Academic literature on the topic 'Spherical Harmonic method'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Spherical Harmonic method.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Spherical Harmonic method"
Snape-Jenkinson, C. J., S. Crozier, and L. K. Forbes. "NMR shim coil design utilising a rapid spherical harmonic calculation method." ANZIAM Journal 43, no. 3 (January 2002): 375–86. http://dx.doi.org/10.1017/s1446181100012578.
Full textDoicu, Adrian, and Dmitry S. Efremenko. "Linearizations of the Spherical Harmonic Discrete Ordinate Method (SHDOM)." Atmosphere 10, no. 6 (May 28, 2019): 292. http://dx.doi.org/10.3390/atmos10060292.
Full textKudlicki, Andrzej, Małgorzata Rowicka, Mirosław Gilski, and Zbyszek Otwinowski. "An efficient routine for computing symmetric real spherical harmonics for high orders of expansion." Journal of Applied Crystallography 38, no. 3 (May 13, 2005): 501–4. http://dx.doi.org/10.1107/s0021889805007685.
Full textCrowley, John W., and Jianliang Huang. "A least-squares method for estimating the correlated error of GRACE models." Geophysical Journal International 221, no. 3 (March 9, 2020): 1736–49. http://dx.doi.org/10.1093/gji/ggaa104.
Full textSun, Huiyuan, Thushara D. Abhayapala, and Prasanga N. Samarasinghe. "Time Domain Spherical Harmonic Processing with Open Spherical Microphones Recording." Applied Sciences 11, no. 3 (January 25, 2021): 1074. http://dx.doi.org/10.3390/app11031074.
Full textDwivedi, Priyadarshini, Gyanajyoti Routray, and Rajesh M. Hegde. "Spherical harmonics domain-based approach for source localization in presence of directional interference." JASA Express Letters 2, no. 11 (November 2022): 114802. http://dx.doi.org/10.1121/10.0015243.
Full textSHOJAEI, M. R., A. A. RAJABI, and H. HASANABADI. "HYPER-SPHERICAL HARMONICS AND ANHARMONICS IN m-DIMENSIONAL SPACE." International Journal of Modern Physics E 17, no. 06 (June 2008): 1125–30. http://dx.doi.org/10.1142/s0218301308010398.
Full textYanagawa, Kazunori, Ayane Fujihira, Hideki Yamaguchi, and Nozomu Yoshizawa. "Describing the characteristics of light field in architectural spaces using spherical harmonic function." IOP Conference Series: Earth and Environmental Science 1099, no. 1 (November 1, 2022): 012014. http://dx.doi.org/10.1088/1755-1315/1099/1/012014.
Full textWang, Jian Qiang, Hao Yuan Chen, and Yin Fu Chen. "The Analysis of the Associated Legendre Functions with Non-Integral Degree." Applied Mechanics and Materials 130-134 (October 2011): 3001–5. http://dx.doi.org/10.4028/www.scientific.net/amm.130-134.3001.
Full textXiao-yong, Zhang, and Guo Ben-yu. "Spherical Harmonic–Generalized Laguerre Spectral Method for Exterior Problems." Journal of Scientific Computing 27, no. 1-3 (January 19, 2006): 523–37. http://dx.doi.org/10.1007/s10915-005-9056-6.
Full textDissertations / Theses on the topic "Spherical Harmonic method"
RAYCHAUDHURI, ANJAN. "A Modification of Spherical Harmonic method and its application to transport problems." Thesis, University of North Bengal, 1997. http://hdl.handle.net/123456789/585.
Full textPattnaik, Aliva. "Parallel Performance Analysis of The Finite Element-Spherical Harmonics Radiation Transport Method." Thesis, Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/14069.
Full textFERNANDES, ALMIR. "Estudo de um metodo para solucao da equacao de transporte monoenergetica e em geometria tridimensional pelo metodo de elementos finitos e pela." reponame:Repositório Institucional do IPEN, 1991. http://repositorio.ipen.br:8080/xmlui/handle/123456789/10256.
Full textMade available in DSpace on 2014-10-09T13:59:10Z (GMT). No. of bitstreams: 1 04131.pdf: 2671874 bytes, checksum: f1aecab51efb7083cb98abad64e8c2ba (MD5)
Dissertacao (Mestrado)
IPEN/D
Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
Park, HyeongKae. "Coupled Space-Angle Adaptivity and Goal-Oriented Error Control for Radiation Transport Calculations." Diss., Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/13944.
Full textCALDEIRA, ALEXANDRE D. "Solucoes Psubn para os problemas da moderacao e do calculo de celula em geometria plana." reponame:Repositório Institucional do IPEN, 1999. http://repositorio.ipen.br:8080/xmlui/handle/123456789/10730.
Full textMade available in DSpace on 2014-10-09T13:56:29Z (GMT). No. of bitstreams: 1 06501.pdf: 3346863 bytes, checksum: c0335a4d0d89d17de7ff520ce20eae25 (MD5)
Tese (Doutoramento)
IPEN/T
Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
Juttu, Sreekanth. "A new approach for fast potential evaluation in N-body problems." Thesis, Texas A&M University, 2003. http://hdl.handle.net/1969.1/351.
Full textSankar, Maathangi. "A Hybrid Discrete Ordinates - Spherical Harmonics Method for Solution of the Radiative Transfer Equation in Multi-Dimensional Participating Media." The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1308244319.
Full textBrunton, Alan P. "Multi-scale Methods for Omnidirectional Stereo with Application to Real-time Virtual Walkthroughs." Thesis, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/23552.
Full textMarquez, Damian Jose Ignacio. "Multilevel acceleration of neutron transport calculations." Thesis, Atlanta, Ga. : Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/19731.
Full textCommittee Chair: Stacey, Weston M.; Committee Co-Chair: de Oliveira, Cassiano R.E.; Committee Member: Hertel, Nolan; Committee Member: van Rooijen, Wilfred F.G.
Das, Nivedita. "Modeling three-dimensional shape of sand grains using Discrete Element Method." [Tampa, Fla.] : University of South Florida, 2007. http://purl.fcla.edu/usf/dc/et/SFE0002072.
Full textBooks on the topic "Spherical Harmonic method"
N, Phillips Timothy, and Institute for Computer Applications in Science and Engineering., eds. On the coefficients of differentiated expansions of ultraspherical polynomials. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, Institute for Computer Applications in Science and Engineering, 1989.
Find full text1975-, Peccati Giovanni, ed. Random fields on the sphere: Representation, limit theorems, and cosmological applications. Cambridge: Cambridge University Press, 2011.
Find full textAUGMENTED SPHERICAL WAVE METHOD LECTURE. SPRINGER, 2013.
Find full textThe Augmented Spherical Wave Method: A Comprehensive Treatment (Lecture Notes in Physics). Springer, 2007.
Find full textLattman, Eaton E., Thomas D. Grant, and Edward H. Snell. Shape Reconstructions from Small Angle Scattering Data. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199670871.003.0004.
Full textBook chapters on the topic "Spherical Harmonic method"
Lin, C. K., Neil Goldsman, C. H. Chang, Isaak Mayergoyz, Sheldon Aronowitz, Jeffrey Dong, and Nadya Belova. "Extension of Spherical Harmonic Method to RF Transient Regime." In Simulation of Semiconductor Processes and Devices 1998, 42–45. Vienna: Springer Vienna, 1998. http://dx.doi.org/10.1007/978-3-7091-6827-1_12.
Full textGhosh, Mrityunjoy. "Solution of an Integro-Differential Equation by Double Interval Spherical Harmonic Method." In Lecture Notes in Mechanical Engineering, 439–54. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0287-3_31.
Full textYang, Zhigen, Seiji Manabe, Koichi Yokoyama, Takaaki Jike, and Kosuke Heki. "Comprehensive Ocean Tide Loading Parameters of Sites in East Asia with Spherical Harmonic Method." In International Association of Geodesy Symposia, 343–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-662-03482-8_47.
Full textVasicek, M., V. Sverdlov, J. Cervenka, T. Grasser, H. Kosina, and S. Selberherr. "Transport in Nanostructures: A Comparative Analysis Using Monte Carlo Simulation, the Spherical Harmonic Method, and Higher Moments Models." In Large-Scale Scientific Computing, 443–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12535-5_52.
Full textJamet, O., J. Verdun, D. Tsoulis, and N. Gonindard. "Assessment of a Numerical Method for Computing the Spherical Harmonic Coefficients of the Gravitational Potential of a Constant Density Polyhedron." In Gravity, Geoid and Earth Observation, 437–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-10634-7_58.
Full textKuridan, Ramadan M. "Spherical Harmonics—The $${{{P}}}_{{{N}}}$$ Method." In Graduate Texts in Physics, 61–97. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-26932-5_3.
Full textLiang, W. C., Y. J. Wu, K. Hennacy, S. Singh, N. Goldsman, and I. Mayergoyz. "2-Dimensional Mosfet Analysis Including Impact Ionization by Self-Consistent Solution of the Boltzmann Transport and Poisson Equations Using a Generalized Spherical Harmonic Expansion Method." In Hot Carriers in Semiconductors, 485–89. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-0401-2_111.
Full textGutting, Martin. "Fast Harmonic/Spherical Splines and Parameter Choice Methods." In Handbuch der Geodäsie, 1–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-46900-2_106-1.
Full textGutting, Martin. "Fast Harmonic/Spherical Splines and Parameter Choice Methods." In Mathematische Geodäsie/Mathematical Geodesy, 537–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2020. http://dx.doi.org/10.1007/978-3-662-55854-6_106.
Full textJekeli, Christopher. "Methods to Reduce Aliasing in Spherical Harmonic Analysis." In International Association of Geodesy Symposia, 121–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-61140-7_12.
Full textConference papers on the topic "Spherical Harmonic method"
Xiao yong, Zhang, Sui Jiang Hua, Theodore E. Simos, George Psihoyios, Ch Tsitouras, and Zacharias Anastassi. "Spherical Harmonic–Generalized Laguerre Function Mixed Spectral Method." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: International Conference on Numerical Analysis and Applied Mathematics. AIP, 2011. http://dx.doi.org/10.1063/1.3636998.
Full textXiao-yong, Zhang, Guo Ben-yu, Theodore E. Simos, and George Psihoyios. "Spherical Harmonic—Generalized Laguerre Spectral Method for Nonlinear Exterior Problems." In INTERNATIONAL ELECTRONIC CONFERENCE ON COMPUTER SCIENCE. AIP, 2008. http://dx.doi.org/10.1063/1.3037093.
Full textThomas, Mark R. P., Jens Ahrens, and Ivan Tashev. "A method for converting between cylindrical and spherical harmonic representations of sound fields." In ICASSP 2014 - 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2014. http://dx.doi.org/10.1109/icassp.2014.6854498.
Full textKalkur, Sachin N., Sandeep Reddy C., and Rajesh M. Hegde. "Joint source localization and separation in spherical harmonic domain using a sparsity based method." In Interspeech 2015. ISCA: ISCA, 2015. http://dx.doi.org/10.21437/interspeech.2015-355.
Full textFang Yanhong and Wu Bin. "An novel method of soft tissue haptic rendering based on the spherical harmonic representation." In 2010 2nd International Conference on Information Science and Engineering (ICISE). IEEE, 2010. http://dx.doi.org/10.1109/icise.2010.5691762.
Full textLi, Kang, Liangzhi Cao, Jianxin Miao, Haoyu Zhang, and Tao Dai. "Neutronics Analysis of Fusion Blanket Based on the Spherical Harmonic Function and Finite Element Method." In 2022 29th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/icone29-92622.
Full textFaltinsen, Odd M., and Alexander N. Timokha. "Nonlinear Sloshing in a Spherical Tank." In ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/omae2013-10036.
Full textMackowski, Daniel W. "Direct Simulation of Scattering and Absorption by Particle Deposits." In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-14615.
Full textKessler, David A., Stephen B. Swanekamp, Steve Richardson, Paul E. Adamson, and Lina Petrova. "A Discontinuous Galerkin Finite Element Method for a Class of Spherical Harmonic Expansions of the Boltzmann Equation." In 2021 IEEE International Conference on Plasma Science (ICOPS). IEEE, 2021. http://dx.doi.org/10.1109/icops36761.2021.9588543.
Full textMahmood, Taofiqhasan, Md Amanullah Kabir Tonmoy, Chad Sevart, Yi Wang, and Yue Ling. "Predicting Drop Dynamics in Sub-Critical Weber Number Regime: High-Fidelity Simulation and Data-Driven Modeling." In ASME 2023 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/imece2023-116851.
Full textReports on the topic "Spherical Harmonic method"
Josef, John A. A simplified spherical harmonic method for coupled electron-photon transport calculations. Office of Scientific and Technical Information (OSTI), December 1996. http://dx.doi.org/10.2172/459863.
Full textJosef, J. A. A simplified spherical harmonic method for coupled electron-photon transport calculations. Office of Scientific and Technical Information (OSTI), December 1997. http://dx.doi.org/10.2172/563320.
Full textMorel, J. E., J. M. McGhee, and T. Manteuffel. Parallel 3-D spherical-harmonics transport methods. Office of Scientific and Technical Information (OSTI), August 1997. http://dx.doi.org/10.2172/515629.
Full textSVITELMAN, Valentina, and Oleg DINARIEV. The method of spherical harmonics in rock microstructural geostatistics. Cogeo@oeaw-giscience, September 2011. http://dx.doi.org/10.5242/iamg.2011.0048.
Full textSmith, M. A., G. Palmiotti, and E. E. Lewis. Fuel cycle methods : first-order spherical harmonics formulations capable of treating low density regions. Office of Scientific and Technical Information (OSTI), January 2004. http://dx.doi.org/10.2172/821070.
Full text