Academic literature on the topic 'SpMV Multiplication'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'SpMV Multiplication.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "SpMV Multiplication"
Giannoula, Christina, Ivan Fernandez, Juan Gómez-Luna, Nectarios Koziris, Georgios Goumas, and Onur Mutlu. "Towards Efficient Sparse Matrix Vector Multiplication on Real Processing-In-Memory Architectures." ACM SIGMETRICS Performance Evaluation Review 50, no. 1 (June 20, 2022): 33–34. http://dx.doi.org/10.1145/3547353.3522661.
Full textHe, Guixia, and Jiaquan Gao. "A Novel CSR-Based Sparse Matrix-Vector Multiplication on GPUs." Mathematical Problems in Engineering 2016 (2016): 1–12. http://dx.doi.org/10.1155/2016/8471283.
Full textGao, Jiaquan, Yuanshen Zhou, and Kesong Wu. "A Novel Multi-GPU Parallel Optimization Model for The Sparse Matrix-Vector Multiplication." Parallel Processing Letters 26, no. 04 (December 2016): 1640001. http://dx.doi.org/10.1142/s0129626416400016.
Full textAlAhmadi, Sarah, Thaha Mohammed, Aiiad Albeshri, Iyad Katib, and Rashid Mehmood. "Performance Analysis of Sparse Matrix-Vector Multiplication (SpMV) on Graphics Processing Units (GPUs)." Electronics 9, no. 10 (October 13, 2020): 1675. http://dx.doi.org/10.3390/electronics9101675.
Full textLiu, Sheng, Yasong Cao, and Shuwei Sun. "Mapping and Optimization Method of SpMV on Multi-DSP Accelerator." Electronics 11, no. 22 (November 11, 2022): 3699. http://dx.doi.org/10.3390/electronics11223699.
Full textAnzt, Hartwig, Stanimire Tomov, and Jack Dongarra. "On the performance and energy efficiency of sparse linear algebra on GPUs." International Journal of High Performance Computing Applications 31, no. 5 (October 5, 2016): 375–90. http://dx.doi.org/10.1177/1094342016672081.
Full textLiu, Jie. "Accuracy Controllable SpMV Optimization on GPU." Journal of Physics: Conference Series 2363, no. 1 (November 1, 2022): 012008. http://dx.doi.org/10.1088/1742-6596/2363/1/012008.
Full textZeng, Guangsen, and Yi Zou. "Leveraging Memory Copy Overlap for Efficient Sparse Matrix-Vector Multiplication on GPUs." Electronics 12, no. 17 (August 31, 2023): 3687. http://dx.doi.org/10.3390/electronics12173687.
Full textGao, Jiaquan, Panpan Qi, and Guixia He. "Efficient CSR-Based Sparse Matrix-Vector Multiplication on GPU." Mathematical Problems in Engineering 2016 (2016): 1–14. http://dx.doi.org/10.1155/2016/4596943.
Full textChen, Shizhao, Jianbin Fang, Chuanfu Xu, and Zheng Wang. "Adaptive Hybrid Storage Format for Sparse Matrix–Vector Multiplication on Multi-Core SIMD CPUs." Applied Sciences 12, no. 19 (September 29, 2022): 9812. http://dx.doi.org/10.3390/app12199812.
Full textDissertations / Theses on the topic "SpMV Multiplication"
Ashari, Arash. "Sparse Matrix-Vector Multiplication on GPU." The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1417770100.
Full textGodwin, Jeswin Samuel. "High-Performancs Sparse Matrix-Vector Multiplication on GPUS for Structured Grid Computations." The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1357280824.
Full textBoyer, Brice. "Multiplication matricielle efficace et conception logicielle pour la bibliothèque de calcul exact LinBox." Phd thesis, Université de Grenoble, 2012. http://tel.archives-ouvertes.fr/tel-00767915.
Full textHong, Changwan. "Code Optimization on GPUs." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1557123832601533.
Full textSingh, Kunal. "High-Performance Sparse Matrix-Multi Vector Multiplication on Multi-Core Architecture." The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1524089757826551.
Full textRamesh, Chinthala. "Hardware-Software Co-Design Accelerators for Sparse BLAS." Thesis, 2017. http://etd.iisc.ac.in/handle/2005/4276.
Full textBooks on the topic "SpMV Multiplication"
Bisseling, Rob H. Parallel Scientific Computation. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198788348.001.0001.
Full textBook chapters on the topic "SpMV Multiplication"
Khan, Muhammad Hannan, Osman Hassan, and Shahid Khan. "Accelerating SpMV Multiplication in Probabilistic Model Checkers Using GPUs." In Theoretical Aspects of Computing – ICTAC 2021, 86–104. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-85315-0_6.
Full textStoyanov, Dimitar, Rui Machado, and Franz-Josef Pfreundt. "Task-Based Parallel Sparse Matrix-Vector Multiplication (SpMVM) with GPI-2." In Large-Scale Scientific Computing, 153–60. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-26520-9_16.
Full textZekri, Ahmed S. "Three Dimensional SPMD Matrix–Matrix Multiplication Algorithm and a Stacked Many-Core Processor Architecture." In Lecture Notes in Electrical Engineering, 1139–50. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-3535-8_94.
Full textGuo, Mingfeng, Yaobin Wang, Jun Huang, Qingfeng Wang, Yaqing Zhang, Mu Xu, and Fang Lu. "Rgs-SpMM: Accelerate Sparse Matrix-Matrix Multiplication by Row Group Splitting Strategy on the GPU." In Lecture Notes in Computer Science, 61–66. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-21395-3_6.
Full textBisseling, Rob H. "Sparse matrix–vector multiplication." In Parallel Scientific Computation, 190–290. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198788348.003.0004.
Full textMpakos, Panagiotis, Nikela Papadopoulou, Chloe Alverti, Georgios Goumas, and Nectarios Koziris. "On the Performance and Energy Efficiency of Sparse Matrix-Vector Multiplication on FPGAs." In Parallel Computing: Technology Trends. IOS Press, 2020. http://dx.doi.org/10.3233/apc200092.
Full text"Sparse Linear Algebra." In Advances in Systems Analysis, Software Engineering, and High Performance Computing, 94–137. IGI Global, 2022. http://dx.doi.org/10.4018/978-1-7998-7082-1.ch004.
Full textJamalmohammed, Saira Banu, Lavanya K., Sumaiya Thaseen I., and Biju V. "Review on Sparse Matrix Storage Formats With Space Complexity Analysis." In Applications of Artificial Intelligence for Smart Technology, 122–45. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-3335-2.ch009.
Full textConference papers on the topic "SpMV Multiplication"
Page, Brian A., and Peter M. Kogge. "Scalability of Hybrid Sparse Matrix Dense Vector (SpMV) Multiplication." In 2018 International Conference on High Performance Computing & Simulation (HPCS). IEEE, 2018. http://dx.doi.org/10.1109/hpcs.2018.00072.
Full textMerrill, Duane, and Michael Garland. "Merge-based sparse matrix-vector multiplication (SpMV) using the CSR storage format." In PPoPP '16: 21st ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2851141.2851190.
Full textHou, Kaixi, Wu-chun Feng, and Shuai Che. "Auto-Tuning Strategies for Parallelizing Sparse Matrix-Vector (SpMV) Multiplication on Multi- and Many-Core Processors." In 2017 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW). IEEE, 2017. http://dx.doi.org/10.1109/ipdpsw.2017.155.
Full textSuresh, Krishnan, and Praveen Yadav. "Large-Scale Modal Analysis on Multi-Core Architectures." In ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/detc2012-70281.
Full textHuang, Guyue, Guohao Dai, Yu Wang, and Huazhong Yang. "GE-SpMM: General-Purpose Sparse Matrix-Matrix Multiplication on GPUs for Graph Neural Networks." In SC20: International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE, 2020. http://dx.doi.org/10.1109/sc41405.2020.00076.
Full text