Journal articles on the topic 'Spinal cord computational model'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Spinal cord computational model.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Arle, Jeffrey E., Nicolae Iftimia, Jay L. Shils, Longzhi Mei, and Kristen W. Carlson. "Dynamic Computational Model of the Human Spinal Cord Connectome." Neural Computation 31, no. 2 (2019): 388–416. http://dx.doi.org/10.1162/neco_a_01159.
Full textAkanksha Kaushik. "A Computational Neural Network Model Depicting Bradykinesia in Parkinson’s Disease." Journal of Information Systems Engineering and Management 10, no. 42s (2025): 1203–30. https://doi.org/10.52783/jisem.v10i42s.8656.
Full textShevtsova, Natalia A., Erik Z. Li, Shayna Singh, Kimberly J. Dougherty, and Ilya A. Rybak. "Ipsilateral and Contralateral Interactions in Spinal Locomotor Circuits Mediated by V1 Neurons: Insights from Computational Modeling." International Journal of Molecular Sciences 23, no. 10 (2022): 5541. http://dx.doi.org/10.3390/ijms23105541.
Full textJérusalem, Antoine, Julián A. García-Grajales, Angel Merchán-Pérez, and José M. Peña. "A computational model coupling mechanics and electrophysiology in spinal cord injury." Biomechanics and Modeling in Mechanobiology 13, no. 4 (2013): 883–96. http://dx.doi.org/10.1007/s10237-013-0543-7.
Full textPithapuram, Madhav Vinodh, and Mohan Raghavan. "Automatic rule-based generation of spinal cord connectome model for a neuro-musculoskeletal limb in-silico." IOP SciNotes 3, no. 1 (2022): 014001. http://dx.doi.org/10.1088/2633-1357/ac585e.
Full textLempka, Scott F., Cameron C. McIntyre, Kevin L. Kilgore, and Andre G. Machado. "Computational Analysis of Kilohertz Frequency Spinal Cord Stimulation for Chronic Pain Management." Anesthesiology 122, no. 6 (2015): 1362–76. http://dx.doi.org/10.1097/aln.0000000000000649.
Full textBilston, Lynne E., Marcus A. Stoodley, and David F. Fletcher. "The influence of the relative timing of arterial and subarachnoid space pulse waves on spinal perivascular cerebrospinal fluid flow as a possible factor in syrinx development." Journal of Neurosurgery 112, no. 4 (2010): 808–13. http://dx.doi.org/10.3171/2009.5.jns08945.
Full textSolanes, Carmen, Jose L. Durá, M. Ángeles Canós, Jose De Andrés, Luis Martí-Bonmatí, and Javier Saiz. "3D patient-specific spinal cord computational model for SCS management: potential clinical applications." Journal of Neural Engineering 18, no. 3 (2021): 036017. http://dx.doi.org/10.1088/1741-2552/abe44f.
Full textSarntinoranont, Malisa, Rupak K. Banerjee, Russell R. Lonser, and Paul F. Morrison. "A Computational Model of Direct Interstitial Infusion of Macromolecules into the Spinal Cord." Annals of Biomedical Engineering 31, no. 4 (2003): 448–61. http://dx.doi.org/10.1114/1.1558032.
Full textSarntinoranont, Malisa, Xiaoming Chen, Jianbing Zhao, and Thomas H. Mareci. "Computational Model of Interstitial Transport in the Spinal Cord using Diffusion Tensor Imaging." Annals of Biomedical Engineering 34, no. 8 (2006): 1304–21. http://dx.doi.org/10.1007/s10439-006-9135-3.
Full textFardadi, Mahshid, J. C. Leiter, Daniel C. Lu, and Tetsuya Iwasaki. "Model-based analysis of the acute effects of transcutaneous magnetic spinal cord stimulation on micturition after spinal cord injury in humans." PLOS Computational Biology 20, no. 7 (2024): e1012237. http://dx.doi.org/10.1371/journal.pcbi.1012237.
Full textPersson, Cecilia, Jon Summers, and Richard M. Hall. "The Effect of Cerebrospinal Fluid Thickness on Traumatic Spinal Cord Deformation." Journal of Applied Biomechanics 27, no. 4 (2011): 330–35. http://dx.doi.org/10.1123/jab.27.4.330.
Full textLeblond, Lugdivine, Patrice Sudres, and Morgane Evin. "Cerebro-spinal flow pattern in the cervical subarachnoid space of healthy volunteers: Influence of the spinal cord morphology." PLOS ONE 19, no. 8 (2024): e0290927. http://dx.doi.org/10.1371/journal.pone.0290927.
Full textSarntinoranont, Malisa, Michael J. Iadarola, Russell R. Lonser, and Paul F. Morrison. "Direct interstitial infusion of NK1-targeted neurotoxin into the spinal cord: a computational model." American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 285, no. 1 (2003): R243—R254. http://dx.doi.org/10.1152/ajpregu.00472.2002.
Full textHowell, Bryan, Shivanand P. Lad, and Warren M. Grill. "Evaluation of Intradural Stimulation Efficiency and Selectivity in a Computational Model of Spinal Cord Stimulation." PLoS ONE 9, no. 12 (2014): e114938. http://dx.doi.org/10.1371/journal.pone.0114938.
Full textZiraldo, Cordelia, Alexey Solovyev, Ana Allegretti, et al. "A Computational, Tissue-Realistic Model of Pressure Ulcer Formation in Individuals with Spinal Cord Injury." PLOS Computational Biology 11, no. 6 (2015): e1004309. http://dx.doi.org/10.1371/journal.pcbi.1004309.
Full textZiraldo, C., A. Solovyev, A. Allegretti, et al. "A computational, tissue-realistic model of pressure ulcer formation in individuals with spinal cord injury." Journal of Critical Care 28, no. 1 (2013): e23. http://dx.doi.org/10.1016/j.jcrc.2012.10.061.
Full textLinge, Svein O., Kent-A. Mardal, Anders Helgeland, John D. Heiss, and Victor Haughton. "Effect of craniovertebral decompression on CSF dynamics in Chiari malformation Type I studied with computational fluid dynamics." Journal of Neurosurgery: Spine 21, no. 4 (2014): 559–64. http://dx.doi.org/10.3171/2014.6.spine13950.
Full textZander, Hans, Krzysztof E. Kowalski, Anthony F. DiMarco, and Scott F. Lempka. "A Computational Model of Upper Thoracic High‐Frequency Spinal Cord Stimulation to Optimize Inspiratory Muscle Activation." FASEB Journal 34, S1 (2020): 1. http://dx.doi.org/10.1096/fasebj.2020.34.s1.04201.
Full textStein, Paul S. G. "Central pattern generators in the turtle spinal cord: selection among the forms of motor behaviors." Journal of Neurophysiology 119, no. 2 (2018): 422–40. http://dx.doi.org/10.1152/jn.00602.2017.
Full textSingh, Anita, Kalyani Ghuge, Yashvy Patni, and Sriram Balasubramanian. "Experimental Biomechanics of Neonatal Brachial Plexus Avulsion Injuries Using a Piglet Model." Bioengineering 12, no. 1 (2025): 91. https://doi.org/10.3390/bioengineering12010091.
Full textBrucker-Hahn, Meagan, Megan Settell, Justin Chin, et al. "O013 COMPUTATIONAL MODELING OF EVOKED COMPOUND ACTION POTENTIALS DURING EPIDURAL SPINAL CORD STIMULATION IN A SWINE MODEL." Neuromodulation: Technology at the Neural Interface 28, no. 1 (2025): S59. https://doi.org/10.1016/j.neurom.2024.09.114.
Full textShils, Jay, Kris Carlson, Longzhi Mei, and Jeffrey Arle. "34. Mechanism of therapeutic benefit with dorsal column stimulation using a computational model of the spinal cord." Clinical Neurophysiology 125, no. 5 (2014): e23-e24. http://dx.doi.org/10.1016/j.clinph.2013.12.037.
Full textGadomski, Benjamin C., Bradley J. Hindman, Mitchell I. Page, Franklin Dexter, and Christian M. Puttlitz. "Intubation Biomechanics: Clinical Implications of Computational Modeling of Intervertebral Motion and Spinal Cord Strain during Tracheal Intubation in an Intact Cervical Spine." Anesthesiology 135, no. 6 (2021): 1055–65. http://dx.doi.org/10.1097/aln.0000000000004024.
Full textCandito, Antonio, Richard Holbrey, Ana Ribeiro, et al. "Deep Learning for Delineation of the Spinal Canal in Whole-Body Diffusion-Weighted Imaging: Normalising Inter- and Intra-Patient Intensity Signal in Multi-Centre Datasets." Bioengineering 11, no. 2 (2024): 130. http://dx.doi.org/10.3390/bioengineering11020130.
Full textDe Los Santos, Jennifer, Smadar Arvatz, Oshrit Zeevi, Shay levi, Zeev Bomzon, and Tal Marciano. "INNV-05. TUMOR TREATING FIELDS (TTFIELDS) TREATMENT PLANNING FOR A PATIENT WITH ASTROCYTOMA IN THE SPINAL CORD." Neuro-Oncology 22, Supplement_2 (2020): ii117. http://dx.doi.org/10.1093/neuonc/noaa215.489.
Full textCrodelle, Jennifer, and Pedro D. Maia. "A Computational Model for Pain Processing in the Dorsal Horn Following Axonal Damage to Receptor Fibers." Brain Sciences 11, no. 4 (2021): 505. http://dx.doi.org/10.3390/brainsci11040505.
Full textChafaï, Magda, Ariane Delrocq, Perrine Inquimbert, et al. "Dual contribution of ASIC1a channels in the spinal processing of pain information by deep projection neurons revealed by computational modeling." PLOS Computational Biology 19, no. 4 (2023): e1010993. http://dx.doi.org/10.1371/journal.pcbi.1010993.
Full textNakayama, Takayuki, and Hidenori Kimura. "Trajectory tracking control of robot arm by using computational models of spinal cord and cerebellum." Systems and Computers in Japan 35, no. 11 (2004): 1–13. http://dx.doi.org/10.1002/scj.10646.
Full textHillen, Brian K., Devin L. Jindrich, James J. Abbas, Gary T. Yamaguchi, and Ranu Jung. "Effects of spinal cord injury-induced changes in muscle activation on foot drag in a computational rat ankle model." Journal of Neurophysiology 113, no. 7 (2015): 2666–75. http://dx.doi.org/10.1152/jn.00507.2014.
Full textShuaib, Ali, Ali K. Bourisly, and Eman Alazmi. "Fluence as a Function of Weight: A Photobiomodulation Therapy (PBMT) Spinal Cord Injury (SCI) Rat Model—A Computational Study." IEEE Photonics Journal 12, no. 6 (2020): 1–8. http://dx.doi.org/10.1109/jphot.2020.3033476.
Full textLe Franc, Yann, and Gwendal Le Masson. "Multiple Firing Patterns in Deep Dorsal Horn Neurons of the Spinal Cord: Computational Analysis of Mechanisms and Functional Implications." Journal of Neurophysiology 104, no. 4 (2010): 1978–96. http://dx.doi.org/10.1152/jn.00919.2009.
Full textRoy, Abhishek, Santimoy Sen, Rudradip Das, Amit Shard, and Hemant Kumar. "Modulation of the LIMK Pathway by Myricetin: A Protective Strategy Against Neurological Impairments in Spinal Cord Injury." Neurospine 21, no. 3 (2024): 878–89. http://dx.doi.org/10.14245/ns.2448546.273.
Full textBruel, Alice, Ignacio Abadía, Thibault Collin, et al. "The spinal cord facilitates cerebellar upper limb motor learning and control; inputs from neuromusculoskeletal simulation." PLOS Computational Biology 20, no. 1 (2024): e1011008. http://dx.doi.org/10.1371/journal.pcbi.1011008.
Full textSilva, Afonso J. C., Ricardo J. Alves de Sousa, Fábio A. O. Fernandes, Mariusz Ptak, and Marco P. L. Parente. "Development of a Finite Element Model of the Cervical Spine and Validation of a Functional Spinal Unit." Applied Sciences 12, no. 21 (2022): 11295. http://dx.doi.org/10.3390/app122111295.
Full textKinzel, A., O. Yesharim, A. Naveh, and Z. Bomzon. "P11.18 Tumor treating fields (TTFields) treatment of spinal cord metastases." Neuro-Oncology 21, Supplement_3 (2019): iii46. http://dx.doi.org/10.1093/neuonc/noz126.164.
Full textYork, Gareth, Hugh Osborne, Piyanee Sriya, Sarah Astill, Marc de Kamps, and Samit Chakrabarty. "The effect of limb position on a static knee extension task can be explained with a simple spinal cord circuit model." Journal of Neurophysiology 127, no. 1 (2022): 173–87. http://dx.doi.org/10.1152/jn.00208.2021.
Full textde Los Santos, Jennifer, Smadar Arvatz, Oshrit Zeevi, et al. "RBIO-01. DEVELOPING THE FRAMEWORK FOR TUMOR TREATING FIELDS (TTFIELDS) TREATMENT PLANNING FOR A PATIENT WITH ASTROCYTOMA IN THE SPINAL CORD." Neuro-Oncology 23, Supplement_6 (2021): vi191. http://dx.doi.org/10.1093/neuonc/noab196.758.
Full textSantos, Jennifer De Los, Smadar Arvatz, Oshrit Zeevi, et al. "Abstract 3447: Tumor treating fields (TTFields) treatment planning for a patient with astrocytoma in the spinal cord." Cancer Research 82, no. 12_Supplement (2022): 3447. http://dx.doi.org/10.1158/1538-7445.am2022-3447.
Full textA/L Vengadesarao, Divyarao, Siti Salasiah Binti Mokri, Ashrani Aizuddin Abd Rahni, and Asma Amirah Nazarudin. "TRANSFORMER NETWORK FOR BRAIN GLIOMA SEGMENTATION IN MRI IMAGES." International Journal of Advanced Research 13, no. 06 (2025): 714–22. https://doi.org/10.21474/ijar01/21130.
Full textLaura, Adrian Porras, Robert Graham, Ehsan Mirzakhalili, Evan Rogers, Vishwanath Sankarasubramanian, and Scott Lempka. "ID: 203787 Patient-Specific Computational Models to Characterize Physiological Effects of Spinal Cord Stimulation for Chronic Pain Management." Neuromodulation: Technology at the Neural Interface 26, no. 4 (2023): S165. http://dx.doi.org/10.1016/j.neurom.2023.04.291.
Full textde Almeida, Romulo Augusto Andrade, Daniel Ledbetter, Xizi Wu, et al. "Abstract 3339: TTFields for the management of spinal metastases in in vitro and in vivo models." Cancer Research 84, no. 6_Supplement (2024): 3339. http://dx.doi.org/10.1158/1538-7445.am2024-3339.
Full textMaza, Rodrigo M., María Asunción Barreda-Manso, David Reigada, et al. "MicroRNA-138-5p Targets Pro-Apoptotic Factors and Favors Neural Cell Survival: Analysis in the Injured Spinal Cord." Biomedicines 10, no. 7 (2022): 1559. http://dx.doi.org/10.3390/biomedicines10071559.
Full textLempka, Scott. "IS014 PHYSIOLOGICAL EFFECTS AND MECHANISMS OF ACTION OF SPINAL CORD STIMULATION TO TREAT PAIN: INSIGHTS FROM COMPUTATIONAL MODELS AND QUANTITATIVE SENSORY TESTING." Neuromodulation: Technology at the Neural Interface 28, no. 1 (2025): S8. https://doi.org/10.1016/j.neurom.2024.09.023.
Full textLaschowski, Brock, Naser Mehrabi, and John McPhee. "Inverse Dynamics Modeling of Paralympic Wheelchair Curling." Journal of Applied Biomechanics 33, no. 4 (2017): 294–99. http://dx.doi.org/10.1123/jab.2016-0143.
Full textKerensky, Max J., Abhijit Paul, Denis Routkevitch, et al. "Tethered spinal cord tension assessed via ultrasound elastography in computational and intraoperative human studies." Communications Medicine 4, no. 1 (2024). http://dx.doi.org/10.1038/s43856-023-00430-6.
Full textTakasawa, Eiji, Mitsunari Abe, Hirotaka Chikuda, and Takashi Hanakawa. "A computational model based on corticospinal functional MRI revealed asymmetrically organized motor corticospinal networks in humans." Communications Biology 5, no. 1 (2022). http://dx.doi.org/10.1038/s42003-022-03615-2.
Full textRycman, Aleksander, Stewart McLachlin, and Duane S. Cronin. "A Hyper-Viscoelastic Continuum-Level Finite Element Model of the Spinal Cord Assessed for Transverse Indentation and Impact Loading." Frontiers in Bioengineering and Biotechnology 9 (August 12, 2021). http://dx.doi.org/10.3389/fbioe.2021.693120.
Full text"Computational Modeling of SAR and Heat Distribution in Lossy Medium at GSM Frequencies." East European Journal of Physics, no. 4 (2018). http://dx.doi.org/10.26565/2312-4334-2018-4-14.
Full textLi, Guijin, Gustavo Balbinot, Julio Cesar Furlan, Sukhvinder Kalsi-Ryan, and José Zariffa. "A computational model of surface electromyography signal alterations after spinal cord injury." Journal of Neural Engineering, November 10, 2023. http://dx.doi.org/10.1088/1741-2552/ad0b8e.
Full text