Dissertations / Theses on the topic 'Spinal muscular atrophy; Neurodegenerative'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Spinal muscular atrophy; Neurodegenerative.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Chiesa, Giulio. "Biophysical study of the aggregation of the androgen receptor protein in spinal bulbar muscular atrophy." Doctoral thesis, Universitat de Barcelona, 2015. http://hdl.handle.net/10803/400156.
Full textLes malalties neurodegeneratives són una de les malediccions de la civilització moderna i es troben estretament lligades a l’augment de l’esperança de vida de la població mundial. La majoria d’aquestes malalties estan associades a la deposició de material proteic, altrament conegut com a fibres amiloides, a les neurones i el cervell en general. Les fibres amiloides són conjunts supramoleculars lineals, composats per proteïnes disposades en fulla beta, que mostren una alta rigidesa i estabilitat termodinàmica. Exemples famosos de proteïnes amiloides són la beta amiloide (Aβ), associada a la malaltia d’Alzheimer, i l’α-‐sinucleïna i la proteïna tau, més estretament lligades a la malaltia de Parkinson. Una altra família de desordres neurodegeneratius associats a la deposició de proteïnes és la de les malalties poliglutamines (poliQ). Aquesta família està formada per nou patologies, entre les que es troben sis atàxies espinocerebrals diferents (de les sigles en anglès, SCA 1, 2, 3, 6, 7, 17), la atròfia dentatorubral-‐pallidoluysian (de les sigles en anglès, DRPLA) i la atròfia muscular espinal bulbar (de les sigles en anglès, SBMA), històricament la primera en ser descrita. Totes elles són hereditàries, dominants i es manifesten en edat avançada. D’altra banda, totes elles estan associades a l’adquisició de neurotoxicitat degut a l’agregació de la proteïna causant de la malaltia, que s’acumula progressivament a les neurones amb el temps. La mutació responsable de la malaltia és una expansió genètica a la regió polimòrfica de l’ADN que és comuna a totes le proteïnes associades en aquests enfermetats. Aquesta regió polimòrfica és un conjunt de repeticions CAG que codifiquen l’aminoàcid glutamina a nivell d’expressió de proteïna, és per això que es coneix com a tram de poliglutamines. Aquest tram pot tenir diverses longituds, però l’efecte tòxic només té lloc quan es supera un determinat límit d’allargada. Aquest límit fluctua entre 30 i 40 repeticions i varia de malaltia a malaltia, però en tots els casos el número de repeticions influencia la severitat i l’edat en la que s’inicia la malaltia. La raó que explica aquesta inestabilitat genètica resulta de la propensitat de les seqüències d’ADN altament repetitives (com ara els hairpins) que en determina el slippage de la cadena principal durant la replicació de l’ADN. Les expansions més llargues són causades per la reiteració d’aquesta petita mutació i s’ha observat una reducció progressiva de l’estabilitat genètica amb l’increment del número de repeticions, que en última instància determina un avançament temporal i empitjorament dels símptomes. Considerant l’estreta relació entre la presència d’agregats en els teixits dels pacients malalts i l’estadiatge de la malaltia, és fonamental entendre les propietats biofísiques dels trams de poliQ, com aquestes seqüències determinen l’agregació de la proteïna i el tipus d’estructura que presenten els agregats.
Theodosiou, Aspasia. "Identification of neuronally-expressed genes involved in growth regulation." Thesis, University of Oxford, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.360570.
Full textFörthmann, Benjamin [Verfasser]. "The molecular pathology of the neurodegenerative disease Spinal Muscular Atrophy – role of nuclear complexes and nuclear body regulation / Benjamin Förthmann." Hannover : Bibliothek der Tierärztlichen Hochschule Hannover, 2013. http://d-nb.info/1046707914/34.
Full textTadesse, Helina. "Identification and Characterization of an Arginine-methylated Survival of Motor Neuron (SMN) Interactor in Spinal Muscular Atrophy (SMA)." Thèse, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/23588.
Full textNowak, Deborah J. "Spinal muscular atrophy /." Online version of thesis, 1995. http://hdl.handle.net/1850/12227.
Full textOwen, Nicholas. "Molecular genetics of spinal muscular atrophy." Thesis, University of Oxford, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.342635.
Full textMohaghegh, Payam. "Molecular basis of spinal muscular atrophy." Thesis, University of Oxford, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.325835.
Full textDaniels, Rachael J. "Molecular analysis of spinal muscular atrophy." Thesis, University of Oxford, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.259878.
Full textMurray, Lyndsay M. "Synaptic vulnerability in spinal muscular atrophy." Thesis, University of Edinburgh, 2010. http://hdl.handle.net/1842/4419.
Full textToaz, Erin. "Spinal muscular atrophy in drosophila and mouse." Connect to resource, 2008. http://hdl.handle.net/1811/32204.
Full textJames, Paul A. "Genetic analysis of dominant spinal muscular atrophy." Thesis, University of Oxford, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.442816.
Full textMorrison, Karen Elaine. "Molecular genetic studies in spinal muscular atrophy." Thesis, University of Oxford, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.357439.
Full textCampbell, Louise. "The molecular basis of spinal muscular atrophy." Thesis, Open University, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.363969.
Full textRuhno, Corey. "Identification of Modifiers of Spinal Muscular Atrophy." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1553525291539364.
Full textSomers, Eilidh. "Novel capillary defects in spinal muscular atrophy." Thesis, University of Edinburgh, 2015. http://hdl.handle.net/1842/16208.
Full textMiguel-Aliaga, Irene. "Spinal muscular atrophy : of flies, worms and men." Thesis, University of Oxford, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.343478.
Full textRose, Ferrill Franklin Lorson Christian. "Characterization of cellular pathways in spinal muscular atrophy." Diss., Columbia, Mo. : University of Missouri-Columbia, 2009. http://hdl.handle.net/10355/6742.
Full textAghamaleky, Sarvestany Arwin. "Schwann cell pathology in spinal muscular atrophy (SMA)." Thesis, University of Edinburgh, 2015. http://hdl.handle.net/1842/15908.
Full textMutsaers, Chantal. "Mechanisms of disease pathogenesis in Spinal Muscular Atrophy." Thesis, University of Edinburgh, 2014. http://hdl.handle.net/1842/9774.
Full textFuente, Ruiz Sandra de la. "Development of new therapeutic strategies for Spinal Muscular Atrophy." Doctoral thesis, Universitat de Lleida, 2020. http://hdl.handle.net/10803/669753.
Full textLa atrofia muscular espinal (AME) es una enfermedad neurodegenerativa grave y la primera causa genética de muerte infantil. Se origina por la pérdida o mutación del gen Survival Motor Neuron 1 (SMN1) que causa una deficiencia de la proteína de Survival Motor Neuron (SMN). La reducción de esta proteína conduce predominantemente a la degeneración de las motoneuronas (MNs) de la médula espinal y, en consecuencia, produce atrofia y debilidad del músculo esquelético. Actualmente, solo se conoce parcialmente que mecanismos celulares y moleculares exactos son los responsables de la pérdida de función de las MNs. La reducción de SMN causa degeneración de neuritas y muerte celular sin características apoptóticas clásicas. La autofagia es un proceso importante y altamente regulado, esencial para la eliminación de orgánulos dañados y sustancias o proteínas tóxicas a través de la degradación con los lisosomas. La autofagia es especialmente importante en células post-mitóticas, como las MNs, donde la acumulación de autofagosomas provoca la interrupción del transporte axonal, la interferencia del tráfico intracelular y la degeneración de las neuritas. Lo que es bien sabido en la AME es que el nivel intracelular de proteína SMN define el inicio y la gravedad de la enfermedad y esto está parcialmente determinado por el número de copias del gen SMN2, la duplicación centromérica de SMN y el principal modificador de la AME. Por esa razón, comprender los procesos que regulan la degradación de SMN con la finalidad de identificar compuestos que aumentan los niveles de proteínas es el principal objetivo en el desarrollo terapéutico de AME. Las calpaínas son una familia de proteasas dependientes de calcio que se han relacionado con trastornos musculares y enfermedades neurodegenerativas. Específicamente, se ha descrito en el músculo que SMN puede ser proteolizada por calpaína. La actividad de la calpaína también está involucrada en la regulación de la autofagia mediante la modulación de múltiples de las proteínas involucradas en el proceso. El objetivo en el presente trabajo ha sido analizar la desregulación de la autofagia y determinar la participación de la calpaína en la regulación de la proteína SMN en las MNs para profundizar en el origen de la neurodegeneración y desarrollar un nuevo enfoque terapéutico para la AME. Con este fin, hemos analizado marcadores autofágicos en diferentes modelos in vitro de AME, tanto de ratón como de humano. Los resultados mostraron que los autofagosomas y los niveles de LC3 se encuentran aumentados en las muestras de AME en comparación con los controles, lo que sugiere una desregulación del proceso de autofagia a lo largo de la progresión de la enfermedad. Además, la reducción de los niveles endógenos de calpaína utilizando un shRNA muestraron un aumento de los niveles de Smn y LC3, a la vez que previene la degeneración neuritica que se produce en las MNs de ratón afectados por AME. Se obtuvieron resultados similares en experimentos in vitro utilizando un inhibidor farmacológico de calpaína, la calpeptina. Asimismo, la activación de calpaína producida por condiciones despolarizantes inducia la proteólisis de α-fodrina y de SMN, lo que confirma que calpain regula directamente los niveles de proteína SMN en las MNs. Además, el tratamiento con calpeptina in vivo mejoró significativamente la esperanza de vida y la función motora de dos modelos de ratones con AME, lo que demuestra la utilidad potencial de los inhibidores de la calpaína en la terapia para la enfermedad. Finalmente, el análisis de la vía de la calpaína en ratones y modelos celulares humanos de AME indicó un aumento de la actividad de la calpaína en las MNs con niveles reducidos de SMN. Por lo tanto, nuestros resultados demuestran que la actividad de la calpaína se encuentra sobreactivada en las MNs de AME y su inhibición puede tener un efecto beneficioso sobre el fenotipo de la enfermedad a través del aumento de SMN y la regulación del proceso de autofagia en las MNs de la médula espinal.
Spinal Muscular Atrophy (SMA) is a severe neurodegenerative disease and the first genetic cause of infant death. It is originated by the deletion or mutation of Survival Motor Neuron 1 (SMN1) gene causing a Survival Motor Neuron (SMN) protein deficiency. The reduction of this protein predominantly leads to the degeneration of spinal cord motoneurons (MNs) and consequently produces skeletal muscle atrophy and weakness. The exact cellular and molecular mechanisms responsible for MN loss of function are only partially known. SMN reduction causes neurite degeneration and cell death without classical apoptotic features. Autophagy is an important and highly regulated process, essential for the removal of damaged organelles and toxic substances or proteins through lysosome degradation. This mechanism is specifically important in post-mitotic cells like MNs where autophagosome accumulation causes axonal transport disruption, interference of intracellular space trafficking, and neurite degeneration. What is well known in SMA is that intracellular SMN protein levels are critical to define the disease onset and severity, and this is partially determined by the number of copies of SMN2, the centromeric duplication of the SMN gene and the main modifier of SMA. For that reason, understanding the processes of SMN stability and degradation to identify compounds that increase protein levels is a major goal in SMA therapeutics development. Calpains are a family of calcium-dependent proteases that have been related to muscle disorders and neurodegenerative diseases. Specifically, it has been described in muscle that SMN can be a proteolytic target of calpain. Calpain activity is also involved in autophagy regulation by modulation of multiple proteins involved in the process. The objectives in the present work have been to analyze the autophagy deregulation and determine the involvement of calpain in SMN protein regulation on MNs, in order to deepen in the origin of neurodegeneration and to develop a new therapeutic approach for SMA disease. To this end, we have analyzed autophagic markers in different mouse and human SMA in vitro models. The results showed that autophagosomes and LC3 levels were increased in SMA samples compared to controls, suggesting a deregulation of the autophagy process throughout the disease progression. Moreover, calpain knockdown using an shRNA approach showed an increase of both, Smn and LC3 levels and prevented neurite degeneration occurred in SMA affected mouse MNs. Similar results were obtained in in vitro experiments using a pharmacological calpain inhibitor, calpeptin. Likewise, calpain activation produced by depolarized conditions induced α-fodrin and SMN proteolysis, confirming that calpain directly regulates the SMN protein level in MNs. Additionally, calpeptin in vivo treatment significantly improved the lifespan and motor function of two severe SMA mouse models, demonstrating the potential utility of calpain inhibitors in SMA therapeutics. Finally, the analysis of calpain pathway members in mice and human cellular SMA models indicated an increase of calpain activity in SMN-reduced MNs. Thus, our results show that calpain activity is increased in SMA MNs and its inhibition may have a beneficial effect on the SMA phenotype through the increase of SMN and the regulation of the autophagy process in spinal cord MNs.
Talbot, Kevin. "The molecular pathogenesis of autosomal recessive spinal muscular atrophy." Thesis, University of Oxford, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.300137.
Full textGoulet, Benoit. "Two-way Approach to Spinal Muscular Atrophy Therapy Development." Thèse, Université d'Ottawa / University of Ottawa, 2013. http://hdl.handle.net/10393/26168.
Full textBoyer, Justin. "Understanding the Pathophysiology of Spinal Muscular Atrophy Skeletal Muscle." Thèse, Université d'Ottawa / University of Ottawa, 2013. http://hdl.handle.net/10393/26121.
Full textNonneman, Dan. "Molecular analysis of bovine and human spinal muscular atrophy /." free to MU campus, to others for purchase, 1997. http://wwwlib.umi.com/cr/mo/fullcit?p9841326.
Full textThomson, Alison Kathryn. "Organ developmental and maturational defects in Spinal Muscular Atrophy." Thesis, University of Aberdeen, 2016. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=231849.
Full textDeguise, Marc-Olivier. "Spinal Muscular Atrophy: Evidence of a Multi-System Disease." Thesis, Université d'Ottawa / University of Ottawa, 2020. http://hdl.handle.net/10393/40053.
Full textWertz, Mary Helene. "Aberrant microRNA Expression in Spinal Muscular Atrophy Motor Neurons." Thesis, Harvard University, 2015. http://nrs.harvard.edu/urn-3:HUL.InstRepos:17464519.
Full textMedical Sciences
Coovert, Daniel David. "Analysis of dystrophin in duchenne muscular dystrophy and SMN in spinal muscular atrophy /." The Ohio State University, 1998. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487951595500021.
Full textChan, Y. B. "Molecular study of spinal muscular atrophy (SMA) using Drosophila melanogaster." Thesis, University of Oxford, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.270342.
Full textAl-Rafiah, Aziza. "Plastin 3 as a therapeutic target in spinal muscular atrophy." Thesis, University of Sheffield, 2015. http://etheses.whiterose.ac.uk/9988/.
Full textBriese, Michael. "C. elegans models for the study of spinal muscular atrophy." Thesis, University of Oxford, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.670050.
Full textBevan, Adam Kimball. "AAV-based approaches to model and treat spinal muscular atrophy." The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1338300817.
Full textIyer, Chitra C. "The Role of Muscle and Nerve in Spinal Muscular Atrophy." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1451568269.
Full textRisco, Quiroz Milagros. "Development of a Novel Strategy to Treat Spinal Muscular Atrophy." Thesis, University of Ottawa (Canada), 2010. http://hdl.handle.net/10393/28595.
Full textCallahan, Stephanie. "Targeted gene alteration in SMA patient cells genetic conversion of an SMN2 gene to SMN1 increases full-length SMN production /." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 90 p, 2009. http://proquest.umi.com/pqdweb?did=1885467541&sid=9&Fmt=2&clientId=8331&RQT=309&VName=PQD.
Full textThomas, Patrick Shane. "The normal function of the androgen receptor plays a role in the pathology of SBMA /." Thesis, Connect to this title online; UW restricted, 2007. http://hdl.handle.net/1773/5021.
Full textMcWhorter, Michelle L. "Development and analysis of a Zebrafish model of spinal muscular atrophy." Columbus, Ohio : Ohio State University, 2005. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1133212697.
Full textTu, Wen-Yo. "Investigation of selective vulnerability of motor neurones in spinal muscular atrophy." Thesis, University of Sheffield, 2018. http://etheses.whiterose.ac.uk/20550/.
Full textShpargel, Karl Bryan. "Gemin function in small nuclear RNP biogenesis and Spinal Muscular Atrophy." Case Western Reserve University School of Graduate Studies / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=case1152843710.
Full textAnnan, Leonette Victoria Naakuma Delali. "The pathophysiology of Spinal Bulbar Muscular Atrophy : a longitudinal analysis of muscle and spinal cord." Thesis, University College London (University of London), 2017. http://discovery.ucl.ac.uk/10024551/.
Full textAnderson, K. N. "Functional analysis of the survival motor neurone gene." Thesis, University of Oxford, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.270256.
Full textHejmanowski, Ashley Quintin. "Allelic and genetic heterogeneity of two common genetic diseases." Connect to this title online, 2004. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1095309751.
Full textTitle from first page of PDF file. Document formatted into pages; contains xvi, 137 p.; also includes graphics (some col.). Includes bibliographical references (p. 127-137).
Rademacher, Sebastian [Verfasser]. "Cytoskeletal dysregulation in the motoneuron disease Spinal Muscular Atrophy (SMA) / Sebastian Rademacher." Hannover : Bibliothek der Tierärztlichen Hochschule Hannover, 2017. http://d-nb.info/1136298002/34.
Full textShorrock, Hannah Karen. "Understanding the role of UBA1 in the pathogenesis of spinal muscular atrophy." Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/29595.
Full textLittle, Daniel. "Development of therapies for spinal muscular atrophy using gene therapy and nanotechnology." Thesis, University of Sheffield, 2013. http://etheses.whiterose.ac.uk/4350/.
Full textRoy, Natalie. "Isolation of the spinal muscular atrophy candidate gene, the neuronal apoptosis inhibitor protein." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq26139.pdf.
Full textThomas, Natasha Marie. "SMN and flies : a study of spinal muscular atrophy (SMA) in Drosophila melanogaster." Thesis, University of Oxford, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.443003.
Full textBurns, Joseph. "Development of a Protein-Based Therapy for the Treatment of Spinal Muscular Atrophy." Thèse, Université d'Ottawa / University of Ottawa, 2014. http://hdl.handle.net/10393/30697.
Full textMattis, Virginia B. "Molecular genetics of spinal muscular atrophy insights into various routes of therapeutic intervention /." Diss., Columbia, Mo. : University of Missouri-Columbia, 2009. http://hdl.handle.net/10355/6761.
Full textThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Vita. "May 2009" Includes bibliographical references.
Nash, Leslie. "Exosomes: A Novel Biomarker and Approach to Gene Therapy for Spinal Muscular Atrophy." Thesis, Université d'Ottawa / University of Ottawa, 2019. http://hdl.handle.net/10393/38910.
Full text