Academic literature on the topic 'Sperm Cell Focusing Dynamics'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Sperm Cell Focusing Dynamics.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Sperm Cell Focusing Dynamics"

1

Tourzani, Darya A., Qiangzong Yin, Erica A. Jackson, Oliver J. Rando, Pablo E. Visconti, and Maria G. Gervasi. "Sperm Energy Restriction and Recovery (SER) Alters Epigenetic Marks during the First Cell Cycle of Development in Mice." International Journal of Molecular Sciences 24, no. 1 (December 30, 2022): 640. http://dx.doi.org/10.3390/ijms24010640.

Full text
Abstract:
The sperm energy restriction and recovery (SER) treatment developed in our laboratory was shown to improve fertilization and blastocyst development following in vitro fertilization (IVF) in mice. Here, we investigated the effects of SER on early embryogenesis. Developmental events observed during the first cell cycle indicated that progression through the pronuclear stages of SER-generated embryos is advanced in comparison with control-generated embryos. These findings prompted further analysis of potential effects of SER on pronuclear chromatin dynamics, focusing on the key H3K4me3 and H3K27ac histone modifications. Nearly all the SER-generated embryos displayed H3K4me3 in the male pronuclei at 12 h post-insemination (HPI), while a subset of the control-generated embryos did not. Additionally, SER-generated embryos displayed a more homogenous intensity of H3K27ac at 8 and 12 HPI compared to control embryos. These changes in histone modifications during the first cell cycle were accompanied by differences in gene expression at the two-cell stage; both of these changes in early embryos could potentially play a role in the improved developmental outcomes of these embryos later in development. Our results indicate that sperm incubation conditions have an impact on early embryo development and can be useful for the improvement of assisted reproductive technology outcomes.
APA, Harvard, Vancouver, ISO, and other styles
2

Horne-Badovinac, Sally. "The Drosophila micropyle as a system to study how epithelia build complex extracellular structures." Philosophical Transactions of the Royal Society B: Biological Sciences 375, no. 1809 (August 24, 2020): 20190561. http://dx.doi.org/10.1098/rstb.2019.0561.

Full text
Abstract:
Dynamic rearrangements of epithelial cells play central roles in shaping tissues and organs during development. There are also scenarios, however, in which epithelial cell movements synergize with the secretion of extracellular matrix to build rigid, acellular structures that persist long after the cells are gone. The formation of the Drosophila micropyle provides an elegant example of this epithelial craftsmanship. The micropyle is a cone-shaped projection of the eggshell through which the sperm will enter to fertilize the oocyte. Though simple on the surface, both the inner structure and construction of the micropyle are remarkably complex. In this review, I first provide an overview of egg development, focusing on the key events required to understand micropyle formation. I then describe the structure of the micropyle, the cellular contributions to its morphogenesis and some interesting open questions about this process. There is a brief discussion of micropyle formation in other insects and fish to highlight the potential for comparative studies. Finally, I discuss how new studies of micropyle formation could reveal general mechanisms that epithelia use to build complex extracellular structures. This article is part of a discussion meeting issue ‘Contemporary morphogenesis'.
APA, Harvard, Vancouver, ISO, and other styles
3

Hamamura, Yuki. "Double fertilization mechanism as suggested by sperm cell dynamics." PLANT MORPHOLOGY 24, no. 1 (2012): 97–103. http://dx.doi.org/10.5685/plmorphol.24.97.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wolf, D. E., C. A. McKinnon, L. Leyton, K. Lakoski Loveland, and P. M. Saling. "Protein dynamics in sperm membranes: Implications for sperm function during gamete interaction." Molecular Reproduction and Development 33, no. 2 (October 1992): 228–34. http://dx.doi.org/10.1002/mrd.1080330217.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gadella, B. M., T. W. Gadella, B. Colenbrander, L. M. van Golde, and M. Lopes-Cardozo. "Visualization and quantification of glycolipid polarity dynamics in the plasma membrane of the mammalian spermatozoon." Journal of Cell Science 107, no. 8 (August 1, 1994): 2151–63. http://dx.doi.org/10.1242/jcs.107.8.2151.

Full text
Abstract:
Seminolipid (sulphogalactosylalkylacylglycerol), the glycolipid that is specific for mammalian germ cells, is located exclusively in the outer leaflet of the sperm plasma membrane. In this study the lateral distribution of seminolipid on sperm heads has been investigated by indirect immunofluorescence labelling and detection with digital imaging fluorescence microscopy. In freshly ejaculated sperm cells this glycolipid was present primarily at the apical ridge subdomain of the plasma membrane of the sperm head. After binding the sperm cells to zona-coated coverslips seminolipid migrated, in 40 minutes, from the apical ridge to the equatorial subdomain of the plasma membrane. A similar redistribution of seminolipid was observed during capacitation of sperm cells in vitro induced by Ca2+ or bovine serum albumin. Comparable migration of seminolipid was also found after prolonged storage of ejaculated sperm cells, albeit at a much slower rate. Addition of arylsulphatase A, an enzyme present in seminal plasma that desulphates seminolipid, significantly enhanced the migration of seminolipid during storage of sperm cells. Its breakdown product desulphoseminolipid (galactosylalkylacylglycerol) appeared highly specifically at the equatorial segment. The measured fluorescence intensity over the sperm head surface correlated linearly with the spatial probe distribution as was checked by fluorescence lifetime imaging microscopy. This paper demonstrates and quantifies for the first time the polarity of seminolipid on the surface of the sperm cell and the dynamic alterations that occur in this polarity during post-ejaculatory events.
APA, Harvard, Vancouver, ISO, and other styles
6

Verhage, Leonie. "Find your identity – methylation dynamics in the sperm cell lineage." Plant Journal 105, no. 3 (February 2021): 563–64. http://dx.doi.org/10.1111/tpj.15155.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gadella, Barend M., and Carolina Luna. "Cell biology and functional dynamics of the mammalian sperm surface." Theriogenology 81, no. 1 (January 2014): 74–84. http://dx.doi.org/10.1016/j.theriogenology.2013.09.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Fice, Heather, and Bernard Robaire. "Telomere Dynamics Throughout Spermatogenesis." Genes 10, no. 7 (July 12, 2019): 525. http://dx.doi.org/10.3390/genes10070525.

Full text
Abstract:
Telomeres are repeat regions of DNA that cap either end of each chromosome, thereby providing stability and protection from the degradation of gene-rich regions. Each cell replication causes the loss of telomeric repeats due to incomplete DNA replication, though it is well-established that progressive telomere shortening is evaded in male germ cells by the maintenance of active telomerase. However, germ cell telomeres are still susceptible to disruption or insult by oxidative stress, toxicant exposure, and aging. Our aim was to examine the relative telomere length (rTL) in an outbred Sprague Dawley (SD) and an inbred Brown Norway (BN) rat model for paternal aging. No significant differences were found when comparing pachytene spermatocytes (PS), round spermatids (RS), and sperm obtained from the caput and cauda of the epididymis of young and aged SD rats; this is likely due to the high variance observed among individuals. A significant age-dependent decrease in rTL was observed from 115.6 (±6.5) to 93.3 (±6.3) in caput sperm and from 142.4 (±14.6) to 105.3 (±2.5) in cauda sperm from BN rats. Additionally, an increase in rTL during epididymal maturation was observed in both strains, most strikingly from 115.6 (±6.5) to 142 (±14.6) in young BN rats. These results confirm the decrease in rTL in rodents, but only when an inbred strain is used, and represent the first demonstration that rTL changes as sperm transit through the epididymis.
APA, Harvard, Vancouver, ISO, and other styles
9

Subramani, Elavarasan, Himanish Basu, Shyam Thangaraju, Sucheta Dandekar, Deepak Mathur, and Koel Chaudhury. "Rotational Dynamics of Optically Trapped Human Spermatozoa." Scientific World Journal 2014 (2014): 1–7. http://dx.doi.org/10.1155/2014/154367.

Full text
Abstract:
Introduction. Optical trapping is a laser-based method for probing the physiological and mechanical properties of cells in a noninvasive manner. As sperm motility is an important criterion for assessing the male fertility potential, this technique is used to study sperm cell motility behavior and rotational dynamics.Methods and Patients. An integrated optical system with near-infrared laser beam has been used to analyze rotational dynamics of live sperm cells from oligozoospermic and asthenozoospermic cases and compared with controls.Results. The linear, translational motion of the sperm is converted into rotational motion on being optically trapped, without causing any adverse effect on spermatozoa. The rotational speed of sperm cells from infertile men is observed to be significantly less as compared to controls.Conclusions. Distinguishing normal and abnormal sperm cells on the basis of beat frequency above 5.6 Hz may be an important step in modern reproductive biology to sort and select good quality spermatozoa. The application of laser-assisted technique in biology has the potential to be a valuable tool for assessment of sperm fertilization capacity for improving assisted reproductive technology.
APA, Harvard, Vancouver, ISO, and other styles
10

Llanses Martinez, Montserrat, and Elena Rainero. "Membrane dynamics in cell migration." Essays in Biochemistry 63, no. 5 (July 26, 2019): 469–82. http://dx.doi.org/10.1042/ebc20190014.

Full text
Abstract:
Abstract Migration of cells is required in multiple tissue-level processes, such as in inflammation or cancer metastasis. Endocytosis is an extremely regulated cellular process by which cells uptake extracellular molecules or internalise cell surface receptors. While the role of endocytosis of focal adhesions (FA) and plasma membrane (PM) turnover at the leading edge of migratory cells is wide known, the contribution of endocytic proteins per se in migration has been frequently disregarded. In this review, we describe the novel functions of the most well-known endocytic proteins in cancer cell migration, focusing on clathrin, caveolin, flotillins and GRAF1. In addition, we highlight the relevance of the macropinocytic pathway in amoeboid-like cell migration.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Sperm Cell Focusing Dynamics"

1

Nivedita, Nivedita. "Fluid Dynamics and Inertial Focusing in Spiral Microchannels for Cell Sorting." University of Cincinnati / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1460731135.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Friedrich, Benjamin M. "Nonlinear dynamics and fluctuations in biological systems." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2018. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-234307.

Full text
Abstract:
The present habilitation thesis in theoretical biological physics addresses two central dynamical processes in cells and organisms: (i) active motility and motility control and (ii) self-organized pattern formation. The unifying theme is the nonlinear dynamics of biological function and its robustness in the presence of strong fluctuations, structural variations, and external perturbations. We theoretically investigate motility control at the cellular scale, using cilia and flagella as ideal model system. Cilia and flagella are highly conserved slender cell appendages that exhibit spontaneous bending waves. This flagellar beat represents a prime example of a chemo-mechanical oscillator, which is driven by the collective dynamics of molecular motors inside the flagellar axoneme. We study the nonlinear dynamics of flagellar swimming, steering, and synchronization, which encompasses shape control of the flagellar beat by chemical signals and mechanical forces. Mechanical forces can synchronize collections of flagella to beat at a common frequency, despite active motor noise that tends to randomize flagellar synchrony. In Chapter 2, we present a new physical mechanism for flagellar synchronization by mechanical self-stabilization that applies to free-swimming flagellated cells. This new mechanism is independent of direct hydrodynamic interactions between flagella. Comparison with experimental data provided by experimental collaboration partners in the laboratory of J. Howard (Yale, New Haven) confirmed our new mechanism in the model organism of the unicellular green alga Chlamydomonas. Further, we characterize the beating flagellum as a noisy oscillator. Using a minimal model of collective motor dynamics, we argue that measured non-equilibrium fluctuations of the flagellar beat result from stochastic motor dynamics at the molecular scale. Noise and mechanical coupling are antagonists for flagellar synchronization. In addition to the control of the flagellar beat by mechanical forces, we study the control of the flagellar beat by chemical signals in the context of sperm chemotaxis. We characterize a fundamental paradigm for navigation in external concentration gradients that relies on active swimming along helical paths. In this helical chemotaxis, the direction of a spatial concentration gradient becomes encoded in the phase of an oscillatory chemical signal. Helical chemotaxis represents a distinct gradient-sensing strategy, which is different from bacterial chemotaxis. Helical chemotaxis is employed, for example, by sperm cells from marine invertebrates with external fertilization. We present a theory of sensorimotor control, which combines hydrodynamic simulations of chiral flagellar swimming with a dynamic regulation of flagellar beat shape in response to chemical signals perceived by the cell. Our theory is compared to three-dimensional tracking experiments of sperm chemotaxis performed by the laboratory of U. B. Kaupp (CAESAR, Bonn). In addition to motility control, we investigate in Chapter 3 self-organized pattern formation in two selected biological systems at the cell and organism scale, respectively. On the cellular scale, we present a minimal physical mechanism for the spontaneous self-assembly of periodic cytoskeletal patterns, as observed in myofibrils in striated muscle cells. This minimal mechanism relies on the interplay of a passive coarsening process of crosslinked actin clusters and active cytoskeletal forces. This mechanism of cytoskeletal pattern formation exemplifies how local interactions can generate large-scale spatial order in active systems. On the organism scale, we present an extension of Turing’s framework for self-organized pattern formation that is capable of a proportionate scaling of steady-state patterns with system size. This new mechanism does not require any pre-pattering clues and can restore proportional patterns in regeneration scenarios. We analytically derive the hierarchy of steady-state patterns and analyze their stability and basins of attraction. We demonstrate that this scaling mechanism is structurally robust. Applications to the growth and regeneration dynamics in flatworms are discussed (experiments by J. Rink, MPI CBG, Dresden)
Das Thema der vorliegenden Habilitationsschrift in Theoretischer Biologischer Physik ist die nichtlineare Dynamik funktionaler biologischer Systeme und deren Robustheit gegenüber Fluktuationen und äußeren Störungen. Wir entwickeln hierzu theoretische Beschreibungen für zwei grundlegende biologische Prozesse: (i) die zell-autonome Kontrolle aktiver Bewegung, sowie (ii) selbstorganisierte Musterbildung in Zellen und Organismen. In Kapitel 2, untersuchen wir Bewegungskontrolle auf zellulärer Ebene am Modelsystem von Zilien und Geißeln. Spontane Biegewellen dieser dünnen Zellfortsätze ermöglichen es eukaryotischen Zellen, in einer Flüssigkeit zu schwimmen. Wir beschreiben einen neuen physikalischen Mechanismus für die Synchronisation zweier schlagender Geißeln, unabhängig von direkten hydrodynamischen Wechselwirkungen. Der Vergleich mit experimentellen Daten, zur Verfügung gestellt von unseren experimentellen Kooperationspartnern im Labor von J. Howard (Yale, New Haven), bestätigt diesen neuen Mechanismus im Modellorganismus der einzelligen Grünalge Chlamydomonas. Der Gegenspieler dieser Synchronisation durch mechanische Kopplung sind Fluktuationen. Wir bestimmen erstmals Nichtgleichgewichts-Fluktuationen des Geißel-Schlags direkt, wofür wir eine neue Analyse-Methode der Grenzzykel-Rekonstruktion entwickeln. Die von uns gemessenen Fluktuationen entstehen mutmaßlich durch die stochastische Dynamik molekularen Motoren im Innern der Geißeln, welche auch den Geißelschlag antreiben. Um die statistische Physik dieser Nichtgleichgewichts-Fluktuationen zu verstehen, entwickeln wir eine analytische Theorie der Fluktuationen in einem minimalen Modell kollektiver Motor-Dynamik. Zusätzlich zur Regulation des Geißelschlags durch mechanische Kräfte untersuchen wir dessen Regulation durch chemische Signale am Modell der Chemotaxis von Spermien-Zellen. Dabei charakterisieren wir einen grundlegenden Mechanismus für die Navigation in externen Konzentrationsgradienten. Dieser Mechanismus beruht auf dem aktiven Schwimmen entlang von Spiralbahnen, wodurch ein räumlicher Konzentrationsgradient in der Phase eines oszillierenden chemischen Signals kodiert wird. Dieser Chemotaxis-Mechanismus unterscheidet sich grundlegend vom bekannten Chemotaxis-Mechanismus von Bakterien. Wir entwickeln eine Theorie der senso-motorischen Steuerung des Geißelschlags während der Spermien-Chemotaxis. Vorhersagen dieser Theorie werden durch Experimente der Gruppe von U.B. Kaupp (CAESAR, Bonn) quantitativ bestätigt. In Kapitel 3, untersuchen wir selbstorganisierte Strukturbildung in zwei ausgewählten biologischen Systemen. Auf zellulärer Ebene schlagen wir einen einfachen physikalischen Mechanismus vor für die spontane Selbstorganisation von periodischen Zellskelett-Strukturen, wie sie sich z.B. in den Myofibrillen gestreifter Muskelzellen finden. Dieser Mechanismus zeigt exemplarisch auf, wie allein durch lokale Wechselwirkungen räumliche Ordnung auf größeren Längenskalen in einem Nichtgleichgewichtssystem entstehen kann. Auf der Ebene des Organismus stellen wir eine Erweiterung der Turingschen Theorie für selbstorganisierte Musterbildung vor. Wir beschreiben eine neue Klasse von Musterbildungssystemen, welche selbst-organisierte Muster erzeugt, die mit der Systemgröße skalieren. Dieser neue Mechanismus erfordert weder eine vorgegebene Kompartimentalisierung des Systems noch spezielle Randbedingungen. Insbesondere kann dieser Mechanismus proportionale Muster wiederherstellen, wenn Teile des Systems amputiert werden. Wir bestimmen analytisch die Hierarchie aller stationären Muster und analysieren deren Stabilität und Einzugsgebiete. Damit können wir zeigen, dass dieser Skalierungs-Mechanismus strukturell robust ist bezüglich Variationen von Parametern und sogar funktionalen Beziehungen zwischen dynamischen Variablen. Zusammen mit Kollaborationspartnern im Labor von J. Rink (MPI CBG, Dresden) diskutieren wir Anwendungen auf das Wachstum von Plattwürmern und deren Regeneration in Amputations-Experimenten
APA, Harvard, Vancouver, ISO, and other styles
3

Friedrich, Benjamin M. "Nonlinear dynamics and fluctuations in biological systems." Doctoral thesis, 2016. https://tud.qucosa.de/id/qucosa%3A30879.

Full text
Abstract:
The present habilitation thesis in theoretical biological physics addresses two central dynamical processes in cells and organisms: (i) active motility and motility control and (ii) self-organized pattern formation. The unifying theme is the nonlinear dynamics of biological function and its robustness in the presence of strong fluctuations, structural variations, and external perturbations. We theoretically investigate motility control at the cellular scale, using cilia and flagella as ideal model system. Cilia and flagella are highly conserved slender cell appendages that exhibit spontaneous bending waves. This flagellar beat represents a prime example of a chemo-mechanical oscillator, which is driven by the collective dynamics of molecular motors inside the flagellar axoneme. We study the nonlinear dynamics of flagellar swimming, steering, and synchronization, which encompasses shape control of the flagellar beat by chemical signals and mechanical forces. Mechanical forces can synchronize collections of flagella to beat at a common frequency, despite active motor noise that tends to randomize flagellar synchrony. In Chapter 2, we present a new physical mechanism for flagellar synchronization by mechanical self-stabilization that applies to free-swimming flagellated cells. This new mechanism is independent of direct hydrodynamic interactions between flagella. Comparison with experimental data provided by experimental collaboration partners in the laboratory of J. Howard (Yale, New Haven) confirmed our new mechanism in the model organism of the unicellular green alga Chlamydomonas. Further, we characterize the beating flagellum as a noisy oscillator. Using a minimal model of collective motor dynamics, we argue that measured non-equilibrium fluctuations of the flagellar beat result from stochastic motor dynamics at the molecular scale. Noise and mechanical coupling are antagonists for flagellar synchronization. In addition to the control of the flagellar beat by mechanical forces, we study the control of the flagellar beat by chemical signals in the context of sperm chemotaxis. We characterize a fundamental paradigm for navigation in external concentration gradients that relies on active swimming along helical paths. In this helical chemotaxis, the direction of a spatial concentration gradient becomes encoded in the phase of an oscillatory chemical signal. Helical chemotaxis represents a distinct gradient-sensing strategy, which is different from bacterial chemotaxis. Helical chemotaxis is employed, for example, by sperm cells from marine invertebrates with external fertilization. We present a theory of sensorimotor control, which combines hydrodynamic simulations of chiral flagellar swimming with a dynamic regulation of flagellar beat shape in response to chemical signals perceived by the cell. Our theory is compared to three-dimensional tracking experiments of sperm chemotaxis performed by the laboratory of U. B. Kaupp (CAESAR, Bonn). In addition to motility control, we investigate in Chapter 3 self-organized pattern formation in two selected biological systems at the cell and organism scale, respectively. On the cellular scale, we present a minimal physical mechanism for the spontaneous self-assembly of periodic cytoskeletal patterns, as observed in myofibrils in striated muscle cells. This minimal mechanism relies on the interplay of a passive coarsening process of crosslinked actin clusters and active cytoskeletal forces. This mechanism of cytoskeletal pattern formation exemplifies how local interactions can generate large-scale spatial order in active systems. On the organism scale, we present an extension of Turing’s framework for self-organized pattern formation that is capable of a proportionate scaling of steady-state patterns with system size. This new mechanism does not require any pre-pattering clues and can restore proportional patterns in regeneration scenarios. We analytically derive the hierarchy of steady-state patterns and analyze their stability and basins of attraction. We demonstrate that this scaling mechanism is structurally robust. Applications to the growth and regeneration dynamics in flatworms are discussed (experiments by J. Rink, MPI CBG, Dresden).:1 Introduction 10 1.1 Overview of the thesis 10 1.2 What is biological physics? 12 1.3 Nonlinear dynamics and control 14 1.3.1 Mechanisms of cell motility 16 1.3.2 Self-organized pattern formation in cells and tissues 28 1.4 Fluctuations and biological robustness 34 1.4.1 Sources of fluctuations in biological systems 34 1.4.2 Example of stochastic dynamics: synchronization of noisy oscillators 36 1.4.3 Cellular navigation strategies reveal adaptation to noise 39 2 Selected publications: Cell motility and motility control 56 2.1 “Flagellar synchronization independent of hydrodynamic interactions” 56 2.2 “Cell body rocking is a dominant mechanism for flagellar synchronization” 57 2.3 “Active phase and amplitude fluctuations of the flagellar beat” 58 2.4 “Sperm navigation in 3D chemoattractant landscapes” 59 3 Selected publications: Self-organized pattern formation in cells and tissues 60 3.1 “Sarcomeric pattern formation by actin cluster coalescence” 60 3.2 “Scaling and regeneration of self-organized patterns” 61 4 Contribution of the author in collaborative publications 62 5 Eidesstattliche Versicherung 64 6 Appendix: Reprints of publications 66
Das Thema der vorliegenden Habilitationsschrift in Theoretischer Biologischer Physik ist die nichtlineare Dynamik funktionaler biologischer Systeme und deren Robustheit gegenüber Fluktuationen und äußeren Störungen. Wir entwickeln hierzu theoretische Beschreibungen für zwei grundlegende biologische Prozesse: (i) die zell-autonome Kontrolle aktiver Bewegung, sowie (ii) selbstorganisierte Musterbildung in Zellen und Organismen. In Kapitel 2, untersuchen wir Bewegungskontrolle auf zellulärer Ebene am Modelsystem von Zilien und Geißeln. Spontane Biegewellen dieser dünnen Zellfortsätze ermöglichen es eukaryotischen Zellen, in einer Flüssigkeit zu schwimmen. Wir beschreiben einen neuen physikalischen Mechanismus für die Synchronisation zweier schlagender Geißeln, unabhängig von direkten hydrodynamischen Wechselwirkungen. Der Vergleich mit experimentellen Daten, zur Verfügung gestellt von unseren experimentellen Kooperationspartnern im Labor von J. Howard (Yale, New Haven), bestätigt diesen neuen Mechanismus im Modellorganismus der einzelligen Grünalge Chlamydomonas. Der Gegenspieler dieser Synchronisation durch mechanische Kopplung sind Fluktuationen. Wir bestimmen erstmals Nichtgleichgewichts-Fluktuationen des Geißel-Schlags direkt, wofür wir eine neue Analyse-Methode der Grenzzykel-Rekonstruktion entwickeln. Die von uns gemessenen Fluktuationen entstehen mutmaßlich durch die stochastische Dynamik molekularen Motoren im Innern der Geißeln, welche auch den Geißelschlag antreiben. Um die statistische Physik dieser Nichtgleichgewichts-Fluktuationen zu verstehen, entwickeln wir eine analytische Theorie der Fluktuationen in einem minimalen Modell kollektiver Motor-Dynamik. Zusätzlich zur Regulation des Geißelschlags durch mechanische Kräfte untersuchen wir dessen Regulation durch chemische Signale am Modell der Chemotaxis von Spermien-Zellen. Dabei charakterisieren wir einen grundlegenden Mechanismus für die Navigation in externen Konzentrationsgradienten. Dieser Mechanismus beruht auf dem aktiven Schwimmen entlang von Spiralbahnen, wodurch ein räumlicher Konzentrationsgradient in der Phase eines oszillierenden chemischen Signals kodiert wird. Dieser Chemotaxis-Mechanismus unterscheidet sich grundlegend vom bekannten Chemotaxis-Mechanismus von Bakterien. Wir entwickeln eine Theorie der senso-motorischen Steuerung des Geißelschlags während der Spermien-Chemotaxis. Vorhersagen dieser Theorie werden durch Experimente der Gruppe von U.B. Kaupp (CAESAR, Bonn) quantitativ bestätigt. In Kapitel 3, untersuchen wir selbstorganisierte Strukturbildung in zwei ausgewählten biologischen Systemen. Auf zellulärer Ebene schlagen wir einen einfachen physikalischen Mechanismus vor für die spontane Selbstorganisation von periodischen Zellskelett-Strukturen, wie sie sich z.B. in den Myofibrillen gestreifter Muskelzellen finden. Dieser Mechanismus zeigt exemplarisch auf, wie allein durch lokale Wechselwirkungen räumliche Ordnung auf größeren Längenskalen in einem Nichtgleichgewichtssystem entstehen kann. Auf der Ebene des Organismus stellen wir eine Erweiterung der Turingschen Theorie für selbstorganisierte Musterbildung vor. Wir beschreiben eine neue Klasse von Musterbildungssystemen, welche selbst-organisierte Muster erzeugt, die mit der Systemgröße skalieren. Dieser neue Mechanismus erfordert weder eine vorgegebene Kompartimentalisierung des Systems noch spezielle Randbedingungen. Insbesondere kann dieser Mechanismus proportionale Muster wiederherstellen, wenn Teile des Systems amputiert werden. Wir bestimmen analytisch die Hierarchie aller stationären Muster und analysieren deren Stabilität und Einzugsgebiete. Damit können wir zeigen, dass dieser Skalierungs-Mechanismus strukturell robust ist bezüglich Variationen von Parametern und sogar funktionalen Beziehungen zwischen dynamischen Variablen. Zusammen mit Kollaborationspartnern im Labor von J. Rink (MPI CBG, Dresden) diskutieren wir Anwendungen auf das Wachstum von Plattwürmern und deren Regeneration in Amputations-Experimenten.:1 Introduction 10 1.1 Overview of the thesis 10 1.2 What is biological physics? 12 1.3 Nonlinear dynamics and control 14 1.3.1 Mechanisms of cell motility 16 1.3.2 Self-organized pattern formation in cells and tissues 28 1.4 Fluctuations and biological robustness 34 1.4.1 Sources of fluctuations in biological systems 34 1.4.2 Example of stochastic dynamics: synchronization of noisy oscillators 36 1.4.3 Cellular navigation strategies reveal adaptation to noise 39 2 Selected publications: Cell motility and motility control 56 2.1 “Flagellar synchronization independent of hydrodynamic interactions” 56 2.2 “Cell body rocking is a dominant mechanism for flagellar synchronization” 57 2.3 “Active phase and amplitude fluctuations of the flagellar beat” 58 2.4 “Sperm navigation in 3D chemoattractant landscapes” 59 3 Selected publications: Self-organized pattern formation in cells and tissues 60 3.1 “Sarcomeric pattern formation by actin cluster coalescence” 60 3.2 “Scaling and regeneration of self-organized patterns” 61 4 Contribution of the author in collaborative publications 62 5 Eidesstattliche Versicherung 64 6 Appendix: Reprints of publications 66
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Sperm Cell Focusing Dynamics"

1

Dynamics of the Mammalian Sperm Head Advances in Anatomy Embyrology and Cell Biology Paperback. Springer, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Toshimori, Kiyotaka. Dynamics of the Mammalian Sperm Head: Modifications and Maturation Events From Spermatogenesis to Egg Activation (Advances in Anatomy, Embryology and Cell Biology Book 204). Springer, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Sperm Cell Focusing Dynamics"

1

Italiano, Joseph E., Murray Stewart, and Thomas M. Roberts. "How the assembly dynamics of the nematode major sperm protein generate amoeboid cell motility." In International Review of Cytology, 1–34. Elsevier, 2001. http://dx.doi.org/10.1016/s0074-7696(01)02002-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Nitzan, Abraham. "Introduction To Solids And Their Interfaces." In Chemical Dynamics in Condensed Phases. Oxford University Press, 2006. http://dx.doi.org/10.1093/oso/9780198529798.003.0009.

Full text
Abstract:
The study of dynamics of molecular processes in condensed phases necessarily involves properties of the condensed environment that surrounds the system under consideration. This chapter provides some essential background on the properties of solids while the next chapter does the same for liquids. No attempt is made to provide a comprehensive discussion of these subjects. Rather, this chapter only aims to provide enough background as needed in later chapters in order to take into consideration two essential attributes of the solid environment: Its interaction with the molecular system of interest and the relevant timescales associated with this interaction. This would entail the need to have some familiarity with the relevant degrees of freedom, the nature of their interaction with a guest molecule, the corresponding densities of states or modes, and the associated characteristic timescales. Focusing on the solid crystal environment we thus need to have some understanding of its electronic and nuclear dynamics. The geometry of a crystal is defined with respect to a given lattice by picturing the crystal as made of periodically repeating unit cells. The atomic structure within the cell is a property of the particular structure (e.g. each cell can contain one or more molecules, or several atoms arranged within the cell volume in some given way), however, the cells themselves are assigned to lattice points that determine the periodicity. This periodicity is characterized by three lattice vectors, ai, i = 1, 2, 3, that determine the primitive lattice cell—a parallelepiped defined by these three vectors.
APA, Harvard, Vancouver, ISO, and other styles
3

Khosrokhavar, Farhad. "European Jihadi Cells and the motivations behind them." In Jihadism in Europe, 333–54. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780197564967.003.0008.

Full text
Abstract:
Chapter 7 describes the different types of jihadi cells, highlighting their differences as well as some similarities between them. Each cell has a life of its own, and the essence of each is determined by group dynamics, the origins of its leaders, the interactions between its members, and their cultural and economic homogeneity or heterogeneity. Each of these factors plays a significant role in the radicalization and in the effectiveness of the group to implement its goals. In general, cells are loosely structured, and it is very rare to find “egalitarian cells” or “leaderless” groups of friends or buddies, contrary to the claims of some researchers. Sometimes, they have more than one leader, a division of tasks occurring between them (for instance, the ideological and the military). Jihadi actors choose to belong to a group for many reasons: friendship, spatial proximity (they live in the same neighborhood), attendance at the same university, high school, sports association, or mosque, and so on These facets have been frequently studied, some researchers focusing on the horizontal relationships (a group of friends without formal hierarchy) or vertical ones (the presence of a leader and his lieutenants), their actual link with a larger network (al-Qaeda, IS) or imaginary (laying claim or making allegiance without any effective ties), the degree of their dependence on the web, or the greater or lesser scope of the group (from a solo jihadi to large groups of more than ten or fifteen people).
APA, Harvard, Vancouver, ISO, and other styles
4

Griffeath, David, and Dean Hickerson. "A Two-Dimensional Cellular Automaton Crystal with Irrational Density." In New Constructions in Cellular Automata. Oxford University Press, 2003. http://dx.doi.org/10.1093/oso/9780195137170.003.0007.

Full text
Abstract:
We solve a problem posed recently by Gravner and Griffeath [4]: to find a finite seed A0 of 1s for a simple {0, l}-valued cellular automaton growth model on Z2 such that the occupied crystal An after n updates spreads with a two-dimensional asymptotic shape and a provably irrational density. Our solution exhibits an initial A0 of 2,392 cells for Conway’s Game Of Life from which An cover nT with asymptotic density (3 - √5/90, where T is the triangle with vertices (0,0), (-1/4,-1/4), and (1/6,0). In “Cellular Automaton Growth on Z2: Theorems, Examples, and Problems” [4], Gravner and Griffeath recently presented a mathematical framework for the study of Cellular Automata (CA) crystal growth and asymptotic shape, focusing on two-dimensional dynamics. For simplicity, at any discrete time n, each lattice site is assumed to be either empty (0) or occupied (1). Occupied sites after n updates grows linearly in each dimension, attaining an asymptotic density p within a limit shape L: . . . n-1 A → p • 1L • (1) . . . This phenomenology is developed rigorously in Gravner and Griffeath [4] for Threshold Growth, a class of monotone solidification automata (in which case p = 1), and for various nonmonotone CA which evolve recursively. The coarse-grain crystal geometry of models which do not fill the lattice completely is captured by their asymptotic density, as precisely formulated in Gravner and Griffeath [4]. It may happen that a varying “hydrodynamic” profile p(x) emerges over the normalized support L of the crystal. The most common scenario, however, would appear to be eq. (1), with some constant density p throughout L. All the asymptotic densities identified by Gravner and Griffeath are rational, corresponding to growth which is either exactly periodic in space and time, or nearly so. For instance, it is shown that Exactly 1 Solidification, in which an empty cell permanently joins the crystal if exactly one of its eight nearest (Moore) neighbors is occupied, fills the plane with density 4/9 starting from a singleton.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Sperm Cell Focusing Dynamics"

1

Yuan, Chen, Zhenhai Pan, and Huiying Wu. "Numerical Investigation on the Dynamics of a Microparticle Pair Traveling in Confined Flow." In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-72297.

Full text
Abstract:
In recent years, particle hydrodynamic focusing and ordering in a confined microchannel has been developed as a promising technique in lab-on-a-chip systems such as microparticle/cell separation, on-chip flow cytometry and detection. During the focusing, the uniformly distributed finite-sized particles from the channel inlet migrate across streamlines to several equilibrium positions according to the balance between series of hydrodynamic lift forces. While most studies in literature focus on single particle’s motion in the hydrodynamic focusing process by considering particle-liquid interactions, very few of them investigate particle-particle interactions, which is important in particle ordering and manipulation at high throughput. In this study, we use an immersed boundary (IB) - lattice Boltzmann (LB) coupled model to investigate the dynamic behaviors of a particle pair traveling through a square microchannel. The utilized numerical model retains the advantages of both LBM and IBM, which can accurately model the momentum exchange between liquid and particles, and conveniently treat complex geometry and movement of liquid-particle surfaces. By conducting numerical simulations, the time-dependent dynamic behaviors of particle pairs, including trajectories and interactions from initial rest condition to final quasi-equilibrium condition are obtained. Influences of important factors, such as Reynolds number and particle sizes on particles’ motions are discussed and the underlying physical mechanisms of particle-particle interactions are revealed in-depth.
APA, Harvard, Vancouver, ISO, and other styles
2

Desando, Alessio, Andrea Rapisarda, Elena Campagnoli, and Roberto Taurino. "Numerical Analysis of Honeycomb Labyrinth Seals: Cell Geometry and Fin Tip Thickness Impact on the Discharge Coefficient." In ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/gt2015-42106.

Full text
Abstract:
The design of the newest aircraft propulsion systems is focused on environmental impact reduction. Extensive research is being carried out with the purpose of improving engine efficiency, enhancing crucial features, in order to decrease both fuel consumption and pollutant emissions. A lot of improvements to fulfill these objectives must be made, focusing on the optimization of the main engine parts through the utilization of new technologies. The leakage flow reduction in the turbo machinery rotor-stator interaction is one of the main topics to which numerous efforts are being devoted. Labyrinth seals, widely employed in the aerospace field thanks to their simple assembly process and maintenance, can be the means to achieve these objectives. This paper mainly focuses on the optimization of the labyrinth seal stator part, characterized, in modern Low Pressure Turbines (LPT), by a honeycomb cell pattern. The first phase of this study deals with the implementation and validation of a Computational Fluid Dynamics (CFD) numerical model, by using the experimental data available in the literature. Discharge coefficients obtained by numerical simulations, performed at different clearances and pressure ratios on both smooth and honeycomb non-rotating labyrinth seals, are presented and compared to the literature data. Then, for both convergent and divergent flow conditions, the effects on the discharge coefficient due to variations in several cell pattern parameters (i.e. cell diameter, depth and wall thickness) and fin tip thickness are shown. For these analyses the values of clearance and pressure ratio are set at a constant value.
APA, Harvard, Vancouver, ISO, and other styles
3

Restrepo, Bernardo, Larry E. Banta, and David Tucker. "Simulation of Model Predictive Control for a Fuel Cell/Gas Turbine Power System Based on Experimental Data and the Recursive Identification Method." In ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology collocated with the ASME 2016 Power Conference and the ASME 2016 10th International Conference on Energy Sustainability. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/fuelcell2016-59378.

Full text
Abstract:
A Model Predictive Control (MPC) strategy has been suggested and simulated with the empirical dynamic data collected on the Hybrid Performance (HyPer) project facility installed at the National Energy Technology Laboratory (NETL), U.S. Department of Energy, in Morgantown, WV. The HyPer facility is able to simulate gasifier/fuel cell power systems and uses hardware-based simulation approach that couples a modified recuperated gas turbine cycle with hardware driven by a solid oxide fuel cell model. Dynamic data was collected by operating the HyPer facility continuously during five days. Bypass valves along with electric load of the system were manipulated and variables such as mass flow, turbine speed, temperature, pressure, among others were recorded for analysis. This work was developed by focusing on a multivariable recursive system identification structure fitting measured transient data. The results showed that real-time or online data is a viable means to provide a dynamic model for controller design. The excursion dynamic data collected between the setup changes of the experiments was processed off-line to determine the feasibility of applying an adaptive Model Predictive Control strategy. One of the strengths of MPC is that it can allow the designer to impose strict limits on inputs and outputs in order to keep the system within known safe bounds. Two identification structures, ARX and a State-Space model, were used to fit the measured data to dynamic models of the HyPer facility. The State-Space identification was very accurate with a second order model. Visual inspection of the tracking accuracy shows that the ARX approach was approximately as accurate as the State-Space structure in its ability to reproduce measured data. However, by comparing the Loss Function and the FPE parameters, the State-Space approach gives better results. The MPC proved to be a good strategy to control the HyPer facility. The airflow valves and the electric load were used to control the turbine speed and the cathode airflow. For the ARX/State Space models, the MPC was very robust in tracking set-point variations. The anticipation feature of the MPC was revealed to be a good tool to compensate time delays in the output variables of the facility or to anticipate eventual set-point moves in order to achieve the objectives very quickly. The MPC also displayed good disturbance rejection on the output variables when the fuel flow was set to simulate FC heat effluent disturbances. Different off-design scenarios of operation have been tested to confirm the estimated implementation behavior of the plant-controller dynamics.
APA, Harvard, Vancouver, ISO, and other styles
4

Moita, Ana Sofia, Emanuele Teodori, Pedro Pontes, António Luís Nobre Moreira, Anastasios Georgoulas, and Marco Marengo. "Experimental and numerical study on sensible heat transfer at droplet/wall interactions." In ILASS2017 - 28th European Conference on Liquid Atomization and Spray Systems. Valencia: Universitat Politècnica València, 2017. http://dx.doi.org/10.4995/ilass2017.2017.5024.

Full text
Abstract:
The present study addresses a detailed experimental and numerical investigation on the impact of water dropletson smooth heated surfaces. High-speed infrared thermography is combined with high-speed imaging to couple the heat transfer and fluid dynamic processes occurring at droplet impact. Droplet spreading (e.g. spreading ratio) and detailed surface temperature fields are then evaluated in time and compared with the numerically predicted results. The numerical reproduction of the phenomena was conducted using an enhanced version of a VOF- based solver of OpenFOAM previously developed, which was further modified to account for conjugate heat transfer between the solid and fluid domains, focusing only on the sensible heat removed during droplet spreading. An excellent agreement is observed between the temporal evolution of the experimentally measured and the numerically predicted spreading factors (differences between the experimental and numerical values were always lower than 3.4%). The numerical and experimental dimensionless surface temperature profiles along the droplet radius were also in good agreement, depicting a maximum difference of 0.19. Deeper analysis coupling fluid dynamics and heat transfer processes was also performed, evidencing a strong correlation between maximum and minimum temperature values and heat transfer coefficients with the vorticity fields in the lamella, which lead to particular mixing processes in the boundary layer region. The correlation between the resulted temperature fields and the droplet dynamics was obtained by assuming a relation between the vorticity and the local heat transfer coefficient, in the first fluid cell i.e. near the liquid-solid interface. The two measured fields revealed that local maxima and minima in the vorticity corresponded to spatially shifted local minima and maxima in the heat transfer coefficient, at all stages of the droplet spreading. This was particularly clear in the rim region,which therefore should be considered in future droplet spreading models.DOI: http://dx.doi.org/10.4995/ILASS2017.2017.5024
APA, Harvard, Vancouver, ISO, and other styles
5

Hakkarainen, Elina, Matti Tähtinen, and Hannu Mikkonen. "Dynamic Model Development of Linear Fresnel Solar Field." In ASME 2015 9th International Conference on Energy Sustainability collocated with the ASME 2015 Power Conference, the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/es2015-49347.

Full text
Abstract:
As a dispatchable clean energy source, concentrated solar power (CSP) can be one of the key technologies to overcome many problems related to fossil fuel consumption and electricity balancing problems. Solar is a variable location, time and weather dependent source of energy, which sets challenges to solar field operations. With proper dynamic simulation tools it is possible to study dynamics of CSP field under changing weather conditions, find optimum control strategies, and plan and predict the performance of the field. CSP technology considered in this paper, linear Fresnel reflector (LFR), is a proven line focusing technology, having simpler design but suffering in optical performance compared to more mature parabolic trough (PT) technology. Apros dynamic simulation software is used to configure and simulate the solar field. Apros offers a possibility to dynamically simulate field behavior with varying collector configuration, field layout and control mode under varying irradiation conditions. The solar field applies recirculation (RC) as a control mode and direct steam generation (DSG) producing superheated steam. DSG sets challenges for the control scheme, which main objective is to maintain constant steam pressure and temperature at the solar field outlet under varying inlet water and energy conditions, while the steam mass flow can vary. The design and formulation of an entire linear Fresnel solar field in Apros is presented, as well as the obtained control scheme. The field includes user defined amount of collector modules, control system and two modules describing solar irradiation on the field. As two-phase water/steam flow is used, an accurate 6-equation model is used in Apros. Irradiation on the solar field under clear sky conditions is calculated according to time, position and Linke turbidity factor. Overcast conditions can be created by the clear sky index. For LFR single-axis sun tracking system is applied. In order to test the model functionality and to investigate the field behavior, thermal performance of the field was simulated at different dates at two different locations, and the results were compared. Similar field dimensions and control schemes were applied in each case, and simulations were done for full 24 hours in order to study the daily operations and ensure process stability. Control scheme functionality is evaluated based on the plant behavior in simulation cases having different operational conditions. The proper operability of the configured LFR model is evaluated. Obtained performance results show differences between locations and variation depending on season and time. The importance of a proper control system is revealed. The results show that the dynamic model development of a solar field is necessary in order to simulate plant behavior under varying irradiation conditions and to further develop optimal field control schemes and field optimizing process. The future work in the development of the LFR model presented will focus on dynamic response behavior development under transient conditions and field start-up and shut down procedure development.
APA, Harvard, Vancouver, ISO, and other styles
6

Meacham, J. Mark, Mark J. Varady, F. Levent Degertekin, and Andrei G. Fedorov. "Fuel Atomization From a Micromachined Ultrasonic Droplet Generator: Visualization, Scaling, and Modeling." In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-14906.

Full text
Abstract:
Existing battery technologies have become a major obstacle to advances in the performance of portable energy-intensive devices primarily due to a limited lifetime between charge cycles.1,2 Fuel-cell-based energy sources are a viable alternative due to the high energy density of liquid fuels and the potential for high efficiency power generation. The focus of recent work has been the development of two types of fuel cells for portable applications, hydrogen-based fuel cells with external fuel reformation, i.e., conversion to hydrogen, and direct-methanol fuel cells that oxidize methanol directly at the cell anode.1,3 Regardless of whether internal or external fuel reformation is used, power-efficient atomization of liquid fuels ranging from methanol to higher hydrocarbons and diesel to kerosene and logistic fuels, e.g., JP-8, is an essential processing step for conversion of a fuel from liquid to gas phase. We present the experimental characterization and theoretical modeling of the fluid mechanics underlying the operation of a micromachined ultrasonic atomizer. This droplet generator utilizes fluid cavity resonances in the 0.5 to 3 MHz range along with acoustic wave focusing for low power atomization of liquids for fuel processing. The device comprises a fuel reservoir located between a bulk ceramic piezoelectric transducer for ultrasound generation and a silicon micromachined array of liquid horn structures as the ejection nozzles. The array size can be scaled to meet flow rate requirements for any application because a single piezoelectric actuator drives ejection from multiple nozzles. The atomizer is particularly well-matched to fuel processing applications because it is capable of highly controlled atomization of a variety of liquid fuels at low flow rates. This low-flow-rate requirement intrinsic to small-scale, portable power applications is especially challenging since one cannot rely on the conventional jet-instability-based atomization approach. Further, the planar configuration of the nozzle array is suited to integration with the planar design of fuel cells. Experimentally-validated finite element analysis (FEA) simulations of the acoustic response of the device are used to estimate the fraction of the electrical input power to the piezoelectric transducer that is imparted to the ejected fluid. Results of this efficiency analysis indicate that it is not optimal to design the ejector such that a cavity resonance (corresponding to acoustic wave focusing at the tips of the pyramidally-shaped nozzles and thus fluid ejection) coincides with the longitudinal resonance of the piezoelectric transducer. It also appears that the efficiency of the device increases with decreasing frequency. Atomization of methanol and kerosene from 5 to 25 μm diameter orifices is demonstrated at multiple frequencies between 0.5 and 3 MHz. In addition, high-resolution visualization of the ejection process is performed to investigate whether or not the proposed atomizer is capable of operating in either the discrete-droplet or continuous-jetting mode (see Figure 1). The results of the visualization experiments provide a basic understanding of the physics governing the ejection process and allow for the establishment of simple scaling laws that prescribe the mode of ejection; however, it is likely that the phenomena that dictate the mode of ejection (i.e., discretedroplet vs. continuous-jet) do not occur within the field of view of the camera. Further, the most important features that determine the initial interface evolution occur within the nozzle orifice itself. A detailed computational fluid dynamics (CFD) analysis of the interface evolution during droplet/jet ejection yields additional insight into the physics of the ejection process and provides further validation of the scaling laws. Figure 2 provides examples of simulation of both discrete-droplet and continuous-jet mode ejection.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography