modelatge de la superfície de la interfase líquid / gas per unitat de volum. Completant el model, s'ha desenvolupat un model d'evaporació al voltant de les característiques particulars de les tecnologies actuals dels motors. Això suposa que el procés d'evaporació està controlat per la mescla aire-combustible i les gotes de combustible s'evaporen sempre que hi hagi suficient aire per escalfar i evaporar. A causa d'això, el model d'evaporació implementat està basat en el plantejament de fluxos Localment Homogenis (LHF). Considerant una mescla adiabàtica, a la regió líquid / vapor, se suposa que el doll tendeix a les condicions adiabàtiques de saturació i per determinar aquest equilibri entre fases, s'utilitza la llei ideal de Raoult. Finalment, el model de doll s'acobla amb un model avançat de combustió basat en flamelets de difusió aproximades (ADF), que redueix el cost computacional especialment per a combustibles complexos i suposa el pas lògic en el desenvolupament del model per simular dolls dièsel. En primer lloc, el model s'aplica al càlcul d'un cas bàsic de flux extern no evaporatiu, molt adequat tant per l'extensa base de dades experimentals disponible com per la simetria geomètrica que presenta, permetent una important simplificació de la simulació. Els resultats obtinguts presenten un bon acord amb els experiments, la qual cosa estimula la seva aplicació en configuracions més complexes. En segon lloc, el model s'aplica al càlcul del "Spray A" no evaporatiu de la xarxa Engine Combustion Network (ECN), per reproduir l'estructura interna del doll dièsel així com predir mides de gota (SMD) de forma precisa. Finalment, es realitzen estudis evaporatius del "Spray A" juntament amb la condició nominal reactiva d'aquesta base de dades. La penetració de vapor, la longitud líquida, velocitat, el temps de retard i la longitud d'enlairament de flama calculats es comparen amb les dades experimentals i s'analitzen en detall.
Pandal Blanco, A. (2016). Implementation and Development of an Eulerian Spray Model for CFD simulations of diesel Sprays [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/68490
TESIS
Strasser, Wayne Scott. "Seeking Understanding of Acoustics and Spray Character in a Three-Stream Pulsating Transonic Airblast Injector." Diss., Virginia Tech, 2015. http://hdl.handle.net/10919/77428.
Full textPh. D.
Books on the topic "Spray and Atomization"
Lavernia, Enrique J. Spray atomization and deposition. Chichester: John Wiley, 1996.
Find full textR, Buchele Donald, and United States. National Aeronautics and Space Administration., eds. Small-droplet spray measurements with a scattered-light scanner. [Washington, D.C.]: National Aeronautics and Space Administration, 1988.
Find full textR, Buchele Donald, and United States. National Aeronautics and Space Administration., eds. Small-droplet spray measurements with a scattered-light scanner. [Washington, D.C.]: National Aeronautics and Space Administration, 1988.
Find full textR, Buchele Donald, and United States. National Aeronautics and Space Administration., eds. Small-droplet spray measurements with a scattered-light scanner. [Washington, D.C.]: National Aeronautics and Space Administration, 1988.
Find full textR, Buchele Donald, and United States. National Aeronautics and Space Administration., eds. Small-droplet spray measurements with a scattered-light scanner. [Washington, D.C.]: National Aeronautics and Space Administration, 1988.
Find full textYates, Wesley E. Effects of Nalco-Trol on atomization. Davis, CA: U.S. Dept. of Agriculture, Forest Service, Forest Pest Management, 1985.
Find full textKuan-Yun, Kuo Kenneth, ed. Recent advances in spray combustion: Spray atomization and drop burning phenomena. Reston, Virginia: American Institute of Aeronautics and Astronautics, 1996.
Find full textChang, Chan-Teng. Experimental study of diesel spray characteristics and atomization. Ann Arbor: UMI, 1998.
Find full textJ, Dunkley John, ed. Atomization of melts for powder production and spray deposition. Oxford: Clarendon Press, 1994.
Find full textUnited States. National Aeronautics and Space Administration., ed. Cryogenic spray vaporization in high-velocity helium, argon and nitrogen gasflows. [Washington, DC]: National Aeronautics and Space Administration, 1993.
Find full textBook chapters on the topic "Spray and Atomization"
Günther, Astrid, and Karl-Ernst Wirth. "Superheated Atomization." In Process-Spray, 609–45. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32370-1_16.
Full textBogno, Abdoul-Aziz, Hani Henein, Volker Uhlenwinkel, and Eric Gärtner. "Single Fluid Atomization Fundamentals." In Metal Sprays and Spray Deposition, 9–48. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-52689-8_2.
Full textAnderson, Iver E., and Lydia Achelis. "Two Fluid Atomization Fundamentals." In Metal Sprays and Spray Deposition, 49–88. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-52689-8_3.
Full textLefebvre, Arthur H., and Vincent G. McDonell. "External Spray Characteristics." In Atomization and Sprays, 183–205. Second edition. | Boca Raton : Taylor & Francis, CRC Press, 2017.: CRC Press, 2017. http://dx.doi.org/10.1201/9781315120911-7.
Full textEslamian, M., and N. Ashgriz. "Spray Drying, Spray Pyrolysis and Spray Freeze Drying." In Handbook of Atomization and Sprays, 849–60. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-7264-4_37.
Full textOmer, K., and N. Ashgriz. "Spray Nozzles." In Handbook of Atomization and Sprays, 497–579. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-7264-4_24.
Full textLefebvre, Arthur H., and Vincent G. McDonell. "Spray Size and Patternation Methods." In Atomization and Sprays, 243–80. Second edition. | Boca Raton : Taylor & Francis, CRC Press, 2017.: CRC Press, 2017. http://dx.doi.org/10.1201/9781315120911-9.
Full textUmemura, A. "Spray Group Combustion." In Handbook of Atomization and Sprays, 299–313. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-7264-4_14.
Full textMoreira, A. L. N., and M. R. Oliveira Panão. "Spray-Wall Impact." In Handbook of Atomization and Sprays, 441–55. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-7264-4_21.
Full textPurwanto, A., W. N. Wang, and K. Okuyama. "Flame Spray Pyrolysis." In Handbook of Atomization and Sprays, 869–79. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-7264-4_39.
Full textConference papers on the topic "Spray and Atomization"
FAETH, G. "Spray atomization and combustion." In 24th Aerospace Sciences Meeting. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1986. http://dx.doi.org/10.2514/6.1986-136.
Full textCosta, Mário, Bruno Pizziol, Miguel Panao, and André Silva. "Multiple Impinging Jet Air-Assisted Atomization." In ILASS2017 - 28th European Conference on Liquid Atomization and Spray Systems. Valencia: Universitat Politècnica València, 2017. http://dx.doi.org/10.4995/ilass2017.2017.4737.
Full textFERRENBERG, A., and M. VARMA. "Atomization data for spray combustion modeling." In 21st Joint Propulsion Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1985. http://dx.doi.org/10.2514/6.1985-1316.
Full textJacobsohn, Gabriel L., Eli T. Baldwin, David P. Schmidt, Benjamin R. Halls, Alan Kastengren, and Terrence R. Meyer. "Diffuse Interface Eularian Spray Atomization Modeling of Impinging Jet Sprays." In 2018 AIAA Aerospace Sciences Meeting. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2018. http://dx.doi.org/10.2514/6.2018-2078.
Full textGorny, Ramona Klaudia, Gerhard Schaldach, Peter Walzel, and Markus Thommes. "Spray Conditioning for the Preparation of Spray Dried Submicron Particles." In ILASS2017 - 28th European Conference on Liquid Atomization and Spray Systems. Valencia: Universitat Politècnica València, 2017. http://dx.doi.org/10.4995/ilass2017.2017.4701.
Full textDaaboul, Michel, Nicolas Saba, Jihad Rishmany, and Christophe Louste. "Properties of Fuel Spray Obtained by Electrohydrodynamic Atomization." In ILASS2017 - 28th European Conference on Liquid Atomization and Spray Systems. Valencia: Universitat Politècnica València, 2017. http://dx.doi.org/10.4995/ilass2017.2017.5018.
Full textLozano, Antonio, Juan Antonio García, Javier Alconchel, Félix Barreras, Esteban Calvo, and José Luis Santolaya. "Influence of liquid properties on ultrasonic atomization." In ILASS2017 - 28th European Conference on Liquid Atomization and Spray Systems. Valencia: Universitat Politècnica València, 2017. http://dx.doi.org/10.4995/ilass2017.2017.4588.
Full textBornschlegel, Sebastian, Chris Conrad, Lisa Eichhorn, and Michael Wensing. "Flashboiling atomization in nozzles for GDI engines." In ILASS2017 - 28th European Conference on Liquid Atomization and Spray Systems. Valencia: Universitat Politècnica València, 2017. http://dx.doi.org/10.4995/ilass2017.2017.4750.
Full textDai, S., J. P. Delplanque, E. J. Lavernia, and R. H. Rangel. "Modeling of Reactive Spray Atomization and Deposition." In ITSC 1998, edited by Christian Coddet. ASM International, 1998. http://dx.doi.org/10.31399/asm.cp.itsc1998p0341.
Full textCorcoran, T., A. Mansour, and N. Chigier. "Medical Atomization Design for Inhalation Therapy." In ASME 1997 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/imece1997-0779.
Full textReports on the topic "Spray and Atomization"
Genzale, Caroline. Development of a Turbulent Liquid Spray Atomization Model for Diesel Engine Simulations. Office of Scientific and Technical Information (OSTI), June 2021. http://dx.doi.org/10.2172/1785712.
Full textOefelein, Joseph. Development of high-fidelity models for liquid fuel spray atomization and mixing processes in transportation and energy systems. Office of Scientific and Technical Information (OSTI), April 2015. http://dx.doi.org/10.2172/1494618.
Full textLin, S. P. Mechanism of Atomization and Behavior of Non-Dilute Sprays. Fort Belvoir, VA: Defense Technical Information Center, June 1992. http://dx.doi.org/10.21236/ada254902.
Full text