Academic literature on the topic 'Spin effect'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Spin effect.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Spin effect"

1

Takahashi, Saburo, and Sadamichi Maekawa. "Spin current, spin accumulation and spin Hall effect." Science and Technology of Advanced Materials 9, no. 1 (January 2008): 014105. http://dx.doi.org/10.1088/1468-6996/9/1/014105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

DYAKONOV, M. I. "SPIN HALL EFFECT." International Journal of Modern Physics B 23, no. 12n13 (May 20, 2009): 2556–65. http://dx.doi.org/10.1142/s0217979209061986.

Full text
Abstract:
A review of the phenomenology of the Spin Hall Effect and related phenomena originating from the coupling between spin and charge currents by spin-orbit interaction is presented. The physical origin of various effects in spin-dependent scattering is demonstrated. A previously unknown feature of spin transport, the swapping of spin currents, is discussed.
APA, Harvard, Vancouver, ISO, and other styles
3

GANICHEV, S. D. "SPIN-GALVANIC EFFECT AND SPIN ORIENTATION BY CURRENT IN NON-MAGNETIC SEMICONDUCTORS." International Journal of Modern Physics B 22, no. 01n02 (January 20, 2008): 113–14. http://dx.doi.org/10.1142/s0217979208046177.

Full text
Abstract:
Lately, there is much interest in the use of the spin of carriers in semiconductor quantum well (QW) structures together with their charge to realize novel concepts like spintronics. The necessary conditions to develop spintronic devices are high spin polarizations in QWs and a large spin-splitting of subbands in k-space. The latter is important for the ability to control spins with an external electric field by the Rashba effect. Significant progress has been achieved recently in generating large spin polarizations, in demonstrating the Rashba splitting and also in using the splitting for manipulating the spins. At the same time as these conditions are fulfilled and spins are polarized in-plane of QW, it has been shown that the spin polarization itself drives a current resulting in the spin galvanic effect [1,2]. The spin-galvanic effect is due to asymmetric spin-flip scattering of spin polarized carriers and it is determined by the process of spin relaxation. In some optical experiments, where circularly polarized radiation is used to orient spins, the photocurrent may represent a sum of spin-galvanic and circular photogalvanic effects effects.2,3 Both effects provide methods to determine spin relaxation times and the relative strength of the Rashba/Dresselhaus spin-splitting in semiconductor quantum wells.2 The inverse spin-galvanic effect4 has also been detected demonstrating that electric current in non-magnetic but gyrotropic QWs results in a non-equilibrium spin orientation. Just recently a first direct experimental proof of this effect was obtained in semiconductor QWs5,6 as well as in strained bulk material.7 Microscopically the effect is a consequence of spin-orbit coupling which lifts the spin-egeneracy in k-space of charge carriers together with spin dependent relaxation. Note from Publisher: This article contains the abstract only.
APA, Harvard, Vancouver, ISO, and other styles
4

Hirsch, J. E. "Spin Hall Effect." Physical Review Letters 83, no. 9 (August 30, 1999): 1834–37. http://dx.doi.org/10.1103/physrevlett.83.1834.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ganichev, S. D., E. L. Ivchenko, V. V. Bel'kov, S. A. Tarasenko, M. Sollinger, D. Weiss, W. Wegscheider, and W. Prettl. "Spin-galvanic effect." Nature 417, no. 6885 (May 2002): 153–56. http://dx.doi.org/10.1038/417153a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Won, Rachel. "Metasurface spin effect." Nature Photonics 7, no. 11 (October 30, 2013): 849. http://dx.doi.org/10.1038/nphoton.2013.302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lee, W. "Spin Holstein effect." Physica B: Condensed Matter 194-196 (February 1994): 1537–38. http://dx.doi.org/10.1016/0921-4526(94)91268-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

SCHLIEMANN, JOHN. "SPIN HALL EFFECT." International Journal of Modern Physics B 20, no. 09 (April 10, 2006): 1015–36. http://dx.doi.org/10.1142/s021797920603370x.

Full text
Abstract:
The intrinsic spin Hall effect in semiconductors has developed to a remarkably lively and rapidly growing branch of research in the field of semiconductor spintronics. In this article we give a pedagogical overview on both theoretical and experimental accomplishments and challenges. Emphasis is put on the the description of the intrinsic mechanisms of spin Hall transport in III-V zinc-blende semiconductors and on the effects of dissipation.
APA, Harvard, Vancouver, ISO, and other styles
9

Liu, S. Y., Norman J. M. Horing, and X. L. Lei. "Inverse spin Hall effect by spin injection." Applied Physics Letters 91, no. 12 (September 17, 2007): 122508. http://dx.doi.org/10.1063/1.2783254.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Niu, Zhi Ping. "Thermoelectric effects in spin field-effect transistors." Physics Letters A 375, no. 36 (August 2011): 3218–22. http://dx.doi.org/10.1016/j.physleta.2011.07.018.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Spin effect"

1

Trifu, Alexandru Vladimir. "Mesures de couples de spin orbite dans des héterostructures métal lourde/ferromagnet à base de Pt, avec anisotropie magnétique planaire." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAY044/document.

Full text
Abstract:
La loi de Moore est basée sur l’observation empirique qu’environ chaque deux années, le nombre de transistors dans des circuits denses intégrées double. Cette tendance s'est bien maintenue au cours des dernières décennies (années 1970 et suivantes). Cependant, la miniaturisation continue des transistors entraîne une augmentation significative des pertes d’énergie par le courant de fuite, ce qui augmente la consommation d'énergie de veille. Cette perte d’énergie est devenue un problème majeur dans la microélectronique pendant les dernières années, ce qui rend plus difficile le développement des nouvelles technologies. L’une des solutions est de placer des éléments mémoire non-volatile dans le puce, qui retiennent la configuration du transistor pendant la mise hors tension et permettent de le restaurer à la mise sous tension. Les Magnetic Random Access Memories (MRAM) sont considérées par l'ITRS comme un candidat crédible pour le remplacement potentiel de SRAM et de DRAM au-delà du nœud technologique de 20 nm. Bien que les exigences de base pour la lecture et l'écriture d'un élément de mémoire unique sont remplies, l'approche actuelle basée sur Spin Torque Transfer (STT) souffre d'un manque inné de la flexibilité. Le courant électrique entraine le retournement de l’aimantation de la couche ferromagnétique libre par le transfert du moment angulaire d’une couche ferromagnétique adjacent. Ainsi les éléments de mémoire basées sur STT ont deux terminaux dont les voies de courant pour « écriture » et « lecture » sont définies par la forme de «pillar». L’optimisation indépendant des paramètres d’écriture et de lecture reste, donc, très difficile. Au même temps, la densité de courant trop haute, nécessaire pour écrire, conduit à la vieillissement prémature du jonction tunnel. En conséquence, l’intégration MRAM dans la technologie du semi-conducteur reste, donc, difficile.Démonstrations récentes de reversement d’aimantation entrainées par l’injection d’un courant planaire dans des heterostructures métal lourd/ferromagnet ont attiré l’attention croissante sur les couples de spin basé sur le transfert du moment angulaire par l’effet Hall de spin et les effets d’interface. Contrairement à STT-MRAM, la SOT-MRAM a trois terminaux, dont les voies de courant pour « écriture » et « lecture » sont indépendantes. Cela permet d’améliorer les paramètres « écriture » et « lecture » de manière indépendante. Pour contrôler et optimiser les SOT il est nécessaire de comprendre très bien leur origine. Cela reste l’une des plus importantes questions dont on n’a pas une réponse définitive. Dans ce contexte, plusieurs études ont conclu sur un modèle basé seulement sur l’effet Hall de spin, en même temps que d’autres ont suggéré un modèle basé sur une contribution combiné de l’effet Hall de spin et l’effet d’interface.L’objectif de cette thèse est de réaliser une étude systématique sur les effets d’interface sur les SOT dans des heterostructures métal lourde/ferromagnet a base de Pt, avec aimantation planaire.Dans ce but, cette thèse explore trois voies différentes. Premièrement nous avons modifié le rapport entre les effets d’interface et les effets bulk en changeant l’épaisseur de la couche de Pt et en suivant l’évolution des SOT. En deuxième nous avons exploré des différents empilements métal lourde/ferromagnet afin d’étudier différentes interfaces. Finalement, nous avons changé les propriétés des interfaces soit par changer la structure cristalline soit par oxydation. La technique de mesure, la méthode d’analyse de données associé et les aspects théoriques nécessaires pour l’interprétation des données sont aussi détaillés dans ce manuscrit
Moore’s law is based on empirical observation and states that every two years approximately, the number of transistors in dense integrated circuits doubles. This trend has held up well in the past several decades (1970s and onwards). However, the continuous miniaturisation of transistors brings about a significant increase in leakage current, which increases the stand-by power consumption. This energy loss has become a major problem in microelectronics during the last several years, making the development of new technologies more difficult. One of the solutions that can address this issue is to place non-volatile memory elements inside the chip, that retain the configuration of the transistor during power-off and allow to restore it at power-on. Magnetic Random Access Memories (MRAM) are considered by the ITRS as a credible candidate for the potential replacement for SRAM and DRAM beyond the 20 nm technological node. Though the basic requirements for reading and writing a single memory element are fulfilled, the present approach based on Spin Transfer Torque (STT) suffers from an innate lack of flexibility. The electric current drives the magnetization switching of a free ferromagnetic layer by transferring angular momentum from an adjacent ferromagnet. Therefore, STT-based memory elements are two terminal devices in which the “pillar” shape defines both the “read” and the “write” current paths. Independent optimisation of the reading and writing parameters is therefore difficult, while the large writing current density injected through the tunnel barrier causes its accelerated ageing, particularly for fast switching. Consequently, the integration of MRAM into semiconductor technology poses significant difficulties.Recent demonstrations of magnetization switching induced by in-plane current injection in heavy metal (HM)/ferromagnet (FM) heterostructures have drawn increasing attention to spin-torques based on orbital-to-spin momentum transfer induced by Spin Hall and interfacial effects (SOTs). Unlike STT-MRAM, the in-plane current injection geometry of SOT-MRAM allows for a three-terminal device which decouples the “read” and “write” mechanisms, allowing the independent tuning of reading and writing parameters. However, an essential first step in order to control and optimise the SOTs for any kind of application, is to better understand their origin. The origin of the SOTs remains one of the most important unanswered questions to date. While some experimental studies suggest a SHE (Spin Hall Effect)-only model for the SOTs, others point towards a combined contribution of the bulk (SHE) and interface (Rashba Effect and Interfacial SHE). At the same time, many studies start with a SHE only hypothesis and do not consider interfacial effects. Furthermore, there are not so many systematic studies on the effects of interfaces. This thesis tries to fill in this gap, by providing a systematic study on the effects of interfaces on the SOTs, in Pt-based NM/FM/HM multilayers with in-plane magnetic anisotropy. For this purpose, this thesis explores three different, but related avenues. First, we changed the interface/bulk effect ratio by modifying the Pt thickness and following the evolution of the SOTs. Second, we explored different HM/FM/NM combinations, in order to study different interfaces. And third, we changed the properties of the interfaces by changing the crystallographic structure of the interface and by oxidation. The measurement technique and associated data analysis method, as well as the theoretical considerations needed for the interpretation of the results are also detailed in this manuscript
APA, Harvard, Vancouver, ISO, and other styles
2

Kalappattil, Vijaysankar. "Spin Seebeck effect and related phenomena in functional magnetic oxides." Scholar Commons, 2018. https://scholarcommons.usf.edu/etd/7632.

Full text
Abstract:
In recent years, Spin Seebeck effect (SSE) emerges as one of the efficient and easiest ways to generate pure spin current for spintronics devices. In this dissertation, we have systematically studied the SSE and related phenomena like spin Hall magneto-resistance (SMR), anomalous Nernst effect (ANE) in functional magnetic oxides for both fundamental understanding of their origins and practical ways to apply into technological devices. The research has been performed on three different systems of topical interest: (i) Y3Fe5O12 (YIG)/Pt and YIG/C60/Pt, (ii) CoFe2O4 (CFO)/Pt and CFO/C60/Pt, and (iii) Nd0.6Sr0.4MnO3 (NSMO). In case of the YIG/Pt structure, we have achieved a new consensus regarding the temperature dependence of the longitudinal SSE (LSSE). For the first time, we have demonstrated the temperature dependence of LSSE in association with the magnetocrystalline anisotropy (HK) and surface perpendicular magnetic anisotropy field (HKS) of YIG in the same YIG/Pt system. We show that on lowering temperature, the sharp drop in LSSE signal (VLSSE) and the sudden increases in HK and HKS at ~175 K are associated with the spin reorientation due to single ion anisotropy of Fe2+ ions. The VLSSE peak at ~75 K is attributed to the HKS and MS (saturation magnetization) whose peaks also occur at the same temperature. The effects of surface and bulk magnetic anisotropies are corroborated with those of thermally excited magnon number and magnon propagation length to satisfactorily explain the temperature dependence of LSSE in the Pt/YIG system. As a new way to reduce conductivity mismatch, promote spin transport, and tune the spin mixing conductance (G) at the YIG/Pt interface, we have deposited an organic semiconductor (OSC), C60, between ferrimagnetic material (FM) and Pt. Transverse susceptibility study on YIG/C60/Pt has shown that the deposition of C60 has reduced HKS at the surface of YIG significantly, due to the hybridization between the dz2 orbital in Fe and C atoms, leading to the overall increase in spin moments and G and consequently the LSSE. Upon lowering temperature from 300 K, we have observed an exponential increase in LSSE at low temperature (a ~800% increment at 150 K) in this system, which is attributed to the exponential increase in the spin diffusion length of C60 at low temperature. On the other hand, similar experiments on CoFe2O4 (CFO)/C60/Pt show a reduction in the LSSE signal at room temperature, due to the hybridization between the dz2 orbital in Co and C atoms that results in the increased magnetic anisotropy. Upon decreasing the temperature below 150 K, we have interestingly observed that LSSE signal from CFO/C60/Pt exceeds that of CFO/Pt and increases remarkably with temperature. This finding confirms the important role played by the spin diffusion length of C60 in enhancing the LSSE. A systematic study of SMR, SSE, and HKS on the YIG/Pt system using the same YIG single crystal has revealed a low-temperature peak at the same temperature (~75 K) for all the phenomena. Given the distinct origins of the SSE and SMR, our observation points to the difference in spin states between the bulk and surface of YIG as the main reason for such a low-temperature peak, and suggests that the ‘magnon phonon drag’ theory developed to explain the temperature-dependent SSE behavior should be adjusted to include this important effect. SSE and ANE studies on NSMO films have revealed the dominance of ANE over SSE in this class of perovskite-structured materials. The substrate-dependent study of the films shows that compressive strain developed due to the large lattice mismatch from LAO gives rise to the enhanced ANE signal. On the same substrate, ANE signal strength increases as the thickness increases. A sign change in ANE has been observed at a particular temperature, which explains that the Anomalous Hall effect (AHE) and ANE in these systems arise due to intrinsic scattering mechanisms. Overall, we have performed the SSE and related studies on the three important classes of functional magnetic oxide materials. We demonstrate the important role of magnetic anisotropy in manipulating the SSE in these systems. With this knowledge, we have been able to design the novel YIG/C60/Pt and CFO/C60/Pt heterostructures that exhibit the giant SSEs. The organic semiconductor C60 has been explored for the first time as a means of controlling pure spin current in inorganic magnetic oxide/metal heterostructures, paying the way for future spintronic materials and devices.
APA, Harvard, Vancouver, ISO, and other styles
3

Cunningham, Elizabeth Sarah. "The effect of spin-spin interactions on nucleon-nucleus scattering." Thesis, University of Surrey, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.527010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Andersson, Sebastian. "Spin-diode effect and thermally controlled switching in magnetic spin-valves." Doctoral thesis, KTH, Nanostrukturfysik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-91300.

Full text
Abstract:
This thesis demonstrates two new device concepts that are based on the tunneling and giant magnetoresistance effects. The first is a semiconductor-free asymmetric magnetic double tunnel junction that is shown to work as a diode, while at the same time exhibiting a record high magnetoresistance. It is experimentally verified that a diode effect, with a rectification ratio of at least 100, can be obtained in this type of system, and that a negative magnetoresistance of nearly 4000% can be measured at low temperature. The large magnetoresistance is attributed to spin resonant tunneling, where the parallel and antiparallel orientation of the magnetic moments shifts the energy levels in the middle electrode, thereby changing their alignment with the conduction band in the outer electrodes. This resonant tunneling can be useful when scaling down magnetic random access memory; eliminating the need to use external diodes or transistors in series with each bit. The second device concept is a thermally controlled spin-switch; a novel way to control the free-layer switching and magnetoresistance in spin-valves. By exchange coupling two ferromagnetic films through a weakly ferromagnetic Ni-Cu alloy, the coupling is controlled by changes in temperature. At room temperature, the alloy is weakly ferromagnetic and the two films are exchange coupled through the alloy. At a temperature higher than the Curie point, the alloy is paramagnetic and the two strongly ferromagnetic films decouple. Using this technique, the read out signal from a giant magnetoresistance element is controlled using both external heating and internal Joule heating. No degradation of device performance upon thermal cycling is observed. The change in temperature for a full free-layer reversal is shown to be 35 degrees Celsius for the present Ni-Cu alloy. It is predicted that this type of switching theoretically can lead to high frequency oscillations in current, voltage, and temperature, where the frequency is controlled by an external inductor or capacitor. This can prove to be useful for applications such as voltage controlled oscillators in, for example, frequency synthesizers and function generators. Several ways to optimize the thermally controlled spin switch are discussed and conceptually demonstrated with experiments.
QC 20120313
APA, Harvard, Vancouver, ISO, and other styles
5

VENKATRAMAN, LAKSHMI. "A STUDY OF COHERENT SPIN TRANSPORT THROUGH SPIN FIELD EFFECT TRANSISTORS." University of Cincinnati / OhioLINK, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1122138803.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Noel, Paul. "Dynamical spin injection and spin to charge current conversion in oxide-based Rashba interfaces and topological insulators." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAY062.

Full text
Abstract:
L'utilisation de matériaux ferromagnétiques a longtemps été l'unique méthode pour détecter et produire des courants de spin. Cependant, depuis le milieu des années 2000 des méthodes alternatives ont été proposées. Un champ émergent de la spintronique, appelé spin-orbitronique, s'attelle à l'utilisation du couplage spin orbite pour détecter et produire des courants de spin en l'absence de matériaux ferromagnétiques. Une interconversion efficace entre courant de spin et courant de charge a pu être obtenues à l'aide de l'effet Hall de spin dans les métaux lourds tels que le Platine ou le Tantale. Une telle conversion peut aussi être obtenue en utilisant l'effet Edelstein dans les interfaces Rashba et les isolants topologiques.La conversion de courant de spin à courant de charge par effet Hall de spin et effet Edelstein inverse peut être étudiée par la méthode dite du pompage de spin par résonance ferromagnétique. Ce manuscrit présente ces différents effets de conversion ainsi que la technique utilisée basée sur une mesure électrique effectuée à la résonance ferromagnétique. Y sont présentés des résultats de conversion spin charge dans les métaux, les interfaces Rashba à base d'oxydes ainsi que dans les isolants topologiques. Parmi ces systèmes nous avons montré la possibilité de moduler à l'aide d'une grille électrostatique la conversion spin charge dans un gaz d'électron bidimensionel obtenu à la surface de l'oxyde SrTiO3. De plus il est possible de moduler, de façon rémanente, la conversion dans SrTiO3 grâce à la ferroélectricité obtenue à des températures cryogéniques.Parmi les autres systèmes étudiés les isolants topologiques HgTe et Sb2Te3 présentent des propriétés de conversion spin vers charge prometteuses à température ambiante. En particulier dans le cas de HgTe, en utilisant une couche de protection de HgCdTe nous avons pu obtenir des niveaux de conversion un ordre de grandeur plus élevé que dans le Platine.Ces résultats suggèrent que les gaz d'électrons bidimensionnels aux interfaces d'oxydes ainsi que les isolants topologiques sont des systèmes prometteurs pour la détections de courants de spin pour des applications au delà de la logique CMOS
Using a ferromagnetic layer has been the first method to obtain and detect spin currents, allowing to modify the magnetization state of an adjacent layer using spin transfer torque. However, in recent years, an alternative way to manipulate spin currents has been proposed. An emerging field of spintronics, called spin-orbitronics, exploits the interplay between charge and spin currents enabled by the spin-orbit coupling (SOC) in non-magnetic systems. An efficient current conversion can be obtained through the Spin Hall Effect in heavy metals such as Platinum or Tantalum. The conversion can also be obtained by exploiting the Edelstein Effect in Rashba interfaces and topological insulators.The spin to charge conversion by means of Inverse Edelstein Effect and inverse Spin Hall Effect can be studied by the spin pumping by ferromagnetic resonance technique. This manuscript present these two conversion mechanisms as well as the technique that was used to measure them, which is based on an electrical detection of the ferromagnetic resonance. Results on the spin to charge current conversion obtained in metals, oxide-based Rashba interfaces and topological insulators will be presented. Among these systems we have demonstrated the possibility to tune the conversion efficiency by using a gate voltage in a two-dimensional electron gas at the surface of an oxide SrTiO3. Moreover it is possible to tune this effect, a remanent way, thanks to the ferroelectricity obtained in SrTiO3 at cryogenic temperatures.Other studied systems such as topological insulators HgTe and Sb2Te3 also have promising properties for an efficient spin to charge current conversion at room temperature. In particular we showed than in HgTe by using a thin HgCdTe protective layer, it is possible to obtain a spin to charge current conversion efficiency one order of magnitude larger than in Pt.These results suggest that stwo dimensional electron gases at oxide interfaces and topological insulators have a strong potential for the efficient detection of spin currents for possible beyond CMOS applications
APA, Harvard, Vancouver, ISO, and other styles
7

Zhang, Wenxian. "Spin-1 atomic condensates in magnetic fields." Diss., Available online, Georgia Institute of Technology, 2005, 2005. http://etd.gatech.edu/theses/available/etd-04292005-151243/.

Full text
Abstract:
Thesis (Ph. D.)--Physics, Georgia Institute of Technology, 2006.
Z. John Zhang, Committee Member ; Mei-Yin Chou, Committee Member ; Chandra Raman, Committee Member ; Michael S. Chapman, Committee Member ; Li You, Committee Chair. Vita. Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
8

Guillet, Thomas. "Tuning the spin-orbit coupling in Ge for spin generation, detection and manipulation." Thesis, Université Grenoble Alpes, 2020. http://www.theses.fr/2020GRALY033.

Full text
Abstract:
L'un des principaux objectifs de la spintronique est de réaliser le transistor à spin et pour y parvenir, il faut mettre en œuvre avec succès une plateforme où les courants de spin peuvent être facilement injectés, détectés et manipulés à température ambiante. Dans cette optique, ce travail de thèse montre que le germanium est un très bon candidat grâce à ses propriétés optiques et de spin ainsi qu'à sa compatibilité avec les nanotechnologies à base de silicium.Au fil des années, plusieurs schémas d'injection et de détection de spin ont été réalisés dans Ge, mais la manipulation électrique de l'orientation du spin est toujours une pièce manquante. Dans cette thèse, nous nous sommes concentrés sur deux approches afin de manipuler l'interaction spin-orbite (SOI) dans le germanium. Les deux s'appuient sur l'absence de symétrie d'inversion structurale et le couplage spin-orbite aux surfaces et aux interfaces avec le germanium (111). Tout d'abord, nous avons effectué la croissance épitaxiale de l'isolant topologique Bi2Se3 sur Ge (111). Après avoir caractérisé les propriétés structurales et électriques de l'hétérostructure Bi2Se3/ Ge, nous avons développé une méthode originale pour sonder la conversion courant de spin-courant de charge à l'interface entre Bi2Se3 et Ge en tirant profit des propriétés optiques du Ge. Les résultats ont montré que l'hybridation entre les états de surface de Bi2Se3 et du Ge pourrait permettre la manipulation électrique de l'orientation du spin dans un transistor.La seconde approche consiste à exploiter le SOI intrinsèque de Ge (111). J'ai étudié les propriétés électriques d'un film mince de Ge (111) et découvert que le passage du courant dans des états de sous-surface où l'interaction Rashba est forte, induit un effet de magnétorésistance très particulier que nous avons appelé la magnétorésistance Rashba unidirectionnelle. Elle est due à l'interaction entre le champ magnétique appliqué extérieur et le pseudo champ magnétique induit par le courant appliquée dans les états polarisés en spin du Ge (111). La forte intensité et modularité de cet effet nous mène à penser que ces états pourraient être également mis à profit dans la réalisation d'un transistor à spin tout semi-conducteur.Parallèlement, j'ai intégré des jonctions tunnel magnétiques à anisotropie perpendiculaire à base de multicouches (Co/Pt) sur la plateforme de Ge (111). J'ai développé une technique hybride électro-optique originale basée sur une détection électrique du dichroïsme magnétique circulaire du (Co/Pt) pour faire de l’imagerie magnétique. Ces jonctions tunnel magnétiques ont ensuite été utilisées pour effectuer la génération et la détection de spin dans un dispositif de type vanne de spin latérale. L'anisotropie magnétique perpendiculaire permet de générer un courant de spin avec une orientation de spin perpendiculaire au plan de l'échantillon.Enfin, j'ai rassemblé tous ces éléments développés pendant ma thèse dans un dispositif ultime: un prototype de transistor à spin où une accumulation de spin peut être générée et détectée optiquement et/ou électriquement, en utilisant l'orientation optique de spin dans le germanium ou les jonctions tunnel magnétiques
One of the main goals of spintronics is to achieve the spin transistor operation and for this purpose, one has to successfully implement a platform where spin currents can be easily injected, detected and manipulated at room temperature. In this sense, this thesis work shows that Germanium is a very good candidate thanks to its unique spin and optical properties as well as its compatibility with Silicon-based nanotechnology.Throughout the years, several spin injection and detection schemes were achieved in Ge but the electrical manipulation of the spin orientation is still a missing part. Recently we focused on two approaches in order to tune the spin-orbit interaction (SOI) in a Ge-based platform. Both rely on the structural inversion asymmetry and the spin-orbit coupling at surfaces and interfaces with germanium (111). First, we performed the epitaxial growth of the topological insulator (TI) Bi2Se3 on Ge (111). After characterizing the structural and electrical properties of the Bi2Se3/Ge heterostructure, we developed an original method to probe the spin-to-charge conversion at the interface between Bi2Se3and Ge by taking advantage of the Ge optical properties. The results showed that the hybridization between the Ge and TI surface states could pave the way for implementing an efficient spin manipulation architecture.The latter approach is to exploit the intrinsic SOI of Ge (111). By investigating the electrical properties of a thin Ge(111) film epitaxially grown on Si(111), we found a large unidirectional Rashba magnetoresistance, which we ascribe to the interplay between the externally applied magnetic field and the current-induced pseudo-magnetic field in the spin-splitted subsurface states of Ge (111). The unusual strength and tunability of this UMR effect open the door towards spin manipulation with electric fields in an all-semiconductor technology platform.In a last step, I integrated perpendicularly magnetized (Co/Pt) multilayers-based magnetic tunnel junctions on the Ge (111) platform. I developed an original electro-optical hybrid technique to detect electrically the magnetic circular dichroism in (Co/Pt) and perform magnetic imagingThese MTJs were then used to perform spin injection and detection in a lateral spin valve device. The perpendicular magnetic anisotropy (PMA) allowed to generate spin currents with the spin oriented perpendicular to the sample plane.Finally, I assembled all these building blocks that were studied during my PhD work to build a prototypical spin transistor. The spin accumulation was generated either optically or electrically, using optical spin orientation in germanium or the injection from the magnetic tunnel junction
APA, Harvard, Vancouver, ISO, and other styles
9

衛翰戈 and Hon-gor Wai. "The covalency effect in spin interactions." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1986. http://hub.hku.hk/bib/B31207479.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Xiao, Zhicheng. "Spin Hall effect of vortex beams." University of Dayton / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1417816117.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Spin effect"

1

Teana, Francesco La. La nascita dello spin. Napoli: Bibliopolis, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wolf, Michael Johannes. Spin Transport and Proximity Effect in Nanoscale Superconductor Hybrid Structures. [S.l: s.n.], 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Buchachenko, A. L. Magnetic isotope effect in chemistry and biochemistry. Hauppauge, NY: Nova Science Publishers, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Allsworth, Max Daniel. The effect of spin-polarised electrons on superconductivity in a ferromagnet superconductor bilayer. Birmingham: University of Birmingham, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Salikhov, K. M. Magnetic isotope effect in radical reactions: An introduction. Wien: Springer, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Magnetic Compton scattering: An application to spin-dependent momentum distribution in RFe₂ compounds. Białystok [Poland]: Dział Wydawnictw Filii Uniwersytetu Warszawskiego w Białymstoku, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Takayama, Akari. High-Resolution Spin-Resolved Photoemission Spectrometer and the Rashba Effect in Bismuth Thin Films. Tokyo: Springer Japan, 2015. http://dx.doi.org/10.1007/978-4-431-55028-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Free radicals: Biology and detection by spin trapping. New York: Oxford University Press, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Stough, H. Paul. Flight investigation of the effect of tail configuration on stall, spin, and recovery characteristics of a low-wing general aviation research airplane. Hampton, Va: Langley Research Center, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Stough, H. Paul. Flight investigation of the effect of tail configuration on stal, spin, and recovery characteristics of a low-wing general aviation research airplane. [Washington, DC]: National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Spin effect"

1

Murakami, Shuichi. "Spin Hall Effect and Inverse Spin Hall Effect." In Spintronics for Next Generation Innovative Devices, 77–98. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781118751886.ch4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dyakonov, M. I. "Spin Hall Effect." In Future Trends in Microelectronics, 251–63. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470649343.ch21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Althammer, Matthias. "Spin Hall Effect." In Springer Series in Solid-State Sciences, 209–37. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-97334-0_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Xiao, Jiang. "Spin Seebeck Effect." In Spintronics for Next Generation Innovative Devices, 125–40. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781118751886.ch7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dyakonov, M. I., and A. V. Khaetskii. "Spin Hall Effect." In Springer Series in Solid-State Sciences, 211–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-78820-1_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Dyakonov, M. I., and A. V. Khaetskii. "Spin Hall Effect." In Springer Series in Solid-State Sciences, 241–80. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65436-2_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Adachi, Hiroto, and Sadamichi Maekawa. "Spin Waves, Spin Currents and Spin Seebeck Effect." In Topics in Applied Physics, 119–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-30247-3_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yoshioka, Daijiro. "Spin and Pseudospin Freedom." In The Quantum Hall Effect, 117–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-05016-3_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sugahara, Satoshi, Yota Takamura, Yusuke Shuto, and Shuu’ichirou Yamamoto. "Field-Effect Spin-Transistors." In Handbook of Spintronics, 1243–79. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-007-6892-5_44.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Shen, Shun-Qing. "Quantum Spin Hall Effect." In Springer Series in Solid-State Sciences, 85–112. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-32858-9_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Spin effect"

1

Dyakonov, M. I. "Spin Hall Effect." In NanoScience + Engineering, edited by Manijeh Razeghi, Henri-Jean M. Drouhin, and Jean-Eric Wegrowe. SPIE, 2008. http://dx.doi.org/10.1117/12.798110.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Maeda, Yonezo. "Metallomesogens with Spin-Transition Phenomena." In INDUSTRIAL APPLICATIONS OF THE MOSSBAUER EFFECT: International Symposium on the Industrial Applications of the Mossbauer Effect. AIP, 2005. http://dx.doi.org/10.1063/1.1923666.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

ZHANG, SHOUCHENG. "QUANTUM SPIN HALL EFFECT." In Statistical Physics, High Energy, Condensed Matter and Mathematical Physics - The Conference in Honor of C. N. Yang'S 85th Birthday. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812794185_0037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chen, Zhizhong, and Jian Shi. "Persistent Spin Helix-Based Spin Field Effect Transistor." In 2021 5th IEEE Electron Devices Technology & Manufacturing Conference (EDTM). IEEE, 2021. http://dx.doi.org/10.1109/edtm50988.2021.9420827.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Peng, Liang, Hang Ren, Yachao Liu, Tianwei Lan, Kuiwen Xu, Dexin Ye, Hongbo Sun, Su Xu, Hongsheng Chen, and Shuang Zhang. "Spin-Hall effect induced by transverse optical spin." In Novel Optical Materials and Applications. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/noma.2022.now2e.4.

Full text
Abstract:
We demonstrate spin-Hall effect for transversely spinning light at the interface of a metamaterial. The beam shift takes place in the plane of incidence, in contrast to the conventional spin-Hall effect of light.
APA, Harvard, Vancouver, ISO, and other styles
6

Cosset-Cheneau, Maxen, Sara Varotto, Paul Noël, Cécile Grèzes, Van Tuong Pham, Yu Fu, Patrick Warin, et al. "Spin Hall effect and spin absorption in ferromagnetic materials." In Spintronics XIV, edited by Henri-Jean M. Drouhin, Jean-Eric Wegrowe, and Manijeh Razeghi. SPIE, 2021. http://dx.doi.org/10.1117/12.2594618.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zhang, S. "The intrinsic spin Hall effect." In Proceedings. 2005 International Conference on MEMS, NANO and Smart Systems. IEEE, 2005. http://dx.doi.org/10.1109/icmens.2005.120.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Schapers, Thomas. "Investigations towards Semiconductor/Ferromagnet Spin Transistors: Rashba Effect, Local Hall Effect and Spin Injection." In 2002 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2002. http://dx.doi.org/10.7567/ssdm.2002.f-8-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Negi, Devendra. "Spin-entropy induced thermopower and spin-blockade effect in CoO." In European Microscopy Congress 2020. Royal Microscopical Society, 2021. http://dx.doi.org/10.22443/rms.emc2020.431.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

MacKay, W. W., Donald G. Crabb, Yelena Prok, Matt Poelker, Simonetta Liuti, Donal B. Day, and Xiaochao Zheng. "Effect of Various Errors on the Spin Tune and Stable Spin Axis." In SPIN PHYSICS: 18th International Spin Physics Symposium. AIP, 2009. http://dx.doi.org/10.1063/1.3215756.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Spin effect"

1

MacKay, W. W. Effect of Various Errors on the Spin Tune and Stable Spin Axis. Office of Scientific and Technical Information (OSTI), January 2009. http://dx.doi.org/10.2172/950006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

MacKay W. W. Effect of various errors on the spin tune and stable spin axis. Office of Scientific and Technical Information (OSTI), January 2009. http://dx.doi.org/10.2172/1061941.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bernevig, B. Andrei, and Shou-Cheng Zhang. Intrinsic Spin-Hall Effect in n-Doped Bulk GaAs. Office of Scientific and Technical Information (OSTI), January 2010. http://dx.doi.org/10.2172/970443.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Feng, J., A. G. MacDiarmid, and A. J. Epstein. Conformation of Polyaniline: Effect of Mechanical Shaking and Spin Casting. Fort Belvoir, VA: Defense Technical Information Center, September 1997. http://dx.doi.org/10.21236/ada330203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Shitade, Atsuo. Quantum spin Hall effect in a transition metal oxide Na2IrO3. Office of Scientific and Technical Information (OSTI), May 2010. http://dx.doi.org/10.2172/979955.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Syphers M. J. and A. Jain. Effect on Spin of Systematic Twist iin RHIC Dipole Magnets. Office of Scientific and Technical Information (OSTI), September 1998. http://dx.doi.org/10.2172/1149858.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Liu, Baoli. Experimental Observation of the Inverse Spin Hall Effect at Room Temperature. Office of Scientific and Technical Information (OSTI), March 2010. http://dx.doi.org/10.2172/973794.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Haigh, Julian. Investigation in to the Effect of Spin Locking on Contrast Agent Relaxivity. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.2493.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wang, Dexin, Cathy Nordman, Zhenghong Qian, James M. Daughton, and John Myers. Magnetostriction Effect of Amorphous CoFeB Thin Films and Application in Spin Dependent Tunnel Junctions. Fort Belvoir, VA: Defense Technical Information Center, January 2004. http://dx.doi.org/10.21236/ada452116.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Luccio A. U. Spin Tracking in RHIC with one Full Snake and one Partial Snake. Effect of Orbit Harmonics. Office of Scientific and Technical Information (OSTI), June 2003. http://dx.doi.org/10.2172/1061693.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography