Academic literature on the topic 'Specular light paths'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Specular light paths.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Specular light paths"
Fan, Zhimin, Pengpei Hong, Jie Guo, Changqing Zou, Yanwen Guo, and Ling-Qi Yan. "Manifold Path Guiding for Importance Sampling Specular Chains." ACM Transactions on Graphics 42, no. 6 (December 5, 2023): 1–14. http://dx.doi.org/10.1145/3618360.
Full textGoradia, Rhushabh, M. S. Sriram Kashyap, Parag Chaudhuri, and Sharat Chandran. "Tracing specular light paths in point-based scenes." Visual Computer 27, no. 12 (November 4, 2011): 1083–97. http://dx.doi.org/10.1007/s00371-011-0654-z.
Full textSu, Fujia, Bingxuan Li, Qingyang Yin, Yanchen Zhang, and Sheng Li. "Proxy Tracing: Unbiased Reciprocal Estimation for Optimized Sampling in BDPT." ACM Transactions on Graphics 43, no. 4 (July 19, 2024): 1–21. http://dx.doi.org/10.1145/3658216.
Full textFan, Zhimin, Jie Guo, Yiming Wang, Tianyu Xiao, Hao Zhang, Chenxi Zhou, Zhenyu Chen, Pengpei Hong, Yanwen Guo, and Ling-Qi Yan. "Specular Polynomials." ACM Transactions on Graphics 43, no. 4 (July 19, 2024): 1–13. http://dx.doi.org/10.1145/3658132.
Full textLi, Tianyu, Wenyou Wang, Daqi Lin, and Cem Yuksel. "Virtual Blue Noise Lighting." Proceedings of the ACM on Computer Graphics and Interactive Techniques 5, no. 3 (July 25, 2022): 1–26. http://dx.doi.org/10.1145/3543872.
Full textWest, Rex. "Physically-based feature line rendering." ACM Transactions on Graphics 40, no. 6 (December 2021): 1–11. http://dx.doi.org/10.1145/3478513.3480550.
Full textYang, Xiaozhou, and Fan Bai. "Three-Dimensional Structure Analysis of Urban Landscape Based on Big Data Technology and Digital Technology." Scientific Programming 2021 (November 12, 2021): 1–10. http://dx.doi.org/10.1155/2021/7970870.
Full textLin, Daqi, Markus Kettunen, Benedikt Bitterli, Jacopo Pantaleoni, Cem Yuksel, and Chris Wyman. "Generalized resampled importance sampling." ACM Transactions on Graphics 41, no. 4 (July 2022): 1–23. http://dx.doi.org/10.1145/3528223.3530158.
Full textYu, Rui, Yue Dong, Youkang Kong, and Xin Tong. "Neural Path Sampling for Rendering Pure Specular Light Transport." Computer Graphics Forum, December 19, 2023. http://dx.doi.org/10.1111/cgf.14997.
Full textXu, Xiaofeng, Lu Wang, and Beibei Wang. "Efficient Caustics Rendering via Spatial and Temporal Path Reuse." Computer Graphics Forum, October 31, 2023. http://dx.doi.org/10.1111/cgf.14975.
Full textDissertations / Theses on the topic "Specular light paths"
Huan, Quentin. "Modélisation et rendu des verres anciens pour les restitutions historiques." Electronic Thesis or Diss., Littoral, 2024. http://www.theses.fr/2024DUNK0730.
Full textOver the last twenty years, the virtual restoration of ancient environments that have disappeared or deteriorated has become an essential tool for historians, both as part of their research and for communicating their results to the public. Many restitution projects from Renaissance to 18th century include hand-blown glass objects, either for window works or in various types of lighting devices. These glass objects, made by hand, are characterized by their irregular surface, the presence of bubbles and by a continuously varying index of refraction caused by the mixing of several glass pastes of different compositions. When they are used in windows or in lanterns, these irregularities produce complex lighting effects that are still challenging to compute using photorealistic light simulation techniques. In this thesis, we first study the geometric representation of old glass objects as used in windows and lanterns. We used signed distance functions to implicitly define the characteristic irregular surface and bubbles of old glass. Non-linear sphere tracing allows the simulation of the curved trajectory of light rays inside heterogeneous glass. These tools constitute a general model for the simulation of light transport through these irregular objects, allowing their integration into photorealistic light simulation algorithms such as path tracing. A phenomenological model is then used to generate plausible input data for modeling crown and cylinder blown glass. We introduce a method based on texture coordinates to easily create and render complex objects made of individual flat pieces of glass cut from multiple glass panels, as tipically seen in stained-glass windows. We then propose a method for estimating the complex transmitted lighting produced by a light source through an irregular and heterogeneous glass panel. We characterize the set of admissible light paths existing between two points of space as the set of stationary optical paths (Fermat's principle). Finding all the admissible paths resorts to solving a non-linear optimization problem consisting in finding all the stationary points of a function of several variables, for which we use Newton's method and results from theoretical seismology. This technique integrates seamlessly into stochastic methods like path tracing, ubiquitous in photorealistic image synthesis. Our method compares favorably to state-of-thè-art methods in terms of speed of convergence and exploration of the path space. Contrarily to the state-of-the-art, our use of Fermat's principle allows us to generalize our work to transparent media with continuously varying index of refraction. Finally, we adapt our old glass window model to real time rasterized rendering. Direct ray tracing through objects made of flat pieces of glass is realized using a sphere tracing algorithm. We use traced rays and geometry buffers to warp a rasterized rendering of the scene and reproduce in screen space the refraction effects created by a glass window. We pre-compute the complex light field produced by a luminaire made of old glass and encode it inside a small size, fully connected neural network backed by a multiresolution grid encoding. This allows the real time reconstruction of the incident lighting produced by a complex luminaire, as encountered in restitution projects where the most of the lighting is provided by complex lighting devices such as lanterns
Duvenhage, Bernardt. "Light beam tracing for multi-bounce specular and glossy transport paths." Thesis, 2015. http://hdl.handle.net/2263/50893.
Full textThesis (PhD)--University of Pretoria, 2015.
tm2015
Computer Science
PhD
Unrestricted
Conference papers on the topic "Specular light paths"
Duvenhage, B., K. Bouatouch, and D. G. Kourie. "Light Beam Tracing for Multi-Bounce Specular and Glossy Transport Paths." In the Southern African Institute for Computer Scientist and Information Technologists Annual Conference 2014. New York, New York, USA: ACM Press, 2014. http://dx.doi.org/10.1145/2664591.2664610.
Full textBabcock, R. W., H. W. Marshall, R. D. Reasenberg, and S. Reasenberg. "Full Aperture Metrology for High Precision Astrometry." In Space Optics for Astrophysics and Earth and Planetary Remote Sensing. Washington, D.C.: Optica Publishing Group, 1988. http://dx.doi.org/10.1364/soa.1988.tub5.
Full textBeckers, Benoit. "Las escalas de la luz." In International Conference Virtual City and Territory. Barcelona: Centre de Política de Sòl i Valoracions, 2009. http://dx.doi.org/10.5821/ctv.7584.
Full textKutulakos, K. N., and E. Steger. "A theory of refractive and specular 3D shape by light-path triangulation." In Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1. IEEE, 2005. http://dx.doi.org/10.1109/iccv.2005.26.
Full textGullikson, E., D. Stearns, S. Baker, E. Spiller, J. Bjorkholm, and J. Taylor. "Scattering from normal incidence EUV optics." In Optical Fabrication and Testing. Washington, D.C.: Optica Publishing Group, 1998. http://dx.doi.org/10.1364/oft.1998.otud.2.
Full textNick, David C., and R. M. A. Azzam. "Current-ratio uniform-sensitivity thickness monitor (CRUST-M)." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/oam.1989.wv8.
Full text