Dissertations / Theses on the topic 'Spin-orbit Coupled Electronic Systems'

To see the other types of publications on this topic, follow the link: Spin-orbit Coupled Electronic Systems.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 19 dissertations / theses for your research on the topic 'Spin-orbit Coupled Electronic Systems.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Celiberti, Lorenzo. "Small polarons in spin-orbit coupled osmates." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/24839/.

Full text
Abstract:
Small polarons (SP) have been thoroughly investigated in 3d transition metal oxides and they have been found to play a crucial role in physical phenomena such as charge transport, colossal magnetoresistance and surface reactivity. However, our knowledge about these quasi-particles in 5d systems remains very limited, since the more delocalised nature of the 5d orbitals reduces the strength of the Electronic Correlation (EC), making SP formation in these compounds rather unexpected. Nevertheless, the Spin-Orbit coupled Dirac-Mott insulator Ba2NaOsO6 (BNOO) represents a good candidate for enabling polaron formation in a relativistic background, due to the relatively large EC (U ∼ 3 eV) and Jahn-Teller activity. Moreover, anomalous peaks in Nuclear Magnetic Resonance (NMR) spectroscopy experiments suggest the presence of thermally activated SP dynamics when BNOO is doped with Ca atoms. We investigate SP formation in BNOO both from an electronic and structural point of view by means of fully relativistic first principles calculations. Our numerical simulations predict a stable SP ground state and agree on the value of 810 K for the dynamical process peak found by NMR experiments.
APA, Harvard, Vancouver, ISO, and other styles
2

Walkup, Daniel. "Doping and strain effects in strongly spin-orbit coupled systems." Thesis, Boston College, 2016. http://hdl.handle.net/2345/bc-ir:106810.

Full text
Abstract:
Thesis advisor: Vidya Madhavan
We present Scanning Tunneling Microscopy (STM) studies on several systems in which spin-orbit coupling leads to new and interesting physics, and where tuning by doping and/or strain can significantly modify the electronic properties, either inducing a phase transition or by sharply influencing the electronic structure locally. In the perovskite Iridate insulator Sr3Ir2O7, we investigate the parent compound, determining the band gap and its evolution in response to point defects which we identify as apical oxygen vacancies. We investigate the effects of doping the parent compound with La (in place of Sr) and Ru (in place of Ir). In both cases a metal-insulator transition (MIT) results: at x ~ 38% with Ru, and x ~ 5% with La. In the La-doped samples we find nanoscale phase separation at dopings just below the MIT, with metallic spectra associated with clusters of La atoms. Further, we find resonances near the Fermi energy associated with individual La atoms, suggesting an uneven distribution of dopants among the layers of the parent compound. Bi2Se3 is a topological insulator which hosts linearly dispersing Dirac surface states. Doping with In (in place of Bismuth) brings about topological phase transition, achieving a trivial insulator at x ~ 4%. We use high-magnetic field Landau level spectroscopy to study the surface state’s properties approaching the phase transition and find, by a careful analysis of the peak positions find behavior consistent with strong surface-state Zeeman effects: g~50. This interpretation implies, however, a relabeling of the Landau levels previously observed in pristine Bi2Se3, which we justify through ab initio calculations. The overall picture is of a g-factor which steadily decreases as In is added up to the topological phase transition. Finally, we examine the effects of strain on the surface states of (001) thin films of the topological crystalline insulator SnTe. When these films are grown on closely-related substrates—in this case PbSe(001)—a rich pattern of surface strain emerges. We use phase-sensitive analysis of atomic-resolution STM topographs to measure the strain locally, and spatially-resolved quasiparticle interference imaging to compare the Dirac point positions in regions with different types of strain, quantifying for the first time the effect of anisotropic strain on the surface states of a topological crystalline insulator
Thesis (PhD) — Boston College, 2016
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Physics
APA, Harvard, Vancouver, ISO, and other styles
3

Zhou, Wenwen. "STM probe on the surface electronic states of spin-orbit coupled materials." Thesis, Boston College, 2014. http://hdl.handle.net/2345/bc-ir:103564.

Full text
Abstract:
Thesis advisor: Vidya Madhavan
Spin-orbit coupling (SOC) is the interaction of an electron's intrinsic angular momentum (spin) with its orbital momentum. The strength of this interaction is proportional to Z4 where Z is the atomic number, so generally it is stronger in atoms with higher atomic number, such as bismuth (Z=83) and iridium (Z=77). In materials composed of such heavy elements, the prominent SOC can be sufficient to modify the band structure of the system and lead to distinct phase of matter. In recent years, SOC has been demonstrated to play a critical role in determining the unusual properties of a variety of compounds. SOC associated materials with exotic electronic states have also provided a fertile platform for studying emergent phenomena as well as new physics. As a consequence, the research on these interesting materials with any insight into understanding the microscopic origin of their unique properties and complex phases is of great importance. In this context, we implement scanning tunneling microscopy (STM) and spectroscopy (STS) to explore the surface states (SS) of the two major categories of SOC involved materials, Bi-based topological insulators (TI) and Ir-based transition metal oxides (TMO). As a powerful tool in surface science which has achieved great success in wide variety of material fields, STM/STS is ideal to study the local density of states of the subject material with nanometer length scales and is able to offer detailed information about the surface electronic structure. In the first part of this thesis, we report on the electronic band structures of three-dimensional TIs Bi2Te3 and Bi2Se3. Topological insulators are distinct quantum states of matter that have been intensely studied nowadays. Although they behave like ordinary insulators in showing fully gapped bulk bands, they host a topologically protected surface state consisting of two-dimensional massless Dirac fermions which exhibits metallic behavior. Indeed, this unique gapless surface state is a manifestation of the non-trivial topology of the bulk bands, which is recognized to own its existence to the strong SOC. In chapter 3, we utilize quasiparticle interference (QPI) approach to track the Dirac surface states on Bi2Te3 up to ~800 meV above the Dirac point. We discover a novel interference pattern at high energies, which probably originates from the impurity-induced spin-orbit scattering in this system that has not been experimentally detected to date. In chapter 4, we discuss the topological SS evolution in (Bi1-xInx)2Se3 series, by applying Landau quantization approach to extract the band dispersions on the surface for samples with different indium content. We propose that a topological phase transition may occur in this system when x reaches around 5%, with the experimental signature indicating a possible formation of gapped Dirac cone for the surface state at this doping. In the second part of this thesis, we focus on investigating the electronic structure of the bilayer strontium iridate Sr3Ir2O7. The correlated iridate compounds belong to another domain of SOC materials, where the electronic interaction is involved as well. Specifically, the unexpected Mott insulating state in 5d-TMO Sr2IrO4 and Sr3Ir2O7 has been suggested originate from the cooperative interplay between the electronic correlations with the comparable SOC, and the latter is even considered as the driving force for the extraordinary ground state in these materials. In chapter 6, we carried out a comprehensive examination of the electronic phase transition from insulating to metallic in Sr3Ir2O7 induced by chemical doping. We observe the subatomic feature close to the insulator-to-metal transition in response with doping different carriers, and provide detailed studies about the local effect of dopants at particular sites on the electronic properties of the system. Additionally, the basic experimental techniques are briefly described in chapter 1, and some background information of the subject materials are reviewed in chapter 2 and chapter 5, respectively
Thesis (PhD) — Boston College, 2014
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Physics
APA, Harvard, Vancouver, ISO, and other styles
4

Lüffe, Matthias [Verfasser]. "Semiclassical treatment of transport and spin relaxation in spin-orbit coupled systems / Matthias Lüffe." Berlin : Freie Universität Berlin, 2012. http://d-nb.info/1029850542/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pezo, Lopez Armando Arquimedes [UNESP]. "Electronic structure of two dimensional systems with spin-orbit interaction." Universidade Estadual Paulista (UNESP), 2016. http://hdl.handle.net/11449/151633.

Full text
Abstract:
Submitted by ARMANDO ARQUIMEDES PEZO LOPEZ (armandopezo333@gmail.com) on 2017-09-15T18:49:05Z No. of bitstreams: 1 pezo_a_ms_ift.pdf: 7486652 bytes, checksum: 7101195a7ca026fe9e98885ba89961f1 (MD5)
Approved for entry into archive by Monique Sasaki (sayumi_sasaki@hotmail.com) on 2017-09-19T17:23:53Z (GMT) No. of bitstreams: 1 pezolopez_aa_me_ift.pdf: 7486652 bytes, checksum: 7101195a7ca026fe9e98885ba89961f1 (MD5)
Made available in DSpace on 2017-09-19T17:23:53Z (GMT). No. of bitstreams: 1 pezolopez_aa_me_ift.pdf: 7486652 bytes, checksum: 7101195a7ca026fe9e98885ba89961f1 (MD5) Previous issue date: 2016-08-02
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
A realização experimental do grafeno em 2004 abriu as portas para os estudos de uma nova geração de materiais, estes chamados materiais bidimensionais são a expressão final do que poderíamos pensar em material plano (monocamada) que, eventualmente, podem ser empilhados para formar o bulk. O grafeno oferece uma grande variedade de propriedades físicas, em grande parte, como o resultado da dimensionalidade de sua estrutura, e pelas mesmas razões, materiais como Fosforeno (P), Siliceno (S), Nitreto de Boro hexagonal (hBN), dicalcogenos de metais de transição (TMDC), etc. São muito interessantes para fins teóricos, como para futuras aplicações tecnológicas que podem-se desenvolver a partir deles, como dispositivos de spintrônica e armazenamento. Neste trabalho o estudo desenvolvido são as propriedades eletrônicas dos materiais apresentados acima (grafeno, fosforeno e MoTe 2 ), e além disso, ja que o acoplamento spin-órbita aumenta à medida que o número atômico tambem aumenta, espera-se que este parâmetro desempenhe um papel na estrutura eletrônica, particularmente para os TMDC’s. Começamos descrevendo genéricamente esses três sistemas, isto é, para o grafeno, podemos usar uma abordagem tipo tight binding, a fim de encontrar a dispersão de energia para as quase-particulas perto do nível de Fermi (Equação de Dirac). Usando cálculos DFT estudou-se de forma geral as propriedades desses sistemas com a inclusão do espin órbita. Abordou-se cálculos para descrever os efeitos do acoplo spin órbita sobre os materiais isolados, tambem nas heterostruturas (duas camadas formadas por eles). Finalmente, tambem estudou-se a possibilidade de defeitos e sua possível influência sobre a estrutura eletrônica das heterostruturas.
The experimental realization of graphene in 2004 opened the gates to the studies of a new generation of materials, these so-called 2 dimensional materials are the final expression of what we could think of a plane material (monolayer) that eventually can be stacked to form a bulk. Graphene, the wonder material, offers a large variety of physical properties, in great part, as the result of the dimensionality of its structure, and for the same reasons, materials like phosphorene(P), silicene(S), hexagonal Boron Nitride (hBN), transition metal dichalcogenides(TMDC), etc. are very interesting for theoretical purposes, as for the future technological applications that we can develope from them, such as Spintronics and Storage devices. In this dissertation we theoretically study the electronic properties of the materials presented above (graphene, Phosphorene and MoTe2), and besides that, since the spin-orbit coupling strength increases as the atomic number does, we expect that this paremeter plays a role in the electronic structure, particularly for the TMDC. We start describing generically those three systems using density functional theory including the effect of spin orbit. We address calculations to describe the effects of spin orbit on the isolated materials as well as the heterostructures. Finally we also include the possibility of defects in graphene and their possible influence on the electronic structure of heterostructures.
APA, Harvard, Vancouver, ISO, and other styles
6

Pezo, Lopez Armando Arquimedes. "Electronic structure of two dimensional systems with spin-orbit interaction /." São Paulo, 2016. http://hdl.handle.net/11449/151633.

Full text
Abstract:
Orientador: Alexandre Reily Rocha
Banca: Marcelo Takeshi Yamashita
Banca: Cedric Rocha Leão
Resumo: A realização experimental do grafeno em 2004 abriu as portas para os estudos de uma nova geração de materiais, estes chamados materiais bidimensionais são a expressão final do que poderíamos pensar em material plano (monocamada) que, eventualmente, podem ser empilhados para formar o bulk. O grafeno oferece uma grande variedade de propriedades físicas, em grande parte, como o resultado da dimensionalidade de sua estrutura, e pelas mesmas razões, materiais como Fosforeno (P), Siliceno (S), Nitreto de Boro hexagonal (hBN), dicalcogenos de metais de transição (TMDC), etc. São muito interessantes para fins teóricos, como para futuras aplicações tecnológicas que podem-se desenvolver a partir deles, como dispositivos de spintrônica e armazenamento. Neste trabalho o estudo desenvolvido são as propriedades eletrônicas dos materiais apresentados acima (grafeno, fosforeno e MoTe 2 ), e além disso, ja que o acoplamento spin-órbita aumenta à medida que o número atômico tambem aumenta, espera-se que este parâmetro desempenhe um papel na estrutura eletrônica, particularmente para os TMDC's. Começamos descrevendo genéricamente esses três sistemas, isto é, para o grafeno, podemos usar uma abordagem tipo tight binding, a fim de encontrar a dispersão de energia para as quase-particulas perto do nível de Fermi (Equação de Dirac). Usando cálculos DFT estudou-se de forma geral as propriedades desses sistemas com a inclusão do espin órbita. Abordou-se cálculos para descrever os efeitos do acoplo s... (Resumo completo, clicar acesso eletrônico abaixo)
Abstract: The experimental realization of graphene in 2004 opened the gates to the studies of a new generation of materials, these so-called 2 dimensional materials are the nal expression of what we could think of a plane material (monolayer) that eventually can be stacked to form a bulk. Graphene, the wonder material, o ers a large variety of physical properties, in great part, as the result of the dimensionality of its structure, and for the same reasons, materials like phosphorene(P), silicene(S), hexagonal Boron Nitride (hBN), transition metal dichalcogenides(TMDC), etc. are very interesting for theoretical purposes, as for the future technological applications that we can develope from them, such as Spintronics and Storage devices. In this dissertation we theoretically study the electronic properties of the materials presented above (graphene, Phosphorene and MoTe2), and besides that, since the spin-orbit coupling strength increases as the atomic number does, we expect that this paremeter plays a role in the electronic structure, particularly for the TMDC. We start describing generically those three systems using density functional theory including the e ect of spin orbit. We address calculations to describe the e ects of spin orbit on the isolated materials as well as the heterostructures. Finally we also include the possibility of defects in graphene and their possible in uence on the electronic structure of heterostructures
Mestre
APA, Harvard, Vancouver, ISO, and other styles
7

Chen, Xiang. "Electronic phase behaviors in spin-orbit coupled magnets at the localized and itinerant limits." Thesis, Boston College, 2018. http://hdl.handle.net/2345/bc-ir:108183.

Full text
Abstract:
Thesis advisor: Stephen Wilson
The magnetic interaction in materials generally can be categorized into two extremes: localized and itinerant. This work will focus on the electronic and magnetic properties of two prototypical magnetic compounds, which fall into the opposite extremes, i:e:, the spin-orbit coupled Mott insulator Sr₂IrO₄ (Sr214) described by the localized Heisenberg model and the itinerant helical (nearly-ferromagnetic) metal MnSi pictured with band or Stoner magnetism. The single layered cuprate analogue Sr₂IrO₄ has attracted considerable attentions in recent years, due to its unusual electronic and magnetic properties and the potential to access superconducting states. The exotic jeff = 1/2 ground state for the Ir⁴⁺ (5d⁵) ions results from the delicate balance of competing/cooperating energy scales, such as the stronger spin-orbit coupling (SOC) in 5d materials as compared to 3d transition metal oxides (TMOs), crystal electric field (CEF) splitting and electron-electron correlations. Superconducting states are theoretically predicted to be achievable if sufficient carriers are introduced into this spin-orbit assisted compound, which later triggers tremendous experimental works toward the realization of superconductivity. Here in this work a combined study of various probes, such as transport, magnetization, X-ray and neutron scattering measurements, focusing on the electronic and magnetic properties, is presented in the perturbed spin-orbit coupled Mott (SOM) state. Specifically in electron doped (Sr₁₋ₓLaₓ)₂IrO₄, a detailed mapping of magnetism with respect to electron doping is presented, demonstrating the gradual transition from long range magnetic order in parent state, to intermediate short range order, and eventually into the incommensurate (IC) spin density wave (SDW) state with increasing electron doping. Our picture supports the conjecture that the quenched Mott phases in electron-doped Sr₂IrO₄ and hole doped La₂CuO₄ share common competing electronic phases. On the other hand, the prototypical itinerant metal MnSi is examined by inelastic neutron scattering (INS). Our experimental data directly demonstrate the collapse of linear spin wave theory for localized Heisenberg magnets in the large energy limit, although the low energy dispersion is still described by the ferromagnetic spin wave theory. Most importantly, our observations display the chimney-like dispersion spectrum up to the energy scale of at least 240 meV, which is more than one order of magnitude larger than the Heisenberg interaction energy scale. For the first time, solid characterizations of Stoner excitations in itinerant helimagnet (nearly ferromagnetic) have been demonstrated up to an exceedingly large energy scale. Our intriguing results will greatly promote further understanding and exploration of Stoner excitations in itinerant magnets
Thesis (PhD) — Boston College, 2018
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Physics
APA, Harvard, Vancouver, ISO, and other styles
8

Turner, L. W. "Some simple pseudo-systems that model Jahn-Teller systems with spin-orbit coupling." Thesis, University of Oxford, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.380009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Rudolph, Martin. "Quantum transport in mesoscopic systems of Bi and other strongly spin-orbit coupled materials." Diss., Virginia Tech, 2013. http://hdl.handle.net/10919/20374.

Full text
Abstract:
Systems with strong spin-orbit coupling are of particular interest in solid state physics as an avenue for observing and manipulating spin physics using standard electrical techniques. This dissertation focuses on the characteristics of elemental bismuth (Bi), which exhibits some of the strongest intrinsic spin-orbit coupling of all elements, and InSb, which exhibits some of the strongest intrinsic spin-orbit coupling of all compound semiconductors. The experiments performed study the quantum transport signatures of nano- and micron-scale lithographically defined devices as well as spin-orbit coupled material/ferromagnet interfaces. All Bi structures are fabricated from Bi thin "films, and hence a detailed analysis of
the characteristics of Bi "film growth by thermal evaporation is provided. Morphologically and electrically high quality "films are grown using a two stage deposition procedure. The phase and spin coherence of Bi geometries constrained in one, two, and three dimensions are systematically studied by analysis of the weak antilocalization transport signature, a quantum interference phenomenon sensitive to spin-orbit coupling. The "findings indicate that the phase coherence scales proportionally to the limiting dimension of the structure for sizes less than 500 nm. Specifically, in Bi wires, the phase coherence length is approximately as long as the wire width. Dephasing due to quantum confinement e"ffects limit the phase coherence in small Bi structures, impairing the observation of controlled interference phenomena in nano-scale Bi rings. The spin coherence length is independent of dimensional constraint by the film thickness, but increases significantly as the lateral dimensions, such as wire width, are constrained. This is a consequence of the quantum transport contribution from the strongly spin-orbit coupled Bi(001) surface state. To probe the Bi surface state further, Bi/CoFe junctions are fabricated. The anisotropic magnetoresistance of the CoFe is modifi"ed when carriers tunnel into the CoFe from Bi, possibly due to a spin dependent tunneling process or an interaction between the spin polarized density of states in CoFe and the anisotropic spin-orbit coupled density of states in Bi. InSb/CoFe junctions are studied as InSb "films are a simpler spin-orbit coupled system compared to Bi "films. For temperatures below 3.5 K, a large, symmetric, and abrupt negative magnetoresistance is observed. The low-"field high resistance state has similar temperature and magnetic "field dependences as the superconducting phase, but a superconducting component in the device measurements seems absent. A differential conductance measurement of the InSb/CoFe interface during spin injection indicates a quasiparticle gap present at the Fermi energy, coinciding with the large magnetoresistance.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
10

Asmar, Mahmoud M. "Electronic and Spin Transport in Dirac-Like Systems." Ohio University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1437564830.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Vollmers, Nora Jenny [Verfasser]. "Influence of spin-orbit coupling on the electronic structure of low-dimensional systems / Nora Jenny Vollmers." Paderborn : Universitätsbibliothek, 2016. http://d-nb.info/1122458223/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Bawden, Lewis. "A spin- and angle-resolved photoemission study of coupled spin-orbital textures driven by global and local inversion symmetry breaking." Thesis, University of St Andrews, 2017. http://hdl.handle.net/10023/12049.

Full text
Abstract:
The effect of spin-orbit coupling had once been thought to be a minor perturbation to the low energy band structure that could be ignored. Instead, a surge in recent theoretical and experimental efforts have shown spin-orbit interactions to have significant consequences. The main objective of this thesis is to investigate the role of the orbital sector and crystal symmetries in governing the spin texture in materials that have strong spin- orbit interactions. This can be accessed through a combination of spin- and angle-resolved photoemission spectroscopy (ARPES and spin-ARPES), both of which are powerful techniques for probing the one-electron band structure plus interactions, and supported by density functional theory calculations (DFT). We focus first on a globally inversion asymmetric material, the layered semiconductor BiTeI, which hosts a giant spin-splitting of its bulk bands. We show that these spin-split bands develop a previously undiscovered, momentum-space ordering of the atomic orbitals. We demonstrate this orbital texture to be atomic element specific by exploiting resonant enhancements in ARPES. These orbital textures drive a hierarchy of spin textures that are then tied to the constituent atomic layers. This opens routes to controlling the spin-splitting through manipulation of the atomic orbitals. This is contrasted against a material where inversion symmetry is globally upheld but locally broken within each monolayer of a two layer unit cell. Through our ARPES and spin-ARPES measurements of 2H-NbSe2, we discover the first experimental evidence for a strong out-of-plane spin polarisation that persists up to the Fermi surface in this globally inversion sym- metric material. This is found to be intrinsically linked to the orbital character and dimensionality of the underlying bands. So far, previous theories underpinning this (and related) materials' collective phases assume a spin- degenerate Fermi sea. We therefore expect this spin-polarisation to play a role in determining the underlying mechanism for the charge density wave phase and superconductivity. Through these studies, this thesis then develops the importance of global versus local inversion symmetry breaking and uncovers how this is intricately tied to the underlying atomic orbital configuration.
APA, Harvard, Vancouver, ISO, and other styles
13

Höpfner, Philipp Alexander [Verfasser], and Ralph [Akademischer Betreuer] Claessen. "Two-Dimensional Electron Systems at Surfaces — Spin-Orbit Interaction and Electronic Correlations / Philipp Alexander Höpfner. Betreuer: Ralph Claessen." Würzburg : Universitätsbibliothek der Universität Würzburg, 2013. http://d-nb.info/1037093488/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Borlenghi, Simone. "Electronic transport and magnetization dynamics in magnetic systems." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2011. http://tel.archives-ouvertes.fr/tel-00590363.

Full text
Abstract:
L'objectif de ce travail de thèse est de comprendre l'influence mutuelle entre le transport électronique et la dynamique de l'aimantation dans des nanostructures hybrides magnétiques métalliques. Dans une première partie on a développé un modèle théorique, basé sur la théorie des matrices aléatories, pour décrire au niveau microscopique le transport dépendent du spin dans une nanostructure hétérogène. Ce modèle, appélé CRMT (pour Continuous Random Matrix Theory) a ensuite été traduit dans un code de simulation qui permet de calculer les proprietés locales (couple de transfert de spin, accumulation de spin et courant de spin) et macroscopiques (résistance) du transport dans des conducteurs ohmiques. Le modèle a été validé en le comparant avec une théorie du transport quantique basée sur le calcul des fonctions de Green hors équilibre. Le couplage des ce deux modèles a permis d'effectuer une description multi­échelle du transport dans des nanostructures métalliques hybrides, où les parties ohmiques sont décrites par CRMT et les parties purement quantiques par le formalisme des fonctions de Green. CRMT a ensuite été incorporé dans un code de simulation micromagnétique, pour décrire de façon réaliste la texture spatiale de la dynamique de l'aimantation induite par le transfert de spin. L'originalité de cette approche réside dans la modélisation des mesures spectroscopiques utilisant une détection mécanique de la résonance ferromagnétique, conduites sur des oscillateurs à transport de spin. Ce travail a permis d'obtenir le diagramme de phase dynamique de l'aimantation, ainsi que les règles de sélection des ondes de spin et la compétition entre les modes propres du systeme lors du passage d'un courant continu à travers la multicouche, en accord partiel avec les données experimentales
APA, Harvard, Vancouver, ISO, and other styles
15

Shee, Avijit. "Relativistic coupled cluster theory - in molecular properties and in electronic structure." Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30053/document.

Full text
Abstract:
L'importance des effets relativistes dans la chimie a été reconnu depuis les années 1980. Par exemple, sans la relativité (a) l'or aurait la même couleur que l'argent (b) le mercure ne serait pas liquide à la température ambiante et (c) nos voitures ne démarrent pas avec une batterie de plomb. Pour une description théorique de la structure et la réactivité des éléments lourds, la relativité est un ingrédient essentiel. Le hamiltonien pour les calculs moléculaires relativistes à 4 composantes est construit en remplaçant la partie mono-électronique de l'hamiltonien électronique non-relativiste par le hamiltonien de Dirac. La partie bi-électronique est approchée par le terme de r Coulomb comme dans le cas non relativiste, ce qui donnel'hamiltonien de Dirac-Coulomb (DC). Pour réduire le coût de calcul, on peut utiliser des hamiltoniens relativistes à 2 composantes. Parmi eux, l'hamiltonien exact à 2 composantes (X2C) est le plus précise. La corrélation électronique est, cependant, une contribution très importante pour obtenir une description théorique à la fois qualitative et quantitative des spectroscopies moléculaires, réactions, etc. Dans cette thèse, nous avons étudié l'interaction entre la relativité et de la corrélation. à la fois par des développements méthodologiques et par des applications moléculaires. Dans la première partie de la thèse, nous avons calculé les constantes spectroscopiques dimères des gaz rares lourds. La liaison faible de ces dimères ne peut être décrit que par l'inclusion de la corrélation électronique. Les dimères des gaz rares les plus lourds, le radon et l'eka-radon, nécessite de plus un traitement adéquat de la relativité. Nos calculs sont basés sur l'hamiltonien X2Cmmf, à la fois avec des méthodes de corrélation basés sur une fonction d'onde et séparation de porte (srDFT). La deuxième partie de cette thèse concerne la simulation de la spectroscopie des rayons X, où l'on sonde la région du cœur d'une molécule, ou la relativité joue un rôle très important. Nous avons étudié la spectroscopie L-edge de la série isoélectronique: UO22 +, UNO+, et UN2, où le couplage spin-orbite joue un rôle majeur. Au niveau des méthodes, nous avons considéré MP2 à couches ouvertes et la théorie de la fonctionnelle de la densité dépendante de temps (TDDFT). Dans un autre étude, nous avons simulé la spectroscopie K-edge de la série H2X (X = O, S, Se, Te) et XH3 (X = N, P, As) ainsi que les molécules N2 et N2O2. Pour ces systèmes, l'interaction spin-orbite est moins important. Par conséquent, nous avons utilisé un hamiltonien DC sans spin (SF). Certains des systèmes pris en compte dans ce travail sont de caractère multi-référentielles ; nous avons utilisé la methode Coupled Cluster Multi-référentielle de type State Universal et adapté au groupe unitaire (UGA-SUMRCC) comme une méthode de corrélation. Dans la troisième et partie principale de la thèse, l'attention est de nouveau sur la relativité et de la corrélation, mais pour le calcul des propriétés électriques et magnétiques moléculaires. Nous avons développé et mis en œuvre un module pour le calcul des valeurs moyennes au niveau relativiste à 4-composantes coupled cluster monoréferentiel. Les propriétés qui sondent la densité électronique près de noyaux (lourds), telles que la résonance paramagnétique électronique (RPE), les paramètres des gradients de champ électrique et la non-conservation de la parité (NCP) des molécules chirales ,sont parfaitement adaptés pour l'application de cette méthode. Pour l'instant, nous avons étudié que la NCP. Ce module dans le logiciel DIRAC pour les calculs moléculaires relativistes fournit un cadre propice pour la mise en œuvre de méthodes de CC relativistes employant la symétrie de groupes doubles et de permutation de manière très efficace. En perspective, nous ciblons la mise en œuvre de la réponse linéaire CC pour le calcul des énergies d'excitation et propriétés moléculaires de second ordre tels que les paramètres de RMN
The importance of relativistic effects in chemistry has been recognized since the 1980s. Without relativity (a) gold would have the same colour as silver (b) mercury would not be liquid at room temperature (c) our cars would not start (lead-battery). For a theoretical description of the structure and reactivity of heavy-elements, relativity is considered as an essential ingredient. The Hamiltonian for the 4-component relativistic molecular calculations is constructed by replacing the one-electronic part of the non-relativistic molecular Hamiltonian by the Dirac Hamiltonian. The two-electronic part of the Hamiltonian is approximated by the Coulombic repulsion term as in the non-relativistic case. The resulting Hamiltonian is called the Dirac-Coulomb (DC) Hamiltonian. For chemical applications there exist a class of relativistic Hamiltonians, where one-electronic part of the DC Hamiltonian is transformed to a 2-component one. Among them the eXcact 2-component (X2C) Hamiltonian is the most accurate one. Electron correlation, however, is a very important contribution to achieve a both qualitative and quantitative correct description of molecular spectroscopies, reactions etc. It is, therefore, essential to study the interplay between relativity and correlation. In this thesis, we have studied this interplay both in terms methodological developments and molecular applications. In the first part of the thesis we have studied the spectroscopic constants of the heavy rare gas dimers. The weak bonding of those dimers can only be described by the inclusion of electron correlation. The heavier analogues in the rare gas series i.e, Radon and eka-Radon, in addition require adequate treatment of relativity. Our calculations are based on the eXact 2-Component molecular-mean field (X2Cmmf) Hamiltonian both with wave function methods and range-separated DFT methods. The second part of this thesis simulates X-ray spectroscopy, where one probes the core region of a molecule. In the core region relativity plays a very significant role. Removal and excitation of electrons from that region involve various processes, which are beyond a mean-field description. We have studied L-edge spectroscopy of the isoelectronic series: UO22+, UNO+, and UN2, where spin-orbit coupling plays a major role. For the theory we have considered single reference open-shell MP2 and Time Dependent Density functional Theory (TDDFT). In another work, we have studied K-edge spectroscopy of the H2X (X= O, S, Se, Te) and XH3 (X= N, P, As) series as well as N2, N2O2 molecules. For this study spin-orbit coupling is less important, therefore, we have treated them with the Spin-Free (SF) DC Hamiltonian. Some of the systems considered in this work are Multi-Reference in nature; we have used Unitary Group Adapted (UGA) State Universal Multi-reference Coupled Cluster (UGA-SUMRCC) theory as a correlation method. In the third and major part of the thesis, the thrust is again on relativity and correlation, but for the calculation of molecular electric and magnetic properties. We have developed and implemented a module for the calculation of expectation values at the 4-component Relativistic Single Reference Coupled Cluster level. Properties that probe the electron density near (heavy) nuclei, such as Electron Paramagnetic Resonance (EPR) parameters, electric field gradients and parity non-conservation (PNC) in chiral molecules are ideally suited for the application of this method. However, we have only studied PNC so far. This module in the DIRAC software for relativstic molecular calculations provides a convenient framework for the implementation of relativistic CC methods employing double group and permutation symmetry very efficiently. In the near future we therefore target the implementation of Linear Response CC for the calculation of excitation energies and second-order molecular properties such as NMR parameters
APA, Harvard, Vancouver, ISO, and other styles
16

Abutaleb, Mohamed Osama. "RF instrumentation and system design for coherent control of anisotropic hyperfine-coupled electron/nuclear spin qubits." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/57778.

Full text
Abstract:
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 81-85).
Coherent control is a fundamental challenge in quantum information processing (QIP). Our system of interest employs a local, isolated electron spin to coherently control nuclear spins. Coupled electron/nuclear spins are a promising candidate for QIP: nuclear spins are used for information storage and computation due to their long coherence times, while the electron is used as a spin actuator for initialization, information transfer, control, and readout. This is the first implementation of a local processor using the central qubit architecture. In this work, a robust integrated system for coherent control of these spins is proposed. The system includes a mechanical and cryogenic system for sample handling, cooling, and suspension; computer software for experimental control and optimal control pulse determination; and a custom-designed pulsed electron spin resonance (ESR) spectrometer with digital signal acquisition and processing. The spectrometer enhances and expands past contributions of J. S. Hodges and J. C. Yang, who built a first generation device capable of amplitude modulated control pulses. The new device features improved noise properties, higher power, better carrier and sideband rejection, and a more customizable analysis via digital signal processing. It also implements both amplitude and phase modulation of control pulses. Further, it introduces the ability to address different resonances in the spin system by switching intermediate frequencies while maintaining phase coherence. Our work concludes with a signal-to-noise ratio (SNR) analysis that demonstrates improvement of more than a factor of 15 compared to the earlier device.
by Mohamed Osama Abutaleb.
S.M.
APA, Harvard, Vancouver, ISO, and other styles
17

Ndiaye, Papa Birame. "Charge and Spin Transport in Spin-orbit Coupled and Topological Systems." Diss., 2017. http://hdl.handle.net/10754/626357.

Full text
Abstract:
In the search for low power operation of microelectronic devices, spin-based solutions have attracted undeniable increasing interest due to their intrinsic magnetic nonvolatility. The ability to electrically manipulate the magnetic order using spin-orbit interaction, associated with the recent emergence of topological spintronics with its promise of highly efficient charge-to-spin conversion in solid state, offer alluring opportunities in terms of system design. Although the related technology is still at its infancy, this thesis intends to contribute to this engaging field by investigating the nature of the charge and spin transport in spin-orbit coupled and topological systems using quantum transport methods. We identified three promising building blocks for next-generation technology, three classes of systems that possibly enhance the spin and charge transport efficiency: (i)- topological insulators, (ii)- spin-orbit coupled magnonic systems, (iii)- topological magnetic textures (skyrmions and 3Q magnetic state). Chapter 2 reviews the basics and essential concepts used throughout the thesis: the spin-orbit coupling, the mathematical notion of topology and its importance in condensed matter physics, then topological magnetism and a zest of magnonics. In Chapter 3, we study the spin-orbit torques at the magnetized interfaces of 3D topological insulators. We demonstrated that their peculiar form, compared to other spin-orbit torques, have important repercussions in terms of magnetization reversal, charge pumping and anisotropic damping. In Chapter 4, we showed that the interplay between magnon current jm and magnetization m in homogeneous ferromagnets with Dzyaloshinskii-Moriya (DM) interaction, produces a field-like torque as well as a damping-like torque. These DM torques mediated by spin wave can tilt the imeaveraged magnetization direction and are similar to Rashba torques for electronic systems. Moreover, the DM torque is more efficient when magnons are thermally driven. Chapters 5 and 6 carry throughout tight-binding studies on the topological charge-spin transport in two-dimensional lattices with ferromagnetic skyrmions and 3Q magnetic structure. We use the Landauer-Buttiker formalism and evaluate the robustness of the topological signals. For the 3Q state, a spin-polarized quantum anomalous Hall state with chiral edge modes, unaffected by deformation and disorder, is reachable in zero net magnetization. We finish with concluding remarks and perspectives.
APA, Harvard, Vancouver, ISO, and other styles
18

Lin, Tzu-Chen, and 林子辰. "Orbital Hall effect in k-linear spin-orbit coupled semiconductor systems." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/98541030215920060904.

Full text
Abstract:
碩士
國立中山大學
物理學系研究所
102
The effective conserved orbital current is composed of the conventional orbital current and the torque orbital current. We use Kubo formula and analytically calculate the intrinsic orbital Hall conductivity in the generic k-linear spin-orbit coupling semiconductor systems. We find that the magnitude of the conventional orbital - Hall conductivity depends on the orientation of the system. Further, when the torque orbital Hall conductivity is considered, the resulting absolute value of the total orbital - Hall conductivity reaches a maximum when the orbital current occurs in the direction with the smallest band splitting.
APA, Harvard, Vancouver, ISO, and other styles
19

Höpfner, Philipp Alexander. "Two-Dimensional Electron Systems at Surfaces — Spin-Orbit Interaction and Electronic Correlations." Doctoral thesis, 2012. https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-78876.

Full text
Abstract:
This thesis addresses three different realizations of a truly two-dimensional electron system (2DES), established at the surface of elemental semiconductors, i.e., Pt/Si(111), Au/Ge(111), and Sn/Si(111). Characteristic features of atomic structures at surfaces have been studied using scanning tunneling microscopy and low energy electron diffraction with special emphasis on Pt deposition onto Si(111). Topographic inspection reveals that Pt atoms agglomerate as trimers, which represent the structural building block of phase-slip domains. Surprisingly, each trimer is rotated by 30° with respect to the substrate, which results in an unexpected symmetry breaking. In turn, this represents a unique example of a chiral structure at a semiconductor surface, and marks Pt/Si(111) as a promising candidate for catalytic processes at the atomic scale. Spin-orbit interactions (SOIs) play a significant role at surfaces involving heavy adatoms. As a result, a lift of the spin degeneracy in the electronic states, termed as Rashba effect, may be observed. A candidate system to exhibit such physics is Au/Ge(111). Its large hexagonal Fermi sheet is suggested to be spin-split by calculations within the density functional theory. Experimental clarification is obtained by exploiting the unique capabilities of three-dimensional spin detection in spin- and angle-resolved photoelectron spectroscopy. Besides verification of the spin splitting, the in-plane components of the spin are shown to possess helical character, while also a prominent rotation out of this plane is observed along straight sections of the Fermi surface. Surprisingly and for the first time in a 2DES, additional in-plane rotations of the spin are revealed close to high symmetry directions. This complex spin pattern must originate from crystalline anisotropies, and it is best described by augmenting the original Rashba model with higher order Dresselhaus-like SOI terms. The alternative use of group-IV adatoms at a significantly reduced coverage drastically changes the basic properties of a 2DES. Electron localization is strongly enhanced, and the ground state characteristics will be dominated by correlation effects then. Sn/Si(111) is scrutinized with this regard. It serves as an ideal realization of a triangular lattice, that inherently suffers from spin frustration. Consequently, long-range magnetic order is prohibited, and the ground state is assumed to be either a spiral antiferromagnetic (AFM) insulator or a spin liquid. Here, the single-particle spectral function is utilized as a fundamental quantity to address the complex interplay of geometric frustration and electronic correlations. In particular, this is achieved by combining the complementary strengths of ab initio local density approximation (LDA) calculations, state-of-the-art angle-resolved photoelectron spectroscopy, and the sophisticated many-body LDA+DCA. In this way, the evolution of a shadow band and a band backfolding incompatible with a spiral AFM order are unveiled. Moreover, beyond nearest-neighbor hopping processes are crucial here, and the spectral features must be attributed to a collinear AFM ground state, contrary to common expectation for a frustrated spin lattice
In der vorliegenden Arbeit werden drei unterschiedliche Beispiele für ein zweidimensionales Elektronensystem (2DES) auf der Oberfläche von Elementhalbleitern behandelt: Pt/Si(111), Au/Ge(111) und Sn/Si(111). Atomare Strukturen und deren spezielle Merkmale wurden mit Rastertunnelmikroskopie (STM) und Elektronenbeugung (LEED) untersucht, wobei ein Schwerpunkt die Abscheidung von Pt auf Si(111) war. Hervorzuheben ist hier die Anordnung von Pt Atomen als Trimere, die das Grundgerüst phasenverschobener Domänen bilden. Interessanterweise sind die Trimere um 30° gegenüber dem Substrat verdreht, was einen unerwarteten Symmetriebruch bedeutet. Daher stellt Pt/Si(111) ein einzigartiges Beispiel einer chiralen Struktur auf Halbleitern dar und könnte außerdem für katalytische Prozesse im atomaren Bereich interessant sein. Die Spin-Bahn Wechselwirkung ist auf Oberflächen, die schwere Elemente enthalten, von großer Bedeutung. Hier kann die Spin-Entartung in den elektronischen Zuständen aufgehoben sein, was als Rashba-Effekt bekannt ist. Rechnungen mittels Dichtefunktionaltheorie (DFT) zeigen, dass eine solche Aufspaltung in der hexagonalen Fermi-Fläche von Au/Ge(111) existiert. Experimentell wurde dies mit dreidimensionaler spin- und winkelaufgelöster Photoelektronenspektroskopie bestätigt. Dabei folgt die planare Spin-Komponente einem kreisförmigen Umlaufsinn, während zudem eine starke Aufrichtung des Spins aus der Ebene hinaus entlang gerader Abschnitte der Fermi-Fläche auftritt. Hierbei wurden zum ersten Mal in einem 2DES zusätzliche Rotationen des planaren Spinanteils in der Oberflächenebene nahe von Hochsymmetrierichtungen nachgewiesen. Dieses komplexe Spin-Muster resultiert aus den kristallinen Anisotropien und kann exzellent modelliert werden, indem das Rashba-Modell um Dresselhaus-artige Spin-Bahn Terme höherer Ordnung erweitert wird. Die alternative Verwendung von Gruppe-IV Adatomen bei einer geringeren Bedeckung ändert die Eigenschaften eines 2DES deutlich. Kennzeichnend sind eine verstärkte Ladungsträger-Lokalisierung und ein von Korrelationen bestimmter Grundzustand. Dabei stellt Sn/Si(111) ein Modell-System dar, das zudem ein spin-frustriertes Dreiecksgitter bildet. In einem solchen fehlt üblicherweise die langreichweitige magnetische Ordnung und der Grundzustand ist entweder ein isolierender spiralförmiger Antiferromagnet (AF) oder eine Spin-Flüssigkeit. Zur Analyse des Wechselspiels von geometrischer Frustration und elektronischen Korrelationen dient die Ein-Teilchen Spektralfunktion als Basisgröße. Dazu wurden die sich ergänzenden Stärken von Bandstruktur-Rechnungen in der lokalen Dichtenäherung (LDA), winkelaufgelöster Photoelektronenspektroskopie und Viel-Teilchen Modellen (hier LDA+DCA) kombiniert. Dabei wurde die Existenz eines Schattenbandes und einer Bandrückfaltung nachgewiesen, wobei letztere einen spiralförmigen AF als Grundzustand ausschließt. Vielmehr sind Hüpfprozesse über den nächsten Nachbarn im Gitter hinaus relevant und die spektralen Merkmale sind, trotz der Spin-Frustration, durch einen langreichweitigen kollinearen AF als Grundzustand erklärbar
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography