Academic literature on the topic 'Spinning multi-beam lidar'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Spinning multi-beam lidar.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Spinning multi-beam lidar"

1

Alsadik, Bashar. "Ideal Angular Orientation of Selected 64-Channel Multi Beam Lidars for Mobile Mapping Systems." Remote Sensing 12, no. 3 (February 5, 2020): 510. http://dx.doi.org/10.3390/rs12030510.

Full text
Abstract:
Lidar technology is thriving nowadays for different applications mainly for autonomous navigation, mapping, and smart city technology. Lidars vary in different aspects and can be: multi beam, single beam, spinning, solid state, full 360 field of view FOV, single or multi pulse returns, and many other geometric and radiometric aspects. Users and developers in the mapping industry are continuously looking for new released Lidars having high properties of output density, coverage, and accuracy while keeping a lower cost. Accordingly, every Lidar type should be well evaluated for the final intended mapping aim. This evaluation is not easy to implement in practice because of the need to have all the investigated Lidars available in hand and integrated into a ready to use mapping system. Furthermore, to have a fair comparison; it is necessary to ensure the test applied in the same environment at the same travelling path among other conditions. In this paper, we are evaluating two state-of-the-art multi beam Lidar types: Ouster OS-1-64 and Hesai Pandar64 for mapping applications. The evaluation of the Lidar types is applied in a simulation environment which approximates reality. The paper shows the determination of the ideal orientation angle for the two Lidars by assessing the density, coverage, and accuracy and presenting clear performance quantifications and conclusions.
APA, Harvard, Vancouver, ISO, and other styles
2

Tessema, L. S., R. Jaeger, and U. Stilla. "A MATHEMATICAL SENSOR MODEL FOR INDOOR USE OF A MULTI-BEAM ROTATING 3D LIDAR." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-2/W16 (September 17, 2019): 227–34. http://dx.doi.org/10.5194/isprs-archives-xlii-2-w16-227-2019.

Full text
Abstract:
<p><strong>Abstract.</strong> Our contribution presents a new perspective in the mathematical description of a rotating multi-beam LiDAR sensor, in a sense that we make use of projective geometry along with the “homogeneous general equation of the second degree” to parametrize scan lines. We describe the scan geometry of a typical multi-beam rotating 3D LiDAR by representing scan lines as pojective conics that represent a projective figure (a cone) in an embedding plane. This approach enables the parameterization of each scan line using a generic conic section equation. Most modeling approachs model spinning LiDAR sensors in terms of individual points sampled by a laser beam. On the contrary, we propose a model that provides a high-level geometric interpretation both for the environment and the laser scans. Possible application scenarios include exterior and interior calibration of multiple rotating multi-beam sensors, scan distortion correction and localization in planar maps.</p>
APA, Harvard, Vancouver, ISO, and other styles
3

Alsadik, Bashar. "Performance Assessment of Mobile Laser Scanning Systems Using Velodyne Hdl-32e." Surveying and Geospatial Engineering Journal 1, no. 1 (January 1, 2021): 28–33. http://dx.doi.org/10.38094/sgej116.

Full text
Abstract:
Mapping systems using multi-beam LiDARs are widely used nowadays for different geospatial applications graduating from indoor projects to outdoor city-wide projects. These mobile mapping systems can be either ground-based or aerial-based systems and are mostly equipped with inertial navigation systems INS. The Velodyne HDL-32 LiDAR is a well-known 360° spinning multi-beam laser scanner that is widely used in outdoor and indoor mobile mapping systems. The performance of such LiDARs is an ongoing research topic which is quite important for the quality assurance and quality control topic. The performance of this LiDAR type is correlated to many factors either related to the device itself or the design of the mobile mapping system. Regarding design, most of the mapping systems are equipped with a single Velodyne HDL32 in a specific orientation angle which is different among the mapping systems manufacturers. The LiDAR orientation angle has a significant impact on the performance in terms of the density and coverage of the produced point clouds. Furthermore, during the lifetime of this multi-beam LiDAR, one or more beams may be defected and then either continue the production or returned to the manufacturer to be fixed which then cost time and money. In this paper, the design impact analysis of a mobile laser scanning (MLS) system equipped with a single Velodyne HDL-32E will be clarified and a clear relationship is given between the orientation angle of the LiDAR and the output density of points. The ideal angular orientation of a single Velodyne HDL-32E is found to be at 35° in a mobile mapping system. Furthermore, we investigated the degradation of points density when one of the 32 beams is defected and quantified the density loss percentage and to the best of our knowledge, this is not presented in literature before. It is found that a maximum of about 8% point density loss occurs on the ground and 4% on the facades when having a defected beam of the Velodyne HDL-32E.
APA, Harvard, Vancouver, ISO, and other styles
4

Alsadik, Bashar. "Performance Assessment of Mobile Laser Scanning Systems Using Velodyne Hdl-32e." Journal of Geoinformatics & Environmental Research 3, no. 01 (April 6, 2022): 01–09. http://dx.doi.org/10.38094/jgier30142.

Full text
Abstract:
Mapping systems using multi-beam LiDARs are widely used nowadays for different geospatial applications graduating from indoor projects to outdoor city-wide projects. These mobile mapping systems can be either ground-based or aerial-based systems and are mostly equipped with inertial navigation systems INS. The Velodyne HDL-32 LiDAR is a well-known 360° spinning multi-beam laser scanner that is widely used in outdoor and indoor mobile mapping systems. The performance of such LiDARs is an ongoing research topic which is quite important for the quality assurance and quality control topic. The performance of this LiDAR type is correlated to many factors either related to the device itself or the design of the mobile mapping system. Regarding design, most of the mapping systems are equipped with a single Velodyne HDL32 in a specific orientation angle which is different among the mapping systems manufacturers. The LiDAR orientation angle has a significant impact on the performance in terms of the density and coverage of the produced point clouds. Furthermore, during the lifetime of this multi-beam LiDAR, one or more beams may be defected and then either continue the production or returned to the manufacturer to be fixed which then cost time and money. In this paper, the design impact analysis of a mobile laser scanning (MLS) system equipped with a single Velodyne HDL-32E will be clarified and a clear relationship is given between the orientation angle of the LiDAR and the output density of points. The ideal angular orientation of a single Velodyne HDL-32E is found to be at 35° in a mobile mapping system. Furthermore, we investigated the degradation of points density when one of the 32 beams is defected and quantified the density loss percentage and to the best of our knowledge, this is not presented in literature before. It is found that a maximum of about 8% point density loss occurs on the ground and 4% on the facades when having a defected beam of the Velodyne HDL-32E.
APA, Harvard, Vancouver, ISO, and other styles
5

Altuntas, C. "POINT CLOUD ACQUISITION TECHNIQUES BY USING SCANNING LIDAR FOR 3D MODELLING AND MOBILE MEASUREMENT." International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLIII-B2-2022 (May 30, 2022): 967–72. http://dx.doi.org/10.5194/isprs-archives-xliii-b2-2022-967-2022.

Full text
Abstract:
Abstract. Laser scanners collect three-dimensional spatial data of an imaging area in a very short time with high point density. The laser scanners can be classified by different aspects, such as multi beam, single beam, spinning, solid state, single or multi returns, short or long range, and field of view angle. The mapping industry usually looks for range, accuracy, point density, and measurement speed higher while cost, error, energy consumption and weight lower instruments. Particularly, developments in LiDAR photon imaging techniques have enabled laser scanning to be used in three-dimensional modelling, motion detection, autonomous vehicle and mobile measurement. The distance from the instrument to the scan point is measured by the pulse or phase-shift method in laser scanners. The scan beam is directed at a certain angle so that the imaging area can be measured in arrays of points. The orientation of the beam is provided as mechanically in some scanners, and by an opto-electronic mechanism in others. Moreover, some scanners use multiple 2D LiDAR planes for three-dimensional scanning. A mobile three-dimensional measurement can be performed by using multi-beam scanners integrated with the other related sensors. The high performance of the scanners is possible with knowing their measurement properties and technical specifications. In this study, LiDAR techniques, that perform scanning measurements by oriented beam, were investigated and their technical features were examined.
APA, Harvard, Vancouver, ISO, and other styles
6

Ravi and Habib. "Fully Automated Profile-based Calibration Strategy for Airborne and Terrestrial Mobile LiDAR Systems with Spinning Multi-beam Laser Units." Remote Sensing 12, no. 3 (January 26, 2020): 401. http://dx.doi.org/10.3390/rs12030401.

Full text
Abstract:
LiDAR-based mobile mapping systems (MMS) are rapidly gaining popularity for a multitude of applications due to their ability to provide complete and accurate 3D point clouds for any and every scene of interest. However, an accurate calibration technique for such systems is needed in order to unleash their full potential. In this paper, we propose a fully automated profile-based strategy for the calibration of LiDAR-based MMS. The proposed technique is validated by comparing its accuracy against the expected point positioning accuracy for the point cloud based on the used sensors’ specifications. The proposed strategy was seen to reduce the misalignment between different tracks from approximately 2 to 3 m before calibration down to less than 2 cm after calibration for airborne as well as terrestrial mobile LiDAR mapping systems. In other words, the proposed calibration strategy can converge to correct estimates of mounting parameters, even in cases where the initial estimates are significantly different from the true values. Furthermore, the results from the proposed strategy are also verified by comparing them to those from an existing manually-assisted feature-based calibration strategy. The major contribution of the proposed strategy is its ability to conduct the calibration of airborne and wheel-based mobile systems without any requirement for specially designed targets or features in the surrounding environment. The above claims are validated using experimental results conducted for three different MMS – two airborne and one terrestrial – with one or more LiDAR unit.
APA, Harvard, Vancouver, ISO, and other styles
7

Chen, Chia-Yen, and Hsiang-Jen Chien. "On-Site Sensor Recalibration of a Spinning Multi-Beam LiDAR System Using Automatically-Detected Planar Targets." Sensors 12, no. 10 (October 12, 2012): 13736–52. http://dx.doi.org/10.3390/s121013736.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

"Bias Impact Analysis and Calibration of UAV-Based Mobile LiDAR System with Spinning Multi-Beam Laser Scanner." Applied Sciences 8, no. 2 (February 18, 2018): 297. http://dx.doi.org/10.3390/app8020297.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography