Journal articles on the topic 'Spin-resolved'

To see the other types of publications on this topic, follow the link: Spin-resolved.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Spin-resolved.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Lu, J. P., M. Shayegan, L. Wissinger, U. Rössler, and R. Winkler. "Spin-resolved commensurability oscillations." Physical Review B 60, no. 19 (November 15, 1999): 13776–79. http://dx.doi.org/10.1103/physrevb.60.13776.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kakizaki, A. "Spin-Resolved Photoemission Spectroscopy." Acta Physica Polonica A 91, no. 4 (April 1997): 649–58. http://dx.doi.org/10.12693/aphyspola.91.649.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

KIM, Jae Seok, and Kyung-Soo YI. "Spin-resolved Dielectric Functions of Spin-Polarized Electrons." Journal of the Korean Physical Society 51, no. 12 (October 31, 2007): 111. http://dx.doi.org/10.3938/jkps.51.111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fujii, J., Y. Suzuki, and T. Mizoguchi. "Spin Resolved SXAPS for Ni." Journal of the Magnetics Society of Japan 23, no. 1_2 (1999): 730–32. http://dx.doi.org/10.3379/jmsjmag.23.730.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hashimoto, Yusuke, Tom H. Johansen, and Eiji Saitoh. "Phase-resolved spin-wave tomography." Applied Physics Letters 112, no. 7 (February 12, 2018): 072410. http://dx.doi.org/10.1063/1.5018091.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Caliebe, W. A., C. C. Kao, L. E. Berman, J. B. Hastings, M. H. Krisch, F. Sette, and K. Hämäläinen. "Spin resolved resonant Raman scattering." Journal of Applied Physics 79, no. 8 (1996): 6509. http://dx.doi.org/10.1063/1.361927.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

KAKIZAKI, Akito. "Spin-split Electronic Structures Observed by Spin-Resolved Photoemission." Journal of the Vacuum Society of Japan 55, no. 5 (2012): 209–14. http://dx.doi.org/10.3131/jvsj2.55.209.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Şaka, I., Ö. Tezel, and A. Gençten. "A Theoretical Application of 3D J-Resolved NMR Spectroscopy for ISnKm (I = 1/2, S = 1/2 and 1, K = 3/2) Spin Systems." Zeitschrift für Naturforschung A 58, no. 2-3 (March 1, 2003): 139–43. http://dx.doi.org/10.1515/zna-2003-2-311.

Full text
Abstract:
In 3D J-resolved NMR spectroscopy, the chemical shift along one axis and the spin-spin coupling parameters along the two other different axes are resolved. Product operator theory is used for the analytical description of multi-dimensional NMR experiments on weakly coupled spin systems. In this study, the product operator description of heteronuclear 3D J-resolved NMR spectroscopy of weakly coupled ISn Km (I = 1/2, S = 1/2 and 1, K = 3/2) spin systems is presented.
APA, Harvard, Vancouver, ISO, and other styles
9

KIM, Keun Su. "Spin and Angle-resolved Photoemission Spectroscopy." Physics and High Technology 24, no. 7/8 (August 31, 2015): 7. http://dx.doi.org/10.3938/phit.24.036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Roschewsky, Niklas, Michael Schreier, Akashdeep Kamra, Felix Schade, Kathrin Ganzhorn, Sibylle Meyer, Hans Huebl, Stephan Geprägs, Rudolf Gross, and Sebastian T. B. Goennenwein. "Time resolved spin Seebeck effect experiments." Applied Physics Letters 104, no. 20 (May 19, 2014): 202410. http://dx.doi.org/10.1063/1.4879462.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Nick Vamivakas, A., Yong Zhao, Chao-Yang Lu, and Mete Atatüre. "Spin-resolved quantum-dot resonance fluorescence." Nature Physics 5, no. 3 (January 25, 2009): 198–202. http://dx.doi.org/10.1038/nphys1182.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Lundeberg, Mark B., and Joshua A. Folk. "Spin-resolved quantum interference in graphene." Nature Physics 5, no. 12 (October 11, 2009): 894–97. http://dx.doi.org/10.1038/nphys1421.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Morton, S. A., G. D. Waddill, S. Kim, Ivan K. Schuller, S. A. Chambers, and J. G. Tobin. "Spin-resolved photoelectron spectroscopy of Fe3O4." Surface Science 513, no. 3 (August 2002): L451—L457. http://dx.doi.org/10.1016/s0039-6028(02)01824-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Yu, S. W., T. Lischke, R. David, N. Müller, U. Heinzmann, C. Pettenkofer, A. Klein, et al. "Spin resolved photoemission spectroscopy on WSe2." Journal of Electron Spectroscopy and Related Phenomena 101-103 (June 1999): 449–54. http://dx.doi.org/10.1016/s0368-2048(98)00508-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Tjernberg, O., M. Finazzi, L. Duò, G. Ghiringhelli, P. Ohresser, and N. B. Brookes. "Resonant spin resolved photoemission on Ce." Physica B: Condensed Matter 281-282 (June 2000): 723–24. http://dx.doi.org/10.1016/s0921-4526(99)01019-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Lehmann, H., T. Benter, I. von Ahnen, J. Jacob, T. Matsuyama, U. Merkt, U. Kunze, et al. "Spin-resolved conductance quantization in InAs." Semiconductor Science and Technology 29, no. 7 (May 12, 2014): 075010. http://dx.doi.org/10.1088/0268-1242/29/7/075010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Schönhense, Gerd, Katerina Medjanik, and Hans-Joachim Elmers. "Space-, time- and spin-resolved photoemission." Journal of Electron Spectroscopy and Related Phenomena 200 (April 2015): 94–118. http://dx.doi.org/10.1016/j.elspec.2015.05.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Schmiedeskamp, B., B. Kessler, N. Müller, G. Schönhense, and U. Heinzmann. "Spin-resolved photoemission from Pd(111)." Solid State Communications 65, no. 7 (February 1988): 665–70. http://dx.doi.org/10.1016/0038-1098(88)90360-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Klebanoff, L. E., D. G. Van Campen, and R. J. Pouliot. "Electron spin detector for spin‐resolved x‐ray photoelectron spectroscopy." Review of Scientific Instruments 64, no. 10 (October 1993): 2863–71. http://dx.doi.org/10.1063/1.1144374.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Shimada, K., T. Mizokawa, K. Mamiya, T. Saitoh, A. Fujimori, K. Ono, A. Kakizaki, T. Ishii, M. Shirai, and T. Kamimura. "Spin-integrated and spin-resolved photoemission study of Fe chalcogenides." Physical Review B 57, no. 15 (April 15, 1998): 8845–53. http://dx.doi.org/10.1103/physrevb.57.8845.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Nechifor, Ruben Emanuel, Konstantin Romanenko, Florea Marica, and Bruce J. Balcom. "Spatially resolved measurements of mean spin–spin relaxation time constants." Journal of Magnetic Resonance 239 (February 2014): 16–22. http://dx.doi.org/10.1016/j.jmr.2013.11.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

HUANG, D. J., L. H. TJENG, J. CHEN, C. F. CHANG, W. P. WU, A. D. RATA, T. HIBMA, et al. "ELECTRON CORRELATION EFFECTS IN HALF-METALLIC TRANSITION METAL OXIDES." Surface Review and Letters 09, no. 02 (April 2002): 1007–15. http://dx.doi.org/10.1142/s0218625x02001872.

Full text
Abstract:
Spin-resolved photoemission and absorption studies of Fe 3 O 4 and CrO 2 epitaxial thin films have been reviewed to address the relationship between the electron correlation effects and the half-metallic properties of these two materials. Spin-resolved photoemission results suggest that Fe 3 O 4 should be considered as a strongly correlated system, and that Fe 3 O 4 is not a half-metal. Spin-resolved O 1s X-ray absorption measurements on ferromagnetic CrO 2 reveal that the spin polarization of the unoccupied states closest to the Fermi level approaches 100%, confirming the half-metallic ferromagnetic nature of the material. The spin polarization of the main line of the unoccupied states, on the other hand, is found to be only 50%, indicating a very atomic-like behavior of the Cr 3d2 ions.
APA, Harvard, Vancouver, ISO, and other styles
23

Campos, A. F., P. Duret, S. Cabaret, T. Duden, and A. Tejeda. "Spin- and angle-resolved inverse photoemission setup with spin orientation independent from electron incidence angle." Review of Scientific Instruments 93, no. 9 (September 1, 2022): 093904. http://dx.doi.org/10.1063/5.0076088.

Full text
Abstract:
A new spin- and angle-resolved inverse photoemission setup with a low-energy electron source is presented. The spin-polarized electron source, with a compact design, can decouple the spin polarization vector from the electron beam propagation vector, allowing one to explore any spin orientation at any wavevector in angle-resolved inverse photoemission. The beam polarization can be tuned to any preferred direction with a shielded electron optical system, preserving the parallel beam condition. We demonstrate the performances of the setup by measurements on Cu(001) and Au(111). We estimate the energy resolution of the overall system at room temperature to be ∼170 meV from k B T eff of a Cu(001) Fermi level, allowing a direct comparison to photoemission. The spin-resolved operation of the setup has been demonstrated by measuring the Rashba splitting of the Au(111) Shockley surface state. The effective polarization of the electron beam is P = 30% ± 3%, and the wavevector resolution is Δ k F ≲ 0.06 Å−1. Measurements on the Au(111) surface state demonstrate how the electron beam polarization direction can be tuned in the three spatial dimensions. The maximum of the spin asymmetry is reached when the electron beam polarization is aligned with the in-plane spin polarization of the Au(111) surface state.
APA, Harvard, Vancouver, ISO, and other styles
24

KAKIZAKI, Akito. "Electronic Structures Observed by Spin-Resolved Photoemission." SHINKU 41, no. 6 (1998): 561–68. http://dx.doi.org/10.3131/jvsj.41.561.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Banfield, Z. F., J. A. Duffy, J. W. Taylor, C. A. Steer, A. Bebb, M. J. Cooper, L. Blaauw, C. Shenton-Taylor, and R. Ruiz-Bustos. "Spin-resolved Compton scattering study of RuSr2GdCu2O8." Journal of Physics: Condensed Matter 17, no. 36 (August 25, 2005): 5533–40. http://dx.doi.org/10.1088/0953-8984/17/36/009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Okuda, Taichi. "Recent trends in spin-resolved photoelectron spectroscopy." Journal of Physics: Condensed Matter 29, no. 48 (November 13, 2017): 483001. http://dx.doi.org/10.1088/1361-648x/aa8f28.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Bray, Igor, Justin Beck, and Chris Plottke. "Spin-resolved electron-impact ionization of lithium." Journal of Physics B: Atomic, Molecular and Optical Physics 32, no. 17 (August 27, 1999): 4309–20. http://dx.doi.org/10.1088/0953-4075/32/17/314.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Pursley, Brennan C., X. Song, and V. Sih. "Resonant and time-resolved spin noise spectroscopy." Applied Physics Letters 107, no. 18 (November 2, 2015): 182102. http://dx.doi.org/10.1063/1.4935033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Sinković, B., E. Shekel, and S. L. Hulbert. "Spin-resolved iron surface density of states." Physical Review B 52, no. 12 (September 15, 1995): R8696—R8699. http://dx.doi.org/10.1103/physrevb.52.r8696.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Mankey, G. J., S. A. Morton, J. G. Tobin, S. W. Yu, and G. D. Waddill. "A spin- and angle-resolved photoelectron spectrometer." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 582, no. 1 (November 2007): 165–67. http://dx.doi.org/10.1016/j.nima.2007.08.100.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Cherepkov, N. A., and V. V. Kuznetsov. "Angle- and spin-resolved photoemission from ferromagnets." Journal of Physics: Condensed Matter 8, no. 27 (July 1, 1996): 4971–81. http://dx.doi.org/10.1088/0953-8984/8/27/008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Vamivakas, A. Nick, Yong Zhao, Chao-Yang Lu, and Mete Atatüre. "Erratum: Spin-resolved quantum-dot resonance fluorescence." Nature Physics 5, no. 12 (December 2009): 925. http://dx.doi.org/10.1038/nphys1459.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Tjeng, L. H., N. B. Brookes, and B. Sinkovic. "Spin-resolved photoelectron spectroscopy on cuprate systems." Journal of Electron Spectroscopy and Related Phenomena 117-118 (June 2001): 189–201. http://dx.doi.org/10.1016/s0368-2048(01)00265-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Hillebrecht, F. U., T. Kinoshita, Ch Roth, H. B. Rose, and E. Kisker. "Spin-resolved Fe and Co 3s photoemission." Journal of Magnetism and Magnetic Materials 212, no. 1-2 (March 2000): 201–10. http://dx.doi.org/10.1016/s0304-8853(99)00815-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Kakizaki, A., J. Fujii, K. Shimada, A. Kamata, A. Ono, K. H. Park, T. Kinoshita, T. Ishii, and H. Fukutani. "Spin-resolved resonant photoemission of Ni(110)." Journal of Magnetism and Magnetic Materials 140-144 (February 1995): 34–36. http://dx.doi.org/10.1016/0304-8853(94)00682-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Bray, I., D. V. Fursa, A. S. Kadyrov, A. S. Kheifets, T. Lepage, and A. T. Stelbovics. "Spin-resolved electron-impact ionisation of atoms." Journal of Physics: Conference Series 212 (February 1, 2010): 012017. http://dx.doi.org/10.1088/1742-6596/212/1/012017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Könemann, J., P. König, and R. J. Haug. "Spin-resolved transport in single-electron tunneling." Physica E: Low-dimensional Systems and Nanostructures 13, no. 2-4 (March 2002): 675–78. http://dx.doi.org/10.1016/s1386-9477(02)00256-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Fonin, M., Yu S. Dedkov, R. Pentcheva, U. Rüdiger, and G. Güntherodt. "Spin-resolved photoelectron spectroscopy of Fe3O4—revisited." Journal of Physics: Condensed Matter 20, no. 14 (March 7, 2008): 142201. http://dx.doi.org/10.1088/0953-8984/20/14/142201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Finazzi, M., L. Braicovich, Ch Roth, F. U. Hillebrecht, H. B. Rose, and E. Kisker. "Spin-resolved photoemission from Pt/Fe(001)." Physical Review B 50, no. 19 (November 15, 1994): 14671–73. http://dx.doi.org/10.1103/physrevb.50.14671.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Schneider, C. M., P. Schuster, M. Hammond, H. Ebert, J. Noffke, and J. Kirschner. "Spin-resolved electronic bands of FCT cobalt." Journal of Physics: Condensed Matter 3, no. 24 (June 17, 1991): 4349–55. http://dx.doi.org/10.1088/0953-8984/3/24/004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Seridonio, A. C., F. M. Souza, and I. A. Shelykh. "Spin-Resolved STM for a Kondo Impurity." Journal of Superconductivity and Novel Magnetism 23, no. 1 (September 24, 2009): 149–52. http://dx.doi.org/10.1007/s10948-009-0560-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Donath, M. "Spin-resolved inverse photoemission of ferromagnetic surfaces." Applied Physics A Solids and Surfaces 49, no. 4 (October 1989): 351–64. http://dx.doi.org/10.1007/bf00615018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Okuda, Taichi, and Akio Kimura. "Spin- and Angle-Resolved Photoemission of Strongly Spin–Orbit Coupled Systems." Journal of the Physical Society of Japan 82, no. 2 (February 15, 2013): 021002. http://dx.doi.org/10.7566/jpsj.82.021002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Della Longa, S., A. Bianconi, A. Congiu Castellano, M. Girasole, A. P. Kovtun, and A. V. Soldatov. "Spin Resolved Multiple Scattering Study on Iron Spin Transition in Metmyoglobin." Le Journal de Physique IV 7, no. C2 (April 1997): C2–631—C2–632. http://dx.doi.org/10.1051/jp4/1997123.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Laflorencie, Nicolas, and Stephan Rachel. "Spin-resolved entanglement spectroscopy of critical spin chains and Luttinger liquids." Journal of Statistical Mechanics: Theory and Experiment 2014, no. 11 (November 10, 2014): P11013. http://dx.doi.org/10.1088/1742-5468/2014/11/p11013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Heidari Semiromi, Ebrahim. "Spin resolved conductance in semiconductor mesoscopic rings: not spin gate response." Journal of Applied Physics 111, no. 12 (June 15, 2012): 124502. http://dx.doi.org/10.1063/1.4729291.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Poweleit, C. D., L. M. Smith, and B. T. Jonker. "Time-resolved spin dynamics in strained Zn1−xMnxSe/ZnSe spin superlattices." Superlattices and Microstructures 20, no. 2 (September 1996): 221–27. http://dx.doi.org/10.1006/spmi.1996.0071.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Mank, A., M. Drescher, A. Brockhinke, N. B�wering, and U. Heinzmann. "Angle- and spin-resolved photoelectron spectroscopy in rotationally resolved photoionization of HI." Zeitschrift f�r Physik D Atoms, Molecules and Clusters 29, no. 4 (December 1994): 275–89. http://dx.doi.org/10.1007/bf01437847.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Schüler, Michael, Umberto De Giovannini, Hannes Hübener, Angel Rubio, Michael A. Sentef, and Philipp Werner. "Local Berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials." Science Advances 6, no. 9 (February 2020): eaay2730. http://dx.doi.org/10.1126/sciadv.aay2730.

Full text
Abstract:
Topologically nontrivial two-dimensional materials hold great promise for next-generation optoelectronic applications. However, measuring the Hall or spin-Hall response is often a challenge and practically limited to the ground state. An experimental technique for tracing the topological character in a differential fashion would provide useful insights. In this work, we show that circular dichroism angle-resolved photoelectron spectroscopy provides a powerful tool that can resolve the topological and quantum-geometrical character in momentum space. In particular, we investigate how to map out the signatures of the momentum-resolved Berry curvature in two-dimensional materials by exploiting its intimate connection to the orbital polarization. A spin-resolved detection of the photoelectrons allows one to extend the approach to spin-Chern insulators. The present proposal can be extended to address topological properties in materials out of equilibrium in a time-resolved fashion.
APA, Harvard, Vancouver, ISO, and other styles
50

QIAO, S., A. KIMURA, A. MORIHARA, S. HASUI, E. KOTANI, H. TAKAYAMA, K. SHIMADA, H. NAMATAME, and M. TANIGUCHI. "ELECTRON OPTICS WITH CYLINDRICAL DEFLECTOR FOR SPIN-RESOLVED INVERSE PHOTOEMISSION SPECTROSCOPY." Surface Review and Letters 09, no. 01 (February 2002): 487–89. http://dx.doi.org/10.1142/s0218625x02002506.

Full text
Abstract:
For a spin-resolved inverse photoemission spectrometer, the most important component is the electron optics system consisting of a 90° deflector and lenses to transfer the spin-polarized electrons from a GaAs photocathode to the sample at high transmission. We adopt a cylindrical deflector when we construct a spin-resolved inverse photoemission spectrometer. A performance test shows that our electronic optics system has achieved 83% transmission, and also that the cylindrical deflector has no shortcoming compared to the spherical type.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography