Journal articles on the topic 'Spherical quantum dots'

To see the other types of publications on this topic, follow the link: Spherical quantum dots.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Spherical quantum dots.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Kaputkina, N. E., and Yu E. Lozovik. "“Spherical” quantum dots." Physics of the Solid State 40, no. 11 (November 1998): 1935–36. http://dx.doi.org/10.1134/1.1130690.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fomin, V. M., V. N. Gladilin, J. T. Devreese, E. P. Pokatilov, S. N. Balaban, and S. N. Klimin. "Photoluminescence of spherical quantum dots." Physical Review B 57, no. 4 (January 15, 1998): 2415–25. http://dx.doi.org/10.1103/physrevb.57.2415.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Harry, S. T., and M. A. Adekanmbi. "CONFINEMENT ENERGY OF QUANTUM DOTS AND THE BRUS EQUATION." International Journal of Research -GRANTHAALAYAH 8, no. 11 (December 16, 2020): 318–23. http://dx.doi.org/10.29121/granthaalayah.v8.i11.2020.2451.

Full text
Abstract:
A review of the ground state confinement energy term in the Brus equation for the bandgap energy of a spherically shaped semiconductor quantum dot was made within the framework of effective mass approximation. The Schrodinger wave equation for a spherical nanoparticle in an infinite spherical potential well was solved in spherical polar coordinate system. Physical reasons in contrast to mathematical expediency were considered and solution obtained. The result reveals that the shift in the confinement energy is less than that predicted by the Brus equation as was adopted in most literatures.
APA, Harvard, Vancouver, ISO, and other styles
4

Jia, Rui, De-Sheng Jiang, Ping-Heng Tan, and Bao-Quan Sun. "Quantum dots in glass spherical microcavity." Applied Physics Letters 79, no. 2 (July 9, 2001): 153–55. http://dx.doi.org/10.1063/1.1380732.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Casado, E., and C. Trallero-giner. "Electrooptical constants in spherical quantum dots." physica status solidi (b) 196, no. 2 (August 1, 1996): 335–46. http://dx.doi.org/10.1002/pssb.2221960208.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zhu, Jia-Lin, Jie-Hua Zhao, Wen-Hui Duan, and Bing-Lin Gu. "D−centers in spherical quantum dots." Physical Review B 46, no. 12 (September 15, 1992): 7546–50. http://dx.doi.org/10.1103/physrevb.46.7546.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Thao, Dinh Nhu, and Le Thi Ngoc Bao. "Quantum beat of excitons in spherical semiconductor quantum dots." Superlattices and Microstructures 146 (October 2020): 106675. http://dx.doi.org/10.1016/j.spmi.2020.106675.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Fai, Teboul, Monteil, and Maabou. "POLARON IN CYLINDRICAL AND SPHERICAL QUANTUM DOTS." Condensed Matter Physics 7, no. 1 (2004): 157. http://dx.doi.org/10.5488/cmp.7.1.157.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Garagiola, Mariano, and Omar Osenda. "Excitonic states in spherical layered quantum dots." Physica E: Low-dimensional Systems and Nanostructures 116 (February 2020): 113755. http://dx.doi.org/10.1016/j.physe.2019.113755.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Marín, J. L., R. Riera, and S. A. Cruz. "Confinement of excitons in spherical quantum dots." Journal of Physics: Condensed Matter 10, no. 6 (February 16, 1998): 1349–61. http://dx.doi.org/10.1088/0953-8984/10/6/017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Nann, Thomas, and Paul Mulvaney. "Single Quantum Dots in Spherical Silica Particles." Angewandte Chemie International Edition 43, no. 40 (October 11, 2004): 5393–96. http://dx.doi.org/10.1002/anie.200460752.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Comas, F., and A. Odriazola. "SO phonons in spherical nanostructured quantum dots." physica status solidi (b) 242, no. 6 (May 2005): 1267–78. http://dx.doi.org/10.1002/pssb.200440005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Nekoueian, Khadijeh, Mandana Amiri, Mika Sillanpää, Frank Marken, Rabah Boukherroub, and Sabine Szunerits. "Carbon-based quantum particles: an electroanalytical and biomedical perspective." Chemical Society Reviews 48, no. 15 (2019): 4281–316. http://dx.doi.org/10.1039/c8cs00445e.

Full text
Abstract:
Carbon-based quantum particles, especially spherical carbon quantum dots (CQDs) and nanosheets like graphene quantum dots (GQDs), are an emerging class of quantum dots with unique properties owing to their quantum confinement effect.
APA, Harvard, Vancouver, ISO, and other styles
14

Moreira, N. L., Ladir Cândido, J. N. Teixeira Rabelo, and G. E. Marques. "A quantum Monte Carlo study of hardwall spherical quantum dots." Semiconductor Science and Technology 24, no. 7 (June 2, 2009): 075009. http://dx.doi.org/10.1088/0268-1242/24/7/075009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Bilynskyi, I. V., R. Ya Leshko, and H. O. Bandura. "Influence of quantum dot shape on energy spectra of three-dimensional quantum dots superlattices." Physics and Chemistry of Solid State 21, no. 4 (December 30, 2020): 584–90. http://dx.doi.org/10.15330/pcss.21.4.584-590.

Full text
Abstract:
The band spectrum of quantum dots superlattices of different shapes at points of high symmetry is determined. Cubic, cylindrical and spherical quantum dots are considered. The width of the minizone is calculated. The dependences of the minizones on the geometric dimensions of quantum dots and their concentration are established.
APA, Harvard, Vancouver, ISO, and other styles
16

Taqi, A. "A theoretical model for exciton binding energies in rectangular and parabolic spherical finite quantum dots." Semiconductor Physics Quantum Electronics and Optoelectronics 15, no. 4 (December 12, 2012): 365–69. http://dx.doi.org/10.15407/spqeo15.04.365.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Szafran, B., J. Adamowski, and B. Stébé. "Energy spectrum of centres in spherical quantum dots." Journal of Physics: Condensed Matter 10, no. 34 (August 31, 1998): 7575–86. http://dx.doi.org/10.1088/0953-8984/10/34/011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Satori, H., A. Sali, and K. Satori. "Polarizability of a polaron in spherical quantum dots." Physica E: Low-dimensional Systems and Nanostructures 14, no. 1-2 (April 2002): 184–89. http://dx.doi.org/10.1016/s1386-9477(02)00381-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Garm, T. "Exciton states in spherical parabolic GaAs quantum dots." Journal of Physics: Condensed Matter 8, no. 31 (July 29, 1996): 5725–35. http://dx.doi.org/10.1088/0953-8984/8/31/006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Bondarenko, Victor, and Yang Zhao. "Resonant photoionization absorption spectra of spherical quantum dots." Journal of Physics: Condensed Matter 15, no. 9 (February 24, 2003): 1377–85. http://dx.doi.org/10.1088/0953-8984/15/9/301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Kupchak, I. M. "Excitons and trions in spherical semiconductor quantum dots." Semiconductor Physics, Quantum Electronics & Optoelectronics 9, no. 1 (March 1, 2006): 1–8. http://dx.doi.org/10.15407/spqeo9.01.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Liao, Yu-Cheng, Shih-Yen Lin, Si-Chen Lee, and Chih-Ta Chia. "Spherical SiGe quantum dots prepared by thermal evaporation." Applied Physics Letters 77, no. 26 (December 25, 2000): 4328–29. http://dx.doi.org/10.1063/1.1334649.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Menéndez-Proupin, E., C. Trallero-Giner, and A. García-Cristobal. "Resonant hyper-Raman scattering in spherical quantum dots." Physical Review B 60, no. 8 (August 15, 1999): 5513–22. http://dx.doi.org/10.1103/physrevb.60.5513.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Li, Shuo, Lei Shi, and Zu-Wei Yan. "Optical properties of core/shell spherical quantum dots." Chinese Physics B 29, no. 9 (August 2020): 097802. http://dx.doi.org/10.1088/1674-1056/ab961a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Billaud, B., and T. T. Truong. "Some theoretical results on semiconductor spherical quantum dots." Computational Materials Science 49, no. 4 (October 2010): S322—S325. http://dx.doi.org/10.1016/j.commatsci.2010.04.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Lakhal, L., F. Mezrag, and N. Bouarissa. "Quantum Confinement Effects on Physical Properties of ZnTe Spherical Quantum Dots." Acta Physica Polonica A 137, no. 4 (April 2020): 451–53. http://dx.doi.org/10.12693/aphyspola.137.451.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

HUANG, YUNG-SHENG, and SY-SANG LIAW. "LEVEL STABILITY OF THE QUANTUM DOTS WITH IMPURITY." Modern Physics Letters B 13, no. 27 (November 20, 1999): 977–81. http://dx.doi.org/10.1142/s0217984999001196.

Full text
Abstract:
An atom located at the center of the constant spherical potential is adopted as a simple model for a quantum dot with impurity. We find that, under this model, the stability of the energy levels of a quantum dot with impurity can be controlled by adjusting either the size or the band gap of the quantum dot.
APA, Harvard, Vancouver, ISO, and other styles
28

Bondar, N. V., M. S. Brodyn, N. A. Matveevska, and T. Beynik. "Percolation Threshold and Luminescence in Films of Binary Mixtures of Spherical Particles Covered with Quantum Dots." Ukrainian Journal of Physics 62, no. 10 (November 2017): 874–82. http://dx.doi.org/10.15407/ujpe62.10.0874.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Niculescu, Ecaterina C., and Ana Niculescu. "Donor States in Spherical GaAs-Ga1-xAlxAs Quantum Dots." Modern Physics Letters B 11, no. 15 (June 30, 1997): 673–79. http://dx.doi.org/10.1142/s0217984997000827.

Full text
Abstract:
The effect of the central cell correction on the binding energies of shallow donors in a spherical GaAs-Ga 1-x Al x As quantum dot is studied. The effective-mass approximation within a variational scheme is adopted and central cell corrections are calculated by using a Coulomb potential modified with an adjustable parameter. For small values of the radius of the dot large corrections are obtained for the shallow donors studied.
APA, Harvard, Vancouver, ISO, and other styles
30

Boichuk, V. I., R. I. Pazyuk, and I. V. Bilynskyi. "The Electrical Conductivity in Superlattices of Spherical Quantum Dots." Фізика і хімія твердого тіла 17, no. 3 (September 15, 2016): 320–28. http://dx.doi.org/10.15330/pcss.17.3.320-328.

Full text
Abstract:
The electrical properties of semiconductor systems of spherical GaAs / AlxGa1-xAs quantum dots of various dimensions, depending on the energy of the Fermi level and temperature, and the concentration of aluminum in the matrix, are investigated. Dependences of group velocity of electrons on the index of minisons were obtained. Reducing the CT radius, as well as increasing the aluminum concentration in the matrix, results in an increase in group velocity. The change in the sign of the group velocity of individual minisons is caused by the behavior of the isoenergetic surfaces of these minisons. The electrical conductivity is calculated, containing the contributions of the s- and three p-minisons for given parameters of the system, the maximum of which is near the center of the minisone. The increase in electrical conductivity is observed with a decrease in the CT radius and the aluminum concentration, as well as with the decrease of the GaAs / AlxGa1-xAs superlattice dimension. The temperature dependence of electrical conductivity for various parameters of such systems is also investigated.
APA, Harvard, Vancouver, ISO, and other styles
31

Betancur, F. J., J. Sierra-Ortega, R. A. Escorcia, J. D. González, and I. D. Mikhailov. "Density of impurity states in doped spherical quantum dots." Physica E: Low-dimensional Systems and Nanostructures 23, no. 1-2 (June 2004): 102–7. http://dx.doi.org/10.1016/j.physe.2004.01.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Lu, Shulong, Rui Jia, Desheng Jiang, and Shushen Li. "Lasing of CdSSe quantum dots in glass spherical microcavity." Physica E: Low-dimensional Systems and Nanostructures 17 (April 2003): 453–55. http://dx.doi.org/10.1016/s1386-9477(02)00834-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Kushwaha, M. S. "Size effects on magneto‐optics in spherical quantum dots." Electronics Letters 50, no. 18 (August 2014): 1305–7. http://dx.doi.org/10.1049/el.2014.2060.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Planelles, J., F. Rajadell, and M. Royo. "Dielectric control of spin in semiconductor spherical quantum dots." Journal of Applied Physics 104, no. 1 (July 2008): 014313. http://dx.doi.org/10.1063/1.2952070.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Zhu, Jia-Lin, and Xi Chen. "Donors confined by spherical quantum dots and located anywhere." Journal of Physics: Condensed Matter 6, no. 9 (February 28, 1994): L123—L126. http://dx.doi.org/10.1088/0953-8984/6/9/003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Möller, B., M. V. Artemyev, U. Woggon, and R. Wannemacher. "Mode identification in spherical microcavities doped with quantum dots." Applied Physics Letters 80, no. 18 (May 6, 2002): 3253–55. http://dx.doi.org/10.1063/1.1475364.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

de la Cruz, R. M., S. W. Teitsworth, and M. A. Stroscio. "Interface phonons in spherical GaAs/AlxGa1−xAs quantum dots." Physical Review B 52, no. 3 (July 15, 1995): 1489–92. http://dx.doi.org/10.1103/physrevb.52.1489.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Wen-fang, Xie, and Chen Chuan-yu. "Three-electron systems in spherical parabolic GaAs quantum dots." Acta Physica Sinica (Overseas Edition) 7, no. 6 (June 1998): 464–68. http://dx.doi.org/10.1088/1004-423x/7/6/009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Yakar, Yusuf, Bekir Çakir, and Ayhan Özmen. "Linear and Nonlinear Optical Properties in Spherical Quantum Dots." Communications in Theoretical Physics 53, no. 6 (June 2010): 1185–89. http://dx.doi.org/10.1088/0253-6102/53/6/39.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

XING, Y., X. X. LIANG, and Z. P. WANG. "OPTICAL VIBRATION MODES IN SPHERICAL CORE-SHELL QUANTUM DOTS." Modern Physics Letters B 27, no. 18 (July 11, 2013): 1350134. http://dx.doi.org/10.1142/s0217984913501340.

Full text
Abstract:
Using a dielectric continuum approach, the optical vibration modes in a spherical core-shell quantum dots (QDs) imbedded in a host nonpolar material are studied. The dispersion relation and the corresponding electron–phonon interaction Hamiltonian are derived. The numerical calculations for the CdSe/ZnS system are performed. The results reveal that there are three branches frequencies of interface/surface optical phonon in the system. A detailed discussion of the combined effects of the spatial confinement and dielectric mismatch between the dot and the host medium is given.
APA, Harvard, Vancouver, ISO, and other styles
41

Çakır, Bekir, Yusuf Yakar, and Ayhan Özmen. "Calculation of electric field gradient in spherical quantum dots." Philosophical Magazine 100, no. 2 (October 9, 2019): 248–66. http://dx.doi.org/10.1080/14786435.2019.1674456.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Bekhouche, H., A. Gueddim, N. Bouarissa, and N. Messikine. "Phonon and Polaron properties in InSb spherical quantum dots." Chinese Journal of Physics 65 (June 2020): 146–52. http://dx.doi.org/10.1016/j.cjph.2020.02.017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Sprinzl, D., P. Nahálková, J. T. Devreese, V. N. Gladilin, P. Malý, and P. Němec. "Spin-polarised carriers in CdS quasi-spherical quantum dots." physica status solidi (c) 3, no. 4 (March 2006): 870–73. http://dx.doi.org/10.1002/pssc.200564633.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Xie, Wenfang. "Investigation of D– centers confined by spherical quantum dots." physica status solidi (b) 245, no. 1 (January 2008): 101–5. http://dx.doi.org/10.1002/pssb.200743116.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Wang Chuan-Dao. "Electronic structure in GaAs/AlxGa1-xAs spherical quantum dots." Acta Physica Sinica 57, no. 2 (2008): 1091. http://dx.doi.org/10.7498/aps.57.1091.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Dipesh, Neupane. "Structural and optical investigation of CdSe quantum dots." Kathmandu University Journal of Science, Engineering and Technology 8, no. 2 (January 3, 2013): 83–88. http://dx.doi.org/10.3126/kuset.v8i2.7329.

Full text
Abstract:
CdSe semiconducting Quantum dots were prepared by a chemical method at a room temperature. X-ray powder diffraction and transmission electron microscope measurements conformed a hexagonal cubic crystalline phase of Cdse semiconducting Quantum dots of about 15 nm average size with nearly spherical shape. The absorption and photoluminescence spectra of the CdSe quantum dots were strongly shown blue shifted due to size quantization. The present study describes a simultaneous and highly reproducible large scale synthesis of highly luminescent CdSe Quantum dots. Kathmandu University Journal of Science, Engineering and Technology Vol. 8, No. II, December, 2012, 83-88 DOI: http://dx.doi.org/10.3126/kuset.v8i2.7329
APA, Harvard, Vancouver, ISO, and other styles
47

Asgharinejad, A., and H. R. Askari. "The effect of spherical metallic nanoparticles on electromagnetically induced transparency in spherical quantum dots." Modern Physics Letters B 30, no. 25 (September 20, 2016): 1650215. http://dx.doi.org/10.1142/s0217984916502158.

Full text
Abstract:
In this paper, electromagnetically induced transparency (EIT) is investigated in a GaAs spherical quantum dot (SQD) with central potential in presence of spherical metallic nanoparticle (SMNP). Solving the Schrödinger equation in effective mass, eigenfunctions and eigenvalues of SQD are obtained. By using the obtained eigenfunctions and eigenvalues, the susceptibility of SQD is found. In addition, dependence of EIT on radius of SQD and SMNP, distance between SMNP and SQD and Rabi and probe frequencies are investigated.
APA, Harvard, Vancouver, ISO, and other styles
48

DEVREESE, J. T., V. M. FOMIN, and S. N. KLIMIN. "PHONON-INDUCED FEATURES IN OPTICAL SPECTRA OF QUANTUM DOTS: BREAKDOWN OF THE ADIABATIC APPROXIMATION." International Journal of Modern Physics B 15, no. 28n30 (December 10, 2001): 3579–83. http://dx.doi.org/10.1142/s0217979201008196.

Full text
Abstract:
A theory of photoluminescence and Raman scattering in semiconductor quantum dots is developed, which relies on two key ingredients. First, it takes into account non-adiabaticity of the exciton-phonon system. Second, it includes a multimode dielectric model of LO-phonons and of the electron-phonon interaction in confined systems. Our approach is applied to calculate the optical spectra of several quantum-dot structures: ensembles of spherical CdSe, CdSe x S 1-x and PbS quantum dots, self-assembled InAs/GaAs and CdSe/ZnSe quantum dots, brick-shaped InAs/GaAs quantum dots created by local anodic oxidation using the atomic force microscope.
APA, Harvard, Vancouver, ISO, and other styles
49

Mazzier, D., M. Favaro, S. Agnoli, S. Silvestrini, G. Granozzi, M. Maggini, and A. Moretto. "Synthesis of luminescent 3D microstructures formed by carbon quantum dots and their self-assembly properties." Chem. Commun. 50, no. 50 (2014): 6592–95. http://dx.doi.org/10.1039/c4cc02496f.

Full text
Abstract:
Novel star shaped carbon quantum dots–(poly-γ-benzyl-l-glutamate) conjugates displayed a self-assembling propensity to generate spherical microstructures that retain the characteristic emission properties of the native dots.
APA, Harvard, Vancouver, ISO, and other styles
50

Kalasad, M. N., M. K. Rabinal, B. G. Mulimani, and N. C. Greenham. "Size Tunable near Infrared High-Quality PbS Quantum Dots." Applied Mechanics and Materials 490-491 (January 2014): 319–23. http://dx.doi.org/10.4028/www.scientific.net/amm.490-491.319.

Full text
Abstract:
Herein, we report the synthesis of PbS Quantum Dots (QDs) with oleic acid as surfactant molecules by non coordinating solvent route. The particles are having better size tunability by varying temperature and time of reaction. These quantum dots are characterized by optical absorption, photoluminescence and transmission electron microscopy. The resulting colloids are highly stable, extremely small size, spherical in shape, monodisperse and strong band emission. The estimated particles sizes are in the range of 2 to 6 nm. The present method of synthesis of PbS quantum dots can be used to fabricate low cost electronic devices.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography