Academic literature on the topic 'Spin currents'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Spin currents.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Spin currents"
Sonin, E. B. "Spin currents and spin superfluidity." Advances in Physics 59, no. 3 (April 15, 2010): 181–255. http://dx.doi.org/10.1080/00018731003739943.
Full textŽutić, Igor, and Hanan Dery. "Taming spin currents." Nature Materials 10, no. 9 (August 23, 2011): 647–48. http://dx.doi.org/10.1038/nmat3097.
Full textHoffmann, Axel. "Pure spin-currents." physica status solidi (c) 4, no. 11 (November 2007): 4236–41. http://dx.doi.org/10.1002/pssc.200775942.
Full textPareek, T. P. "Unified quaternionic description of charge and spin transport and intrinsic nonlinearity of spin currents." International Journal of Modern Physics B 32, no. 26 (October 18, 2018): 1850292. http://dx.doi.org/10.1142/s0217979218502922.
Full textAhn, Changhyun, Hyunsu Kim, and Jinsub Paeng. "Three-point functions in the 𝒩 = 4 orthogonal coset theory." International Journal of Modern Physics A 31, no. 16 (June 9, 2016): 1650090. http://dx.doi.org/10.1142/s0217751x16500901.
Full textMewes, Claudia K. A. "Spin currents go nuclear." Nature Physics 15, no. 1 (October 22, 2018): 8–9. http://dx.doi.org/10.1038/s41567-018-0335-1.
Full textOng, N. P. "Recipe for spin currents." Nature 455, no. 7214 (October 2008): 741–43. http://dx.doi.org/10.1038/455741a.
Full textRebei, A., W. N. G. Hitchon, and R. W. Chantrell. "Spin currents in ferromagnets." Physics Letters A 346, no. 5-6 (October 2005): 371–77. http://dx.doi.org/10.1016/j.physleta.2005.07.058.
Full textNguyen, Hoang Yen Thi, Sung-Jung Joo, Kuyoul Jung, and Kyung-Ho Shin. "Field Dependence of Switching Currents in an Exchange Biased Spin Valve." Journal of Nanoscience and Nanotechnology 7, no. 1 (January 1, 2007): 344–49. http://dx.doi.org/10.1166/jnn.2007.18033.
Full textRybachuk, E. V. "CONSISTENT MODEL FOR INTERACTIONS OF HIGHER-SPIN FERMIONS WITH 0- AND 1/2 - SPIN PARTICLES AND πN - SCATTERING." East European Journal of Physics 3, no. 1 (April 23, 2016): 23–34. http://dx.doi.org/10.26565/2312-4334-2016-1-02.
Full textDissertations / Theses on the topic "Spin currents"
Wittmann, Angela Dorothea Anshi. "Spin currents in organic semiconductors." Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/290148.
Full textDíaz, Santiago Sebastián Alejandro. "Controlling Spin Interactions With Electric Currents." Tesis, Universidad de Chile, 2010. http://www.repositorio.uchile.cl/handle/2250/102410.
Full textWulfhorst, Jeannette [Verfasser]. "Nonlocal spin currents in mesoscopic metallic spin valves / Jeannette Wulfhorst." München : Verlag Dr. Hut, 2012. http://d-nb.info/1028783183/34.
Full textHahn, Christian. "Magnetization dynamics and pure spin currents in YIG/normal-metal systems." Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066657.
Full textSpintronics aims at designing electronic devices which capitalize on the spin degree of freedom to transport information using spin currents. In order to incorporate spin currents intoelectronic devices, it is particularly interesting to study the interconversion from a spin current, the motion of spin angular momentum, to a charge current (Spin Hall Effect) as well as the transfer of spin angular momentum between the conduction electrons of a normal metal (NM) and the magnetization of a ferromagnet (FM) (Spin Transfer Torque/Spin Pumping). To investigate the interplay of those effects this thesis studies hybrid systems of the ferromagnetic insulator Yttrium Iron Garnet and normal metals with large spin-orbit coupling, a prerequisite for spin Hall e_ect. We study spin pumping and spin hall magnetoresistance in YIGjPt and YIGjTa bi-layers using extended _lms of 200 nm thick YIG, grown by liquid phase epitaxy. The inverse spin Hall voltages in Pt and Ta confirm the opposite signs of spin Hall angles in these two materials. Moreover, from the dependence of the inverse spin Hall voltage on the Ta thickness, we constrain the spin di_usion length in Ta. Both the YIGjPt and YIGjTa systems display a similar variation of resistance upon magnetic eld orientation, the spin Hall magnetoresistance. To study the inuence of interfacial spin pumping and a possible reverse e_ect, it is desirable to work with thin _lm thicknesses. A high quality 20 nm thick YIG _lm was grown by pulsed laser deposition, showing a damping similar to that of bulk YIG. We use nano-lithography to pattern series of YIG(20nm) and YIG(20nm)jPt(13nm) discs with diameters between 300 and 700 nm. The ferromagnetic resonance (FMR) spectra of the individual sub-micron sized samples are recorded through magnetic resonance force microscopy. . Passing dc-current through micron sized YIGjPt disks reveal a variation of the FMR linewidth consistent with the geometry and amplitude of the expected SHE transfer torque. In the absence of exciting microwave _elds, a variation in the magnetization is detected when the dc-current reaches the expected threshold for auto oscillations
Savero, Torres Williams. "Interplay between pure spin currents and magnetic domain walls." Thesis, Grenoble, 2014. http://www.theses.fr/2014GRENY084.
Full textThis thesis is based on the study of the interplay between pure spin currents and magnetic domains walls. This study has been divided in four chapters. In the first part, we provides a detailed explanation of the spin-transport in metallic structures by using three approaches. The second chapter concerns to the use of pure spin currents to induce DW motion in lateral spin valves. The third and four chapter, is mainly focused on the use of DWs for the efficient injection and detection of pure spin currents in lateral spin valves and cross shaped geometries
Zhang, S., and A. Fert. "Conversion between spin and charge currents with topological insulators." AMER PHYSICAL SOC, 2016. http://hdl.handle.net/10150/622358.
Full textStagraczyński, Stefan Piotr [Verfasser]. "Magnetic dynamics and spin currents in quantum spin systems strongly coupled to environment / Stefan Piotr Stagraczyński." Halle, 2017. http://d-nb.info/114951289X/34.
Full textStatuto, Nahuel. "Magnetic Excitations Induced by Surface Acoustic Waves and Spin-Polarized Currents." Doctoral thesis, Universitat de Barcelona, 2019. http://hdl.handle.net/10803/667710.
Full textLa tesis gira en torno al estudio de la dinámica de la magnetización en capas y multicapas delgadas ferromagnéticas. Sin embargo, los sistemas estudiados son diversos y pueden clasificarse por la técnica utilizada para la excitación de la dinámica de la magnetización. Este hecho queda plasmado en la estructura de la tesis que consta de una introducción general, Capítulo 1, y luego de dos partes independientes y separadas, a su vez, en varios capítulos. El orden en la exposición de los resultados pretende seguir una linea lógica para su compresión. Como contrapartida, los resultados son presentados sin seguir un orden cronológico. La primera parte de la tesis estudia la dinámica de la magnetización inducida por la aplicación de tensión dinámicamente sobre el material magnético, que al deformarlo induce en él un cambio en la dirección e intensidad de la anisotropía magnética. Por lo tanto, los estados magnéticos se ven afectados por esta variación y cambian para alinearse con la nueva dirección de anisotropía magnética induciendo dinámica en la magnetización. La segunda parte de la tesis estudia la dinámica de la magnetización inducida por la aplicación de corriente polarizada a través del material magnético que intercambia momento magnético con los espines magnéticos de los electrones de la corriente. Para que esta transferencia de momento magnético sea efectiva la densidad de corriente ha de ser elevada (~106-107 A/cm2) y para conseguirla se reduce hasta los 50-200 nm el diámetro del contacto eléctrico. Los materiales ferromagnéticos con grosor nanométrico usados en esta tesis son materiales magnéticos usados ampliamente en la investigación. Aparte del interés puramente científico, estos materiales son potencialmente aplicables en telecomunicaciones o tecnologías del almacenaje y transmisión de información a altas velocidades.
Fransson, Jonas. "Non-Orthogonality and Electron Correlations in Nanotransport : Spin- and Time-Dependent Currents." Doctoral thesis, Uppsala University, Department of Physics, 2002. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-2687.
Full textThe concept of the transfer Hamiltonian formalism has been reconsidered and generalized to include the non-orthogonality between the electron states in an interacting region, e.g. quantum dot (QD), and the states in the conduction bands in the attached contacts. The electron correlations in the QD are described by means of a diagram technique for Hubbard operator Green functions for non-equilibrium states.
It is shown that the non-orthogonality between the electrons states in the contacts and the QD is reflected in the anti-commutation relations for the field operators of the subsystems. The derived forumla for the current contains corrections from the overlap of the same order as the widely used conventional tunneling coefficients.
It is also shown that kinematic interactions between the QD states and the electrons in the contacts, renormalizes the QD energies in a spin-dependent fashion. The structure of the renormalization provides an opportunity to include a spin splitting of the QD levels by polarizing the conduction bands in the contacts and/or imposing different hybridizations between the states in the contacts and the QD for the two spin channels. This leads to a substantial amplification of the spin polarization in the current, suggesting applications in magnetic sensors and spin-filters.
Caruso, Laure. "Giant magnetoresistance based sensors for local magnetic detection of neuronal currents." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066272/document.
Full textUnderstanding brain activity requires simultaneous recordings across spatial scales, from single-cell to brain-wide network. Measurements provide insights about the relationship between structures, functions and dynamics in neuronal circuits and assemblies. Electrophysiological techniques carry crucial information about the electrical activity within neurons. Locally probing the magnetic signature of this activity gives direct information about neuronal currents and the vectorial nature of magnetic measurements provides the directionality of neuronal ionic flux without disturbing it. Noticeably, the magnetic signature induced by the neuronal currents is accessible through Magneto EncephaloGraphy (MEG), which provides neuromagnetic field mapping outside the head using Superconducting QUantum Interference Devices (SQUIDs). However, local measurements of neuronal currents at cellular scale requires small and very sensitive devices. The purpose of the present thesis work is to develop a novel tool for neurophysiology, the magnetic equivalent of electrodes, named “magnetrodes”, are able to detect the local neuronal currents through magnetic detection. Recent advances in spin electronics have given rise to Giant MagnetoResistance (GMR) based sensors, which offer the possibility to be miniaturized and sensitive enough to detect very weak magnetic fields like those emitted by neurons at local scale (in the picotesla to nanotesla range). Two kinds of GMR based sensors have been developed throughout this work, one of these are planar probes dedicated to surface measurements (hippocampus slice, muscle or cortex), the other kind are sharp probes, designed in a needle-shape to easily penetrate the tissues and locally record the neuromagnetic fields. Three experiments have been performed, either in vitro and in vivo. In the first experiment, an Action Potential has been detected magnetically in vitro by means of planar GMR sensors, resulting from axial currents within a mouse muscle. The second in vitro experiment analyzed the hippocampal mouse brain slices, where both planar and sharp probes were tested giving some preliminary results. Lastly we performed the first magnetic recordings in vivo on cat's cerebral cortex, displaying stimulus-induced cortical responses of 10-20 nT pp . These results pave the way for local magnetophysiology, a novel approach of brain exploration and interfacing
Books on the topic "Spin currents"
M, Aspden R., and Porter R. W, eds. Lumbar spine disorders: Current concepts. Singapore: World Scientific, 1995.
Find full textM, Bannister Carys, Tew Brian, and Spastics Society, eds. Current concepts in spina bifida and hydrocephalus. [London]: MacKeith Press, 1991.
Find full textM, Bannister Carys, and Tew Brian, eds. Current concepts in spina bifida and hydrocephalus. London: Mac Keith Press, 1991.
Find full textOrmazabal, Gaston S. Single pion production in charged and neutral current neutrino interactions. Irvington-on-Hudson, N.Y: Nevis Laboratories, Columbia University, Physics Department, 1985.
Find full textCornella, Alfons. Business info-structure in Spain: Current situation and forthcoming challenges for business information in Spain. Barcelona: ESADE, 1993.
Find full textG, Fessler Richard, and Haid Regis W, eds. Current techniques in spinal stabilization. New York: McGraw-Hill, Health Professions Division, 1996.
Find full textWilliam, Foster David, Altamiranda Daniel, and Urioste-Azcorra Carmen, eds. Spanish literature: Current debates on Hispanism. New York: Garland Pub., 2001.
Find full textSupin-ryū to toporojikaru zetsuentai: Ryōshi bussei to supintoronikusu no hatten = Spin current and topological insulators. Tōkyō-to Bunkyō-ku: Kyōritsu Shuppan, 2014.
Find full textGifra Adroher, Pere, and Jacqueline Hurtley. Hannah Lynch and Spain. Venice: Edizioni Ca' Foscari, 2018. http://dx.doi.org/10.30687/978-88-6969-292-5.
Full textP, Corbin Terry, ed. Emerging spine surgery technologies: Current evidence and framework for evaluation of new technology. St. Louis, Mo: Quality Medical Pub., 2006.
Find full textBook chapters on the topic "Spin currents"
Adachi, Hiroto, and Sadamichi Maekawa. "Spin Waves, Spin Currents and Spin Seebeck Effect." In Topics in Applied Physics, 119–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-30247-3_9.
Full textLoss, Daniel, Paul Goldbart, and A. V. Balatsky. "Persistent Spin Currents in Nanostructures." In Granular Nanoelectronics, 539–42. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-3689-9_42.
Full textLambiase, Gaetano, and Giorgio Papini. "Radiative Processes, Spin Currents, Vortices." In The Interaction of Spin with Gravity in Particle Physics, 113–35. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-84771-5_6.
Full textVan Dyke, John S. "Charge and Spin Currents in Nanoscale Topological Insulators." In Springer Theses, 77–96. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-89938-1_6.
Full textSrinivasan, Srikant, Vinh Diep, Behtash Behin-Aein, Angik Sarkar, and Supriyo Datta. "Modeling Multi-Magnet Networks Interacting via Spin Currents." In Handbook of Spintronics, 1281–335. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-007-6892-5_46.
Full textSrinivasan, Srikant, Vinh Diep, Behtash Behin-Aein, Angik Sarkar, and Supriyo Datta. "Modeling Multi-Magnet Networks Interacting via Spin Currents." In Handbook of Spintronics, 1–49. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-007-7604-3_46-1.
Full textKrivoruchenko, Mikhail I. "Transitional Currents for Massive Spin One-Half Particles." In Quantization and Infinite-Dimensional Systems, 257–63. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2564-6_29.
Full textKeller, Ole. "Spin-1/2 Currents: Spatial Photon Localization in Emission from a Pure Spin Transition." In Quantum Theory of Near-Field Electrodynamics, 395–409. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17410-0_20.
Full textStevens, Martin J., Ravi D. R. Bhat, Ali Najmaie, Henry M. van Driel, John E. Sipe, and Arthur L. Smirl. "All-Optical Control of Charge and Spin in GaAs: Densities and Currents." In Optics of Semiconductors and Their Nanostructures, 209–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-09115-9_10.
Full textKrivoruchenko, M. I. "Explicitly Covariant Algebraic Representations for Transitional Currents of Spin-1/2 Particles." In Quantization, Coherent States, and Complex Structures, 73–78. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4899-1060-8_8.
Full textConference papers on the topic "Spin currents"
Dyakonov, Michel I. "Spin Hall magnetoresistance and swapping spin currents." In Spintronics X, edited by Henri Jaffrès, Henri-Jean Drouhin, Jean-Eric Wegrowe, and Manijeh Razeghi. SPIE, 2017. http://dx.doi.org/10.1117/12.2277959.
Full textHoffmann, Axel, Wei Zhang, Stephen M. Wu, Hilal Saglam, Joseph Sklenar, M. Benjamin Jungfleisch, Wanjun Jiang, et al. "Spin Currents in Antiferromagnets." In 2016 International Conference of Asian Union of Magnetics Societies (ICAUMS). IEEE, 2016. http://dx.doi.org/10.1109/icaums.2016.8479782.
Full textTarasenko, Sergey A., and Eugeniyus L. Ivchenko. "Spin Orientation and Spin Currents Induced by Linearly Polarized Light." In PHYSICS OF SEMICONDUCTORS: 28th International Conference on the Physics of Semiconductors - ICPS 2006. AIP, 2007. http://dx.doi.org/10.1063/1.2730394.
Full textSipe, John, R. d. R. Bhat, Ali Najmaie, F. Nastos, Y. Kerachian, H. M. van Driel, Arthur L. Smirl, Martin J. Stevens, and X. Y. Pan. "Optically injected spin currents in semiconductors." In International Quantum Electronics Conference. Washington, D.C.: OSA, 2004. http://dx.doi.org/10.1364/iqec.2004.ithk4.
Full textBozovic, Milos, and Zoran Radovic. "Spin-polarized currents in superconducting films." In International Symposium on Optical Science and Technology, edited by Ivan Bozovic and Davor Pavuna. SPIE, 2002. http://dx.doi.org/10.1117/12.452478.
Full textSarkar, Angik, Srikant Srinivasan, Behtash Behin-Aein, and Supriyo Datta. "Modeling all spin logic: Multi-magnet networks interacting via spin currents." In 2011 IEEE International Electron Devices Meeting (IEDM). IEEE, 2011. http://dx.doi.org/10.1109/iedm.2011.6131530.
Full textSa, Debanand. "Spin-orbit coupling, spin currents and emergent gauge fields in solids." In FUNCTIONAL MATERIALS: Proceedings of the International Workshop on Functional Materials (IWFM-2011). AIP, 2012. http://dx.doi.org/10.1063/1.4736882.
Full textWegrowe, Jean-Eric. "Spin-Hall devices: quantitative predictions of the spin-accumulation and pure spin-currents (Conference Presentation)." In Spintronics XV, edited by Henri-Jean M. Drouhin, Jean-Eric Wegrowe, and Manijeh Razeghi. SPIE, 2022. http://dx.doi.org/10.1117/12.2635882.
Full textHinzke, D., U. Ritzmann, M. Evers, C. Muller, and U. Nowak. "Magnonic spin currents: Localization, propagation, and accumulation." In 2015 IEEE International Magnetics Conference (INTERMAG). IEEE, 2015. http://dx.doi.org/10.1109/intmag.2015.7157457.
Full textvan Driel, Henry M. "Coherence Control of Spin and Charge Currents." In Conference on Lasers and Electro-Optics. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/cleo.2009.jtuc4.
Full textReports on the topic "Spin currents"
Stoker, D. P. Search for right-handed currents by means of muon spin rotation. Office of Scientific and Technical Information (OSTI), September 1985. http://dx.doi.org/10.2172/5008431.
Full textHunt, Benjamin. DOE Final Technical Report: Proximity Effects and Topological Spin Currents in van der Waals Heterostructures (DE-SC0018115). Office of Scientific and Technical Information (OSTI), October 2022. http://dx.doi.org/10.2172/1973585.
Full textWoodruff, Katherine. Neutral Current Elastic Scattering and the Strange Spin Structure of the Proton. Office of Scientific and Technical Information (OSTI), January 2018. http://dx.doi.org/10.2172/1484179.
Full textSlavin, Andrei M. Stochastic Magnetization Dynamics Excited by Spin-Polarized Current in Magnetic Nano-Structures. Fort Belvoir, VA: Defense Technical Information Center, December 2008. http://dx.doi.org/10.21236/ada496844.
Full textYang, Luyi. Doppler Velocimetry of Current Driven Spin Helices in a Two-Dimensional Electron Gas. Office of Scientific and Technical Information (OSTI), May 2013. http://dx.doi.org/10.2172/1171503.
Full textArdèvol-Abreu, A. Framing theory in communication research. Origins, development and current situation in Spain. Revista Latina de Comunicación Social, July 2015. http://dx.doi.org/10.4185/rlcs-1053en.
Full textArdèvol-Abreu, A. Framing theory in communication research. Origins, development and current situation in Spain. Revista Latina de Comunicación Social, July 2015. http://dx.doi.org/10.4185/rlcs-2015-1053en.
Full textMartínez-Sanz, R., and P. Durántez-Stolle. Performance of Investigative Journalism in Spain. The perception of its current state. Revista Latina de Comunicación Social, April 2019. http://dx.doi.org/10.4185/rlcs-2019-1359en.
Full textDi Ventra, Massimiliano. Time-dependent current-density-functional theory of charge, energy and spin transport and dynamics in nanoscale systems. Final Report. Office of Scientific and Technical Information (OSTI), June 2019. http://dx.doi.org/10.2172/1524794.
Full textS. Abdellatif, Omar, Ali Behbehani, and Mauricio Landin. Spain COVID-19 Governmental Response. UN Compliance Research Group, March 2021. http://dx.doi.org/10.52008/esp0501.
Full text