Academic literature on the topic 'Spinning Combustion Technology (SCT)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Spinning Combustion Technology (SCT).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Spinning Combustion Technology (SCT)"
Ivleva, T. P., and A. G. Merzhanov. "Spinning waves of infiltration-mediated combustion." International Journal of Self-Propagating High-Temperature Synthesis 17, no. 3 (September 2008): 157–67. http://dx.doi.org/10.3103/s1061386208030011.
Full textLOZINSKI, DAVID, and MOSHE MATALON. "Combustion of a Spinning Fuel Droplet." Combustion Science and Technology 96, no. 4-6 (January 1994): 345–67. http://dx.doi.org/10.1080/00102209408935361.
Full textWilson, K. J., K. C. Schadow, E. Gutmark, and R. A. Smith. "Mixing and combustion in a spinning combustor." Journal of Propulsion and Power 8, no. 4 (July 1992): 792–98. http://dx.doi.org/10.2514/3.23551.
Full textBarooah, P., T. J. Anderson, and J. M. Cohen. "Active Combustion Instability Control With Spinning Valve Actuator." Journal of Engineering for Gas Turbines and Power 125, no. 4 (October 1, 2003): 925–32. http://dx.doi.org/10.1115/1.1582495.
Full textZhang, Mi, Hui Ren, Qingzhong Cui, Hanjian Li, and Yongjin Chen. "Effects of Different Nanocarbon Materials on the Properties of Al/MoO3/NCM Thermite Prepared by Electrostatic Spinning." Nanomaterials 12, no. 4 (February 14, 2022): 635. http://dx.doi.org/10.3390/nano12040635.
Full textKurdyumov, Vadim N., and Vladimir V. Gubernov. "Combustion waves in narrow samples of solid energetic material: Chaotic versus spinning dynamics." Combustion and Flame 229 (July 2021): 111407. http://dx.doi.org/10.1016/j.combustflame.2021.111407.
Full textCrespo-Anadon, Javier, Carlos J. Benito-Parejo, Stéphane Richard, Eleonore Riber, Bénédicte Cuenot, Camille Strozzi, Julien Sotton, and Marc Bellenoue. "Experimental and LES investigation of ignition of a spinning combustion technology combustor under relevant operating conditions." Combustion and Flame 242 (August 2022): 112204. http://dx.doi.org/10.1016/j.combustflame.2022.112204.
Full textMilea, Andrei Silviu, Aurélien Perrier, Marcos Caceres, Alexis Vandel, Gilles Godard, Patrick Duchaine, Stéphane Richard, Gilles Cabot, and Frédéric Grisch. "Investigation On A Novel Injector Concept For Spinning Combustion Technology In High-Pressure Conditions By Advanced Laser-Based Diagnostics." Proceedings of the International Symposium on the Application of Laser and Imaging Techniques to Fluid Mechanics 21 (July 8, 2024): 1–13. http://dx.doi.org/10.55037/lxlaser.21st.93.
Full textIvleva, T. P., and A. G. Merzhanov. "Effect of gas pressure on the laws of propagation of spinning waves during filtration combustion." Combustion, Explosion, and Shock Waves 45, no. 5 (September 2009): 534–42. http://dx.doi.org/10.1007/s10573-009-0065-x.
Full textTian, Sida, Zhonghua Zhan, and Lei Chen. "Evolution of Fly Ash Aluminosilicates in Slagging Deposition during Oxy-Coal Combustion Investigated by 27Al Magic Angle Spinning Nuclear Magnetic Resonance." Energy & Fuels 32, no. 12 (November 19, 2018): 12896–904. http://dx.doi.org/10.1021/acs.energyfuels.8b02812.
Full textDissertations / Theses on the topic "Spinning Combustion Technology (SCT)"
Milea, Andrei-Silviu. "Experimental investigation of innovative Low NOx / low soot injection systems for spinning combustiοn technology using advanced laser diagnostics." Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMIR43.
Full textAnthropogenic effects on the environment present a major challenge for the aeronautical industry. Increasingly stringent pollution regulations and the necessity for sustainable air transport are driving the nowadays research toward innovative propulsion systems. In this context, Safran Helicopter Engines is advancing its patented Spinning Combustion Technology (SCT), aimed at improving helicopter engine performance. Already implemented in the Arrano engine, SCT is now being refined to significantly reduce NOx and soot emissions. As part of the European LOOPS program, two novel fuel injection systems are under investigation: one operating in a rich combustion regime tailored for an RQL combustion chamber and the other designed for lean combustion. The scientific activity of this thesis focuses on the experimental characterization of these injection systems using state-of-the-art laser diagnostics optimized for high-pressure reactive environments. The HERON combustion facility at CORIA enables the analysis of combustion and pollutant performance under conditions representative of helicopter engines, with pressures from 8 to 14 bar, air inlet temperatures from 570 to 750 K, and equivalence ratios ranging from 0.6 to 1.67. Initial flame stability maps are established, followed by in-depth analyses of liquid spray properties using Phase Doppler Particle Anemometry (PDPA). High-speed Particle Imaging Velocimetry (PIV) captures aerodynamic fields under reactive and non-reactive conditions at 10 kHz. Flame structures are examined via OH-PLIF fluorescence imaging, while kerosene-PLIF evaluates liquid and vapor fuel distributions, particularly probing aromatic components in Jet A-1 kerosene. Furthermore, NO-PLIF imaging, combined with OH-PLIF and kerosene-PLIF, enables spatial correlations between flame structure, fuel distribution, and NO production zones. Soot formation and oxidation mechanisms are explored through Planar Laser-Induced Incandescence Imaging (PLII), integrated with OH-PLIF and kerosene-PLIF. Specific methods are developed to obtain 2D distributions of quantitative concentrations of NO, OH and soot volume fraction. Results reveal that the rich-burn injector produces an asymmetrical flame with enhanced upper-zone combustion efficiency due to locally intensified liquid fuel injection. Moderate soot levels are observed despite high equivalence ratios, while localized NO production, primarily near the flame, is attributed to the Zeldovich thermal mechanism. Conversely, the lean-burn injector forms a flame structure characteristic of stratified swirl flames, despite the minor asymmetry. Improved fuel evaporation leads to higher combustion efficiency, shorter flame lengths, and a reduction in NO formation, attributed to lower flame temperatures. In spite of the lean combustion conditions, moderate soot levels are measured for the second injector. Operating conditions strongly influence performance. Higher pressures accelerate spray atomization, increase spray expansion angles, and strengthen internal recirculation zones, reshaping flame structures. The increase in soot production at higher pressure is particularly demonstrated by the rich-burn injector due to constant equivalence ratios across all test conditions, while NO levels remain stable. For the lean-burn injector, leaner operation at elevated pressures moderates pressure effects, maintaining consistent soot levels and reducing NO concentrations. These findings highlight the potential of both injection systems for optimizing performance and reducing emissions in future helicopter engines
Conference papers on the topic "Spinning Combustion Technology (SCT)"
Akkor, Ilayda, Shachit S. Iyer, John Dowdle, Le Wang, and Chrysanthos Gounaris. "Economic Optimization and Impact of Utility Costs on the Optimal Design of Piperazine-Based Carbon Capture." In Foundations of Computer-Aided Process Design, 635–40. Hamilton, Canada: PSE Press, 2024. http://dx.doi.org/10.69997/sct.147100.
Full textWalter Agostinelli, Pasquale, Yi Hao Kwah, Stephane Richard, Gorka Exilard, James R. Dawson, Laurent Gicquel, and Thierry Poinsot. "Numerical and Experimental Flame Stabilization Analysis in the New Spinning Combustion Technology Framework." In ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/gt2020-15035.
Full textTimnat, Y. M., and D. Laredo. "Simulation of Propellant Flow in a Spinning Combustion Chamber." In Aerospace Technology Conference and Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1990. http://dx.doi.org/10.4271/901838.
Full textLópez-Juárez, Marcos, Xiaoxiao Sun, Bobby Sethi, Pierre Gauthier, and David Abbott. "Characterising Hydrogen Micromix Flames: Combustion Model Calibration and Evaluation." In ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/gt2020-14893.
Full textAkbari, Amin, Scott Hill, Vincent McDonell, and Scott Samuelsen. "Statistical Evaluation of CFD Predictions of Measured Mixing Properties of Hydrogen and Methane for Lean Premixed Combustion." In ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/gt2011-46126.
Full textMilea, Andrei-Silviu, Aurélien Perrier, Marcos Caceres, Alexis Vandel, Gilles Godard, Fabien Renard, Patrick Duchaine, Stephane Richard, Gilles Cabot, and Frédéric Grisch. "Experimental Study of a Low NOx and Soot Injection System for Spinning Combustion Technology: Characterization of Soot and NO Formation Under Realistic Operating Conditions by Laser Diagnostics." In ASME Turbo Expo 2023: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/gt2023-102769.
Full textTanneberger, Tom, Sebastian Schimek, Christian Oliver Paschereit, and Panagiotis Stathopoulos. "Efficiency Measurement Approach for a Hydrogen Oxyfuel Combustor." In ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/gt2019-91403.
Full textSaint-Hilaire, Gilles, Roxan Saint-Hilaire, and Ylian Saint-Hilaire. "Quasiturbine: Low RPM High Torque Pressure Driven Turbine for Top Efficiency Power Modulation." In ASME Turbo Expo 2007: Power for Land, Sea, and Air. ASMEDC, 2007. http://dx.doi.org/10.1115/gt2007-27088.
Full text