Journal articles on the topic 'Spiroketals'

To see the other types of publications on this topic, follow the link: Spiroketals.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Spiroketals.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Čikoš, Ana, Irena Ćaleta, Dinko Žiher, Mark B. Vine, Ivaylo J. Elenkov, Marko Dukši, Dubravka Gembarovski, et al. "Structure and conformational analysis of spiroketals from 6-O-methyl-9(E)-hydroxyiminoerythronolide A." Beilstein Journal of Organic Chemistry 11 (August 19, 2015): 1447–57. http://dx.doi.org/10.3762/bjoc.11.157.

Full text
Abstract:
Three novel spiroketals were prepared by a one-pot transformation of 6-O-methyl-9(E)-hydroxyiminoerythronolide A. We present the formation of a [4.5]spiroketal moiety within the macrolide lactone ring, but also the unexpected formation of a 10-C=11-C double bond and spontaneous change of stereochemistry at position 8-C. As a result, a thermodynamically stable structure was obtained. The structures of two new diastereomeric, unsaturated spiroketals, their configurations and conformations, were determined by means of NMR spectroscopy and molecular modelling. The reaction kinetics and mechanistic aspects of this transformation are discussed. These rearrangements provide a facile synthesis of novel macrolide scaffolds.
APA, Harvard, Vancouver, ISO, and other styles
2

Messerle, Barbara A., and Khuong Q. Vuong. "Synthesis of spiroketals by iridium-catalyzed double hydroalkoxylation." Pure and Applied Chemistry 78, no. 2 (January 1, 2006): 385–90. http://dx.doi.org/10.1351/pac200678020385.

Full text
Abstract:
A highly efficient approach to the synthesis of spiroketals involves the double cyclization of alkynyl diols using transition-metal catalysts. The iridium complex [Ir(PyP)(CO)2]BPh4 where PyP = 1-[(2-diphenylphosphino)ethyl]pyrazole is an effective catalyst for promoting the formation of spiroketals via this double hydroalkoxylation reaction. The complex promotes the formation of a series of spiroketal products from alkynyl diol starting materials such as 3-ethynylpentane-1,5-diol and 2-(4-hydroxybut-1-ynyl)benzyl alcohol. Stereoselective cyclization occurs for 3-ethynylpentane-1,5-diol, 3-ethynylhexane-1,6-diol. The cycloadditions occur in all but one case with quantitative conversion in under 24 h at 120 °C.
APA, Harvard, Vancouver, ISO, and other styles
3

Brimble, Margaret A., and Seng H. Chan. "Synthesis of 7-Methoxy-3′,4′,5′,6′-tetrahydrospiro-[isobenzofuran-1(3H),2′-pyran]-3-one and 5,7-Dimethoxy-3′,4′,5′,6′-tetrahydrospiro[isobenzofuran-1(3H),2′-pyran]-3-one." Australian Journal of Chemistry 51, no. 3 (1998): 235. http://dx.doi.org/10.1071/c97193.

Full text
Abstract:
The synthesis of novel aryl spiroketals, which contain a similar substitution pattern to that present in the antifungal agents the papulacandins, is described. Thus, spiroketal (7) was obtained from acid-catalysed cyclization of the keto alcohol (13), and spiroketal (8) was obtained from acid-catalysed cyclization of keto alcohols (12) and (19). Keto alcohols (12), (13) and (19) in turn were prepared by ortho-directed lithiation of amides (10), (11) and oxazoline (17) respectively, followed by reaction with δ-valerolactone. Substitution of the aromatic ring occurred at the sterically hindered position ortho to both the methoxy and ortho-directing metalation group. In an alternative approach to the synthesis of the desired spiroketals, two palladium(0)-catalysed coupling strategies were examined. The Stille coupling between the aryl stannane (24) and iodoglucal (25) resulted in a low yield of the aryl C-glycoside (21). Likewise, a low yield for the same coupled product (21) was achieved by a Suzuki coupling between the arylboronic acid (26) and iodoglucal (25).
APA, Harvard, Vancouver, ISO, and other styles
4

Tlais, Sami F., and Gregory B. Dudley. "On the proposed structures and stereocontrolled synthesis of the cephalosporolides." Beilstein Journal of Organic Chemistry 8 (August 14, 2012): 1287–92. http://dx.doi.org/10.3762/bjoc.8.146.

Full text
Abstract:
The synthesis of four candidate stereoisomers of cephalosporolide H is described, made possible by a zinc-chelation strategy for controlling the stereochemistry of oxygenated 5,5-spiroketals. The same strategy likewise enables the first stereocontrolled synthesis of cephalosporolide E, which is typically isolated and prepared admixed with its spiroketal epimer, cephalosporolide F.
APA, Harvard, Vancouver, ISO, and other styles
5

Green, Jason C., G. Leslie Burnett, and Thomas R. R. Pettus. "New strategies for natural products containing chroman spiroketals." Pure and Applied Chemistry 84, no. 7 (May 2, 2012): 1621–31. http://dx.doi.org/10.1351/pac-con-11-10-34.

Full text
Abstract:
Two cycloaddition strategies are described that lead to various chroman spiroketals from assorted exocyclic enol ethers. Unlike conventional thermodynamic ketalization strategies, the stereochemical outcome for this approach is determined by a kinetic cycloaddition reaction. Thus, the stereochemical outcome reflects the olefin geometry of the starting materials along with the orientation of the associated transition state. However, the initial kinetic product can also be equilibrated by acid catalysis and reconstituted into a thermodynamic stereochemical arrangement. Thus, these strategies uniquely enable synthetic access to either the thermodynamic or kinetic conformation of the spiroketal stereocenter itself. Applications of these strategies in the syntheses of berkelic acid, β-rubromycin, and paecilospirone are presented along with the use of a chroman spiroketal for the construction of heliespirones A and C.
APA, Harvard, Vancouver, ISO, and other styles
6

Lee, Seongmin, and Philip L. Fuchs. "In situ nitrosonium ion generation — α-Oximinylation of enol ethers from steroidal spiroketals: Introduction of C23 (R)-OH in cephalostatin intermediates." Canadian Journal of Chemistry 84, no. 10 (October 1, 2006): 1442–47. http://dx.doi.org/10.1139/v06-113.

Full text
Abstract:
Nitrosonium ion generated in situ from the reaction of t-BuNO2 and BF3·Et2 is an effective oximinylating agent for enol ethers derived from steroidal spiroketals. The scope and limitations of this method has been studied. The difficult reduction of C23 ketone to C23 (R)-alcohol has now been selectively achieved via L-Selectride® reduction. Application to cephalostatin intermediates is discussed.Key words: oximinylation, nitrosonium ion, steroid spiroketal, cephalostatins.
APA, Harvard, Vancouver, ISO, and other styles
7

Tlais, Sami F., and Gregory B. Dudley. "A gold-catalyzed alkyne-diol cycloisomerization for the synthesis of oxygenated 5,5-spiroketals." Beilstein Journal of Organic Chemistry 7 (May 4, 2011): 570–77. http://dx.doi.org/10.3762/bjoc.7.66.

Full text
Abstract:
A highly efficient synthesis of oxygenated 5,5-spiroketals was performed towards the synthesis of the cephalosporolides. Gold(I) chloride in methanol induced the cycloisomerization of a protected alkyne triol with concomitant deprotection to give a strategically hydroxylated 5,5-spiroketal, despite the potential for regiochemical complications and elimination to furan. Other late transition metal Lewis acids were less effective. The use of methanol as solvent helped suppress the formation of the undesired furan by-product. This study provides yet another example of the advantages of gold catalysis in the activation of alkyne π-systems.
APA, Harvard, Vancouver, ISO, and other styles
8

Perron, Francoise, and Kim F. Albizati. "Chemistry of spiroketals." Chemical Reviews 89, no. 7 (November 1989): 1617–61. http://dx.doi.org/10.1021/cr00097a015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Balachandran, Raghavan, Tamara D. Hopkins, Catherine A. Thomas, Peter Wipf, and Billy W. Day. "Tubulin-Perturbing Naphthoquinone Spiroketals." Chemical Biology & Drug Design 71, no. 2 (February 2008): 117–24. http://dx.doi.org/10.1111/j.1747-0285.2007.00616.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ardes-Guisot, Nicolas, Bani Ouled-Lahoucine, Isabelle Canet, and Marie-Eve Sinibaldi. "A straightforward route to spiroketals." Tetrahedron Letters 48, no. 48 (November 2007): 8511–13. http://dx.doi.org/10.1016/j.tetlet.2007.09.151.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Brimble, Margaret A., Michael K. Edmonds, and Geoffrey M. Williams. "Allylic oxidation of unsaturated spiroketals." Tetrahedron Letters 31, no. 51 (January 1990): 7509–12. http://dx.doi.org/10.1016/s0040-4039(00)88531-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Chen, Xinzheng, and Sasa Wang. "Photoinduced Synthesis of Benzannulated Spiroketals." Synlett 26, no. 14 (June 25, 2015): 2042–46. http://dx.doi.org/10.1055/s-0034-1381038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Anderson, E. A., and B. Gockel. "ChemInform Abstract: Spiroketals (Update 2010)." ChemInform 42, no. 38 (August 25, 2011): no. http://dx.doi.org/10.1002/chin.201138216.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Brimble, Margaret A., David L. Officer, and Geoffrey M. Williams. "A facile synthesis of spiroketals." Tetrahedron Letters 29, no. 29 (January 1988): 3609–12. http://dx.doi.org/10.1016/0040-4039(88)85307-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Gillard, Rachel M., and Margaret A. Brimble. "Benzannulated spiroketal natural products: isolation, biological activity, biosynthesis, and total synthesis." Organic & Biomolecular Chemistry 17, no. 36 (2019): 8272–307. http://dx.doi.org/10.1039/c9ob01598a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Quach, Rachelle, Daniel F. Chorley, and Margaret A. Brimble. "Recent developments in transition metal-catalysed spiroketalisation." Org. Biomol. Chem. 12, no. 38 (2014): 7423–32. http://dx.doi.org/10.1039/c4ob01325e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Mayorquín-Torres, Martha C., Juan Carlos González-Orozco, Marcos Flores-Álamo, Ignacio Camacho-Arroyo, and Martín A. Iglesias-Arteaga. "Palladium catalyzed synthesis of benzannulated steroid spiroketals." Organic & Biomolecular Chemistry 18, no. 4 (2020): 725–37. http://dx.doi.org/10.1039/c9ob02255d.

Full text
Abstract:
Nine cytotoxic [5/7] and [6/6] benzannulated steroid spiroketals were synthesized by palladium catalyzed spiroketalization of 5α and 5β-alkynediols derived from testosterone, diosgenin and cholesterol.
APA, Harvard, Vancouver, ISO, and other styles
18

Zhang, Fu-Min, Shu-Yu Zhang, and Yong-Qiang Tu. "Recent progress in the isolation, bioactivity, biosynthesis, and total synthesis of natural spiroketals." Natural Product Reports 35, no. 1 (2018): 75–104. http://dx.doi.org/10.1039/c7np00043j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Teng, Qi, Jialin Qi, Ling Zhou, Zhenghu Xu, and Chen-Ho Tung. "Synthesis of benzannulated spiroketals with gold-catalyzed cycloisomerization/spiroketalization cascade." Organic Chemistry Frontiers 5, no. 6 (2018): 990–93. http://dx.doi.org/10.1039/c7qo01005b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Raju, B., and Anil Saikia. "Asymmetric Synthesis of Naturally Occuring Spiroketals." Molecules 13, no. 8 (August 28, 2008): 1942–2038. http://dx.doi.org/10.3390/molecules13081942.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Zemribo, Ronald, and Keith T. Mead. "A novel route to monoanomeric spiroketals." Tetrahedron Letters 39, no. 23 (June 1998): 3891–94. http://dx.doi.org/10.1016/s0040-4039(98)00685-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Bray, Christopher. "An Approach to Benzannelated [5,6]-Spiroketals." Synlett 2008, no. 16 (September 12, 2008): 2500–2502. http://dx.doi.org/10.1055/s-2008-1078057.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Crimmins, Michael T., and Rosemary O'Mahony. "Synthesis of spiroketals: a general approach." Journal of Organic Chemistry 55, no. 23 (November 1990): 5894–900. http://dx.doi.org/10.1021/jo00310a023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Sommer, Stefan, Marc Kühn, and Herbert Waldmann. "Solid-Phase Synthesis of [5.5]-Spiroketals." Advanced Synthesis & Catalysis 350, no. 11-12 (August 4, 2008): 1736–50. http://dx.doi.org/10.1002/adsc.200800154.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Pale, P., and J. Chuche. "A two step synthesis of spiroketals." Tetrahedron Letters 29, no. 24 (January 1988): 2947–50. http://dx.doi.org/10.1016/0040-4039(88)85054-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Brimble, Margaret A., Michael R. Nairn, and Yinqiu Wu. "Highly stereoselective syn-hydroxylation of spiroketals." Tetrahedron Letters 32, no. 32 (August 1991): 4049–50. http://dx.doi.org/10.1016/0040-4039(91)80625-g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Wood, James M., Daniel P. Furkert, and Margaret A. Brimble. "Synthesis of the 2-formylpyrrole spiroketal pollenopyrroside A and structural elucidation of xylapyrroside A, shensongine A and capparisine B." Organic & Biomolecular Chemistry 14, no. 32 (2016): 7659–64. http://dx.doi.org/10.1039/c6ob01361a.

Full text
Abstract:
A convergent synthesis enabled structural elucidation of the 2-formyl pyrrole spiroketals pollenopyrroside A and shensongine A/xylapyrroside A. The key step involves a Maillard-type condensation to furnish the 2-formylpyrrole ring system.
APA, Harvard, Vancouver, ISO, and other styles
28

Nicolas, Lionel, Alexey N. Butkevich, Amandine Guérinot, Andrei Corbu, Sébastien Reymond, and Janine Cossy. "Synthesis of complex oxygenated heterocycles." Pure and Applied Chemistry 85, no. 6 (March 27, 2013): 1203–13. http://dx.doi.org/10.1351/pac-con-12-09-15.

Full text
Abstract:
Versatile and chemoselective preparation of substituted oxygenated heterocycles is described. Highly diastereoselective metal-catalyzed syntheses of trans-2,6- and cis-2,6-disubstituted tetrahydropyrans (THPs) are presented, along with an easy one-pot access to various ring size benzoannulated spiroketals.
APA, Harvard, Vancouver, ISO, and other styles
29

LaCour, Thomas G., and P. L. Fuchs. "Concurrent ring opening and halogenation of spiroketals." Tetrahedron Letters 40, no. 25 (June 1999): 4655–58. http://dx.doi.org/10.1016/s0040-4039(99)00827-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Oikawa, Hideaki, Masato Oikawa, Akitami Ichihara, Kimiko Kobayashi, and Masakazu Uramoto. "Highly regio- and stereoselective reductions of spiroketals." Tetrahedron Letters 34, no. 33 (August 1993): 5303–6. http://dx.doi.org/10.1016/s0040-4039(00)73980-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Dalla, V., and P. Pale. "Diastereoselective synthesis of spiroketals via radical cyclization." Tetrahedron Letters 33, no. 51 (December 1992): 7857–60. http://dx.doi.org/10.1016/s0040-4039(00)74762-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Brown, Christopher D. S., Nigel S. Simpkins, and Keith Clinch. "A route to spiroketals using radical translocation." Tetrahedron Letters 34, no. 1 (January 1993): 131–32. http://dx.doi.org/10.1016/s0040-4039(00)60075-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Cahill, Shane, and Matthew O’Brien. "Furanyl spiroketals: thermodynamic control of remote asymmetry." Tetrahedron Letters 47, no. 22 (May 2006): 3665–68. http://dx.doi.org/10.1016/j.tetlet.2006.03.135.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Gai, Sinan, Nigel T. Lucas, and Bill C. Hawkins. "Benzannulated 6,5-Spiroketals from Donor–Acceptor Cyclopropanes." Organic Letters 21, no. 8 (March 29, 2019): 2872–75. http://dx.doi.org/10.1021/acs.orglett.9b00878.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Waller, David L., Corey R. J. Stephenson, and Peter Wipf. "Spiroketals via oxidative rearrangement of enol ethers." Org. Biomol. Chem. 5, no. 1 (2007): 58–60. http://dx.doi.org/10.1039/b612992g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Rizzacasa, Mark A., and Annett Pollex. "The hetero-Diels–Alder approach to spiroketals." Organic & Biomolecular Chemistry 7, no. 6 (2009): 1053. http://dx.doi.org/10.1039/b819966n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Lindsey, Christopher C., Kun Liang Wu, and Thomas R. R. Pettus. "Synthesis of Electron Deficient 5,6-Aryloxy Spiroketals." Organic Letters 8, no. 11 (May 2006): 2365–67. http://dx.doi.org/10.1021/ol0606886.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Yoneda, Naoki, Yukihiro Fukata, Keisuke Asano, and Seijiro Matsubara. "Asymmetric Synthesis of Spiroketals with Aminothiourea Catalysts." Angewandte Chemie 127, no. 51 (October 29, 2015): 15717–20. http://dx.doi.org/10.1002/ange.201508405.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Yoneda, Naoki, Yukihiro Fukata, Keisuke Asano, and Seijiro Matsubara. "Asymmetric Synthesis of Spiroketals with Aminothiourea Catalysts." Angewandte Chemie International Edition 54, no. 51 (October 29, 2015): 15497–500. http://dx.doi.org/10.1002/anie.201508405.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Wilson, Zoe E., Jonathan G. Hubert, and Margaret A. Brimble. "A Flexible Approach to 6,5-Benzannulated Spiroketals." European Journal of Organic Chemistry 2011, no. 20-21 (May 18, 2011): 3938–45. http://dx.doi.org/10.1002/ejoc.201100345.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

BRIMBLE, M. A., M. K. EDMONDS, and G. M. WILLIAMS. "ChemInform Abstract: Allylic Oxidation of Unsaturated Spiroketals." ChemInform 23, no. 14 (August 22, 2010): no. http://dx.doi.org/10.1002/chin.199214111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Barun, Okram, Stefan Sommer, and Herbert Waldmann. "Asymmetric Solid-Phase Synthesis of 6,6-Spiroketals." Angewandte Chemie International Edition 43, no. 24 (June 14, 2004): 3195–99. http://dx.doi.org/10.1002/anie.200353609.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Lawson, Elvie N., William Kitching, Colin H. L. Kennard, and Karl A. Byriel. ".alpha.-Bromo spiroketals: stereochemistry and elimination reactions." Journal of Organic Chemistry 58, no. 9 (April 1993): 2501–8. http://dx.doi.org/10.1021/jo00061a025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Brimble, Margaret A. "Synthesis of Spiroketals Related to Griseusin A." Molecules 1, no. 1 (March 29, 1996): 3–14. http://dx.doi.org/10.1007/s007830050002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Tomas, Loic, Benjamin Bourdon, Jean Claude Caille, David Gueyrard, and Peter G. Goekjian. "A Concise and Efficient Synthesis of Spiroketals - Application to the Synthesis of SPIKET-P and a Spiroketal fromBactroceraSpecies." European Journal of Organic Chemistry 2013, no. 5 (January 10, 2013): 915–20. http://dx.doi.org/10.1002/ejoc.201201199.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Commandeur, Malgorzata, Claude Commandeur, and Janine Cossy. "Spiroketals: Toward the synthesis of 39-oxobistramide K." Pure and Applied Chemistry 84, no. 7 (February 29, 2012): 1567–74. http://dx.doi.org/10.1351/pac-con-11-09-06.

Full text
Abstract:
An advanced spiroketal intermediate toward the synthesis of 39-oxobistramide K was prepared, fragment C14–C40. This fragment was obtained in 19 steps with an overall yield of 6.2 % using a FeCl3-catalyzed spiroketalization as the key step.
APA, Harvard, Vancouver, ISO, and other styles
47

Iwata, Chuzo, Kohji Hattori, Masahiro Fujita, Shuji Uchida, and Takeshi Imanishi. "Stereoselective Synthetic Studies on Biologically Active Natural Spiroketals." HETEROCYCLES 23, no. 1 (1985): 229. http://dx.doi.org/10.3987/r-1985-01-0229.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Seward, Eileen M., Emma Carlson, Timothy Harrison, Karen E. Haworth, Richard Herbert, Fintan J. Kelleher, Marc M. Kurtz, et al. "Spirocyclic NK1 antagonists I: [4.5] and [5.5]-Spiroketals." Bioorganic & Medicinal Chemistry Letters 12, no. 18 (September 2002): 2515–18. http://dx.doi.org/10.1016/s0960-894x(02)00506-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

van Hooft, Peter A. V., Farid El Oualid, Herman S. Overkleeft, Gijsbert A. van der Marel, Jacques H. van Boom, and Michiel A. Leeuwenburgh. "Synthesis and elaboration of functionalised carbohydrate-derived spiroketals." Organic & Biomolecular Chemistry 2, no. 9 (2004): 1395. http://dx.doi.org/10.1039/b401699h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Winkler, Jeffrey D., and Peter J. Mikochik. "Synthesis of Cyclic Hemiketals and Spiroketals from Dioxanorbornanes." Organic Letters 6, no. 21 (October 2004): 3735–37. http://dx.doi.org/10.1021/ol048578r.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography