Dissertations / Theses on the topic 'Spectre de houle'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Spectre de houle.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Wang, Weili. "Remote sensing of swell and currents in coastal zone by HF radar." Thesis, Toulon, 2015. http://www.theses.fr/2015TOUL0011/document.
Full textNearshore marine environment contains many complex processes, but the lack of high-resolution data over a large area during a long time is often the primary obstacle to further research. High-frequency (HF) radar is a mean of remote sensing which obtains continuous near-real time sea surface information over a large area. Thus the study of inversion of marine parameters from HF radar data is very meaningful. Thisthesis makes use of a 13-month-long dataset collected by two phased array HF radar to investigate the characteristics of the sea echo signals, study the data processing and inversion methods, compute sea surface parameters and evaluate the accuracy of radarinversion of swell parameters.The thesis refers to the ground wave HF radar, whose radio waves interact with ocean by Bragg resonance scattering. The development history and applications of HF radar is introduced. The basic theory of electromagnetic wave is reviewed. The principles of inversion of sea surface current, wind direction and swell parameters are described. The feasibility of the swell parameter inversion is investigated. Based on theoretical analysis and statistical studies of a large number of samples, the thesis proposes a series of methods on raw signal processing and quality control, including the determination of the noise level, data averaging in space and time, the proper identification of spectral peaks, the peak width threshold, etc. Respecting the characteristics of different physical processes, inversions of current and wind use spectra collected every 20 min; inversion of swell parameters uses one-hour averaged spectra. The statistics of qualified spectra for swell parameter calculations are presented for both stations. A set of efficient, with a reduced computational cost, automatic computing programs are developed to do the processing and derive marine parameters. Radial current velocities are derived from single radar station. Current vector fields are obtained by combination of both stations. One-year mean flow field in the Iroise Sea is shown, together with the computation of vorticity and divergence. A one-month SeaSonde radar dataset off Qingdao is studied. One-month mean flow pattern together with vorticity and divergence are presented.Relative wind direction with respect to radar look direction is measured through ratio of Bragg peaks amplitudes. Different empirical models are employed to derive radar-inverted relative wind direction. Results show reasonable agreement with model estimations. Different directional distribution models are used to measure the spreading factor for the Iroise Sea. The thesis focuses on the study of swell parameters. Results are validated by buoy and wave model (WAVEWATCH III) data. The assessments show that the accuracy of swell frequency is very good, the accuracy of swell significant waveheight is reasonable, and the accuracy of relative swell direction is low.Consistency of measurements by both radar stations is verified by comparison between the two. This also supports the use of double samples to do the inversion. Use of two radars not only further improves the accuracy but also solves the ambiguity of relative swell direction from single station and gives the absolute wave direction to a certain precision. The thesis proposes a constant relative directionmethod to derive swell significant waveheight, based on the studies of radar integral equation and the inverted results of relative swell direction. This proposal is demonstrated to improve the agreement of radar inversion and buoy/model provided significant waveheight and increases significantly the number of samples. The thesis investigates the accuracy of swell parameters obtained by HF radar. Contributions of random errors in radar observations are quantified. Comparing the differences between radar and buoy/model estimations gives assessments of the contribution of radar intrinsic uncertainty and contribution of other factors
Drevard, Déborah. "Etude expérimentale et numérique de la propagation d'ondes de gravité en zone de déferlement." Phd thesis, Université du Sud Toulon Var, 2006. http://tel.archives-ouvertes.fr/tel-00141744.
Full textL'objectif de ce travail est d'étudier expérimentalement et numériquement la propagation et le déferlement
d'ondes de gravité.
La première partie, expérimentale, propose des méthodes de calcul, basées sur les houles de Stokes, pour la mesure d'ondes partiellement stationnaires à partir d'instruments de type électromagnétique (S4) ou
acoustique (ADV) donnant des mesures synchrones de vitesses et/ou de pression. Les influences du courant,
de la direction de propagation, de la profondeur d'immersion des appareils ainsi que des effets non
linéaires sont alors étudiés à partir de données en bassin et in situ.
La deuxième partie, numérique, consiste en la validation d'une méthode de suivi de surface libre de type
SL-VOF (Semi-Lagrangian Volume Of Fluid), insérée dans un code de calcul industriel (code EOLE de la
société Principia R&D). L'onde de gravité est modélisée par un soliton. L'étude de la propagation et du
déferlement du soliton est effectuée pour deux applications : sur une marche (discontinuité du fond) puis sur un fond de pente constante 1/15. L'évolution de la surface libre, son élévation et le champ de vitesses
sont alors comparés aux résultats expérimentaux.
Canard, Maxime. "Controlled generation of unidirectional irregular sea states in experimental and numerical wave tanks." Electronic Thesis or Diss., Ecole centrale de Nantes, 2024. http://www.theses.fr/2024ECDN0001.
Full textThe objective of this thesis is to improve the wave generation and qualification procedures in the context of ocean engineering studies. The framework is limited to unidirectional irregular sea states generated in experimental and numerical wave tanks. Experiments were carried out using the ECN facilities and numerical studies were performed using the nonlinear potential wave solver HOS-NWT developed by ECN. In the first part of the thesis, the problem of irregular wave propagation in wave tank environments is addressed from theoretical, experimental, and numerical points of view. Paticular attention is paid to the evolution in space of the wave spectrum and statistics. In addition, experimental uncertainties arestudied in detail. The second part of the thesis focuses on developing methods to better control the wave fields at any target position in the domain. First, a procedure focusing on the quality of the wave spectrum is studied. Then, facing the dependence of the wave statistics on the target location, a new procedure is developed and tested to better control the statistical distributions independently of the target location
Carobolante, Jean-Baptiste. "Vers un monde spectral : théorie d'une hantise de l'image à partir du cinéma de spectre (1998-2018)." Electronic Thesis or Diss., Normandie, 2020. http://www.theses.fr/2020NORMC036.
Full textThis thesis attempts to achieve two objectives: first, to produce a general analysis of contemporary cinema of spectre where we define its genesis with Ringu (Hideo Nakata, 1998). What distinguishes spectral films from ghost films is the fact that their patterns are intimately linked to technological, social and metaphysical doubts of our contemporary societies. The concept of spectre, defined throughout this research, is intrinsically linked to the history of art and the philosophy of the image and perception. This is how we arrive at the second objective: to propose a theory of our contemporary relationship to the image based on this cinematographic genre. The initial theoretical intuition is that we live in times where the image has a predominant political value, to the point of influencing action and that we can find, in the image itself, the material for thinking about this growing influence. Thus, the "spectral" cinema, as a cinema where the spectre is defined as "an invisible form which will do everything to make itself visible", is to us the very cinema where this power of the image and its part of incarnation are played out
Attal, Yoann. "Processeurs atomiques utilisant la propriété de creusement spectral : modélisation et application à l’analyse spectrale radiofréquence large bande sur porteuse optique." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS161/document.
Full textThe Spectral Hole Burning property, found in some rare-earth ion-doped crystals at low temperature is particularly relevant for analogic processing of radiofrequency signals. Indeed, it enables processing functions to be programmed in the crystal’s absorption spectrum.Starting with the first demonstrations of a wideband radiofrequency spectrum analyser, we aim at improving its performances, which requires an accurate modelling of the light-matter interaction and all the perturbations arising from the upgrade in TRL (Technology Readiness Level). Therefore, we have developed a model and extended its validity domain to a broad variety of SHB-based protocols.We applied this model on a particular material, namely a Tm³ ⁺:YAG crystal. After measuring experimentally the relevant intrinsic parameters of this crystal, we applied our model to a protocol which is quite similar to the one of the spectrum analyser we aim at optimizing, namely the engraving of wideband spectral gratings. The comparison of our experimental results to the simulations from our model proved its validity.Finally we applied it to the exact case of the radiofrequency spectrum analyser. With the simulations, we determined how to improve its performances, and particularly increase the dynamic range with realistic experimental parameters
Miller, James Henry 1957. "Estimation of sea surface wave spectra using acoustic tomography." Thesis, Massachusetts Institute of Technology, 1987. http://hdl.handle.net/1721.1/44595.
Full textBibliography: p. 164-171.
Vita.
by James Henry Miller.
Sc.D.
Misra, Ranjeev. "The spectral characteristics of galactic black hole systems." Diss., The University of Arizona, 1996. http://hdl.handle.net/10150/290618.
Full textMonroy, Charles. "Simulation numérique de l'intéraction houle-structure en fluide visqueux par décomposition fonctionnelle." Ecole centrale de Nantes, 2010. http://www.theses.fr/2010ECDN0033.
Full textFunctional decomposition in the Navier-Stokes equations is a mathematical tool with takes advantage of the fact that the swell propagation and the evolution of the diffracted field from a body are two phenomena with different spatial scales. The principal unknowns of the problem are divided into an incident part representing the swell propagation and a diffracted part representing the perturbation due to the presence of the floating or submerged body. This decomposition is then introduced in the Reynolds-averaged Navier-Stokes equations. Potential flow theory (more precisely spectral methods) is used to compute the incident waves while viscous effects are taken into account by using a modified RANSE solver to obtain the diffracted field in the full domain. By using this approach it is possible to simulate various nonlinear incident waves in an efficient and accurate manner: regular wave trains, focused waves, irregular 2D or 3D sea states. The present work is a contribution to the developent of the SWENSE (Spectal Ware Explicit Navier-Stokes Equations) method and offers several validation cases in regular sea as well as in irregular sea. The limitations of the method in its current form are discussed, especially the over-breaking problem, and answers to them are provided
Traykovski, Peter. "Horizontal directional spectrum estimation of the Heard Island transmissions." Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/38348.
Full textIncludes bibliographical references.
by Peter Traykovski.
Ocean.E.
Bowers, Jeffrey Allan 1975. "Feasibility studies for quantum computation with spectral hole burning media." Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/50632.
Full textIncludes bibliographical references (leaves 113-115).
In this thesis I consider a scheme for quantum computation in which quantum bits (qubits) are stored in individual spectral holes of an in homogeneously broadened medium, such as a cryogenically cooled crystal of Pr:Y2 SiO 3 . Qubits are transferred between spectral holes by virtue of mutual coupling of the atoms to a single quantized cavity mode, which allows for easy implementation of two bit gate operations. I show that laser induced adiabatic passage can be used to transfer an arbitrary symmetric ground state coherence between two many-atom spectral holes. However, it is not clear how to construct entangled states of qubits which are represented by many atoms, and therefore we require that each spectral hole contain only a single atom. The many-atom coherence transfer is still useful for constructing N-photon Fock states in the cavity. The coherence transfer is susceptible to spontaneous emission and cavity decay; the latter is the dominant decay channel for Pr:YSO. I have shown that the coherence transfer can proceed in a cavity dark state which is invulnerable to cavity decay, at the cost of becoming especially susceptible to spontaneous emission, and vice versa for coherence transfer with an atomic dark state. We can achieve the strong atom-cavity coupling necessary for coherence transfer by using extremely high-finesse optical resonators and by reducing the cavity mode volume. The latter is achieved by either reducing the total cavity volume as with a microcavity, or by tightly focusing the mode to a small active volume as with a near-concentric cavity. I consider how the presense of multiple degenerate cavity modes affects the two-atom coherence transfer, and find that the transfer is only exact when both atoms couple to the same mode. For the prototype Pr:YSO material, using a tightly focused mode in a centimeter-length cavity, we can couple as many as 400 qubits with a ground state coherence lifetime of about 1 s, which would allow us to apply as many as 20 sequential gate operations.
by Jeffrey Allan Bowers.
S.B.
M.Eng.
Braker, Benjamin M. "Spatial-spectral processing for imaging systems: Multibeam RF imaging and radar systems using spectral hole burning materials." Connect to online resource, 2008. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3337181.
Full textMcGowan, Shane G. "Haunting the House, Haunting the Page: The Spectral Governess in Victorian Fiction." Digital Archive @ GSU, 2011. http://digitalarchive.gsu.edu/english_theses/119.
Full textBrenneman, Laura West. "A spectral survey of black hole spin in active galactic nuclei." College Park, Md.: University of Maryland, 2007. http://hdl.handle.net/1903/7597.
Full textThesis research directed by: Dept. of Astronomy. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Luquet, Romain. "Simulation numérique de l'écoulement visqueux autour d'un navire soumis à une houle quelconque." Nantes, 2007. http://www.theses.fr/2007NANT2048.
Full textThe present work is dedicated to the development of a numerical tool intended for the simulation of the viscous flow around marine structures in complex waves. This type of simulations is still difficult to reach by the numerical models based on the resolution of the Navier-Stokes equations and to overcome this incapacity, a new formulation named thereafter SWENSE (Spectral Wave Explicit Navier-Stokes Equations) is developed here by modifying the initial problem to solve only the diffracted field. That consists in splitting the variables of the problem into the sum of an incident term and a diffracted term. The incident terms being known explicitly via a non-linear potential model, the diffracted terms are then calculated thanks to the SWENS equations. Two models are implemented to obtain the incident field : the Rienecker and Fenton method for the non-linear regular waves and the HOS (High-Order Spectral) method for all the other cases of waves. This new approch is validated by comparison with other codes based on inviscid assumption or Navier-Stokes equations like with experimental data. The code is applied on ships (DTMB, Série60, Wigley) and offshore structures (vertical circular column, TLP) for various conditions of incident waves from regular waves to a focused wave packet. The results obtained show the ability of the method to simulate, in assumption of viscous fluid, the interaction with complex waves. Moreover, the CPU time is significantly decreased
Townsley, Christopher Mark. "Optical spectroscopy of two-dimensional hole systems in the quantum limit." Thesis, University of Exeter, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.312067.
Full textBlondel-Couprie, Elise. "Reconstruction et prévision déterministe de houle à partir de données mesurées." Phd thesis, Ecole centrale de nantes - ECN, 2009. http://tel.archives-ouvertes.fr/tel-00449343.
Full textNeupane, Bhanu. "Excited state electronic structure, excitation energy transfer, and charge separation dynamics in various natural and artificial photosynthetic systems containing zinc and magnesium chlorins." Diss., Kansas State University, 2011. http://hdl.handle.net/2097/13105.
Full textDepartment of Chemistry
Ryszard J. Jankowiak
This dissertation reports the low temperature frequency domain spectroscopic study of three different natural pigment protein complexes and one artificial antenna system. The main focus of this work is to better understand electronic structure, excitation energy transfer (EET), and electron transfer (ET) dynamics in these systems that could have impact on achieving higher efficiency in future artificial solar cells. In the first part of this dissertation, electronic structure and EET pathways in isolated intact CP43 prime protein complex, which is isolated from Cyanobacterium synechocystis PCC 6803 grown under iron stressed conditions, are investigated using low-temperature absorption, fluorescence, fluorescence excitation, and hole-burning (HB) spectroscopies. This work suggests that, in analogy to the CP43 complex of PSII core, CP43 prime possesses two quasi-degenerate low energy states, A prime and B prime. The various low-temperature optical spectra are fitted considering an uncorrelated EET model. This work suggests that for optimal energy transfer from CP43 prime to PSI, the A prime and B prime state chlorophylls belonging to each CP43 prime should face towards the PSI core. The second part of dissertation reports the photochemical HB study on novel Zinc bacterial reaction center (Zn-RC) from Rhodobacter sphaeroides and its β-mutant (Zn-β-RC). This study shows that ET in the two samples is similar; however, the quantum efficiency of charge separation in the mutant decreases by 60 %. This finding suggests that the coordination state of the HA site zinc bacteriochlorophyll does not tune the active branch ET. Simultaneous fits of various optical spectra using experimentally determined inhomogeneity provides more reliable electron phonon coupling parameters for the P870 state of both RC samples. In the last part of this dissertation, EET in a novel artificial antenna system (ethynyl linked chlorophyll trefoil, ChlT1) is investigated. EET time in ChlT1 is ~2 ps. ChlT1 in MTHF/ethanol glass forms four different types of aggregates, A1-A4. The EET time in A1 and A2 type aggregates slows down only by a factor of 5 and 7, respectively. This study suggests that ChlT1 and its aggregates can be used as efficient antenna systems in designing organic solar cells.
Hamm, Luc. "Modélisation numérique bidimensionnelle de la propagation de la houle dans la zone de déferlement." Université Joseph Fourier (Grenoble), 1995. http://www.theses.fr/1995GRE10147.
Full textWei, Dennis. "X-ray power density spectra of black hole binaries : a new deadtime model for the RXTE PCA." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/36115.
Full textIncludes bibliographical references (p. 97-100).
The power density spectrum is an essential tool for determining the frequency content of X-ray radiation from astronomical sources. For neutron star systems, power density spectra reveal coherent oscillations for those sources that are pulsars, while quasi-periodic oscillations over a wide range of frequencies (0.01 to 1300 Hz) are used to identify subclasses and to probe the details of accretion physics. For black hole binaries, the power density spectrum is useful in many important contexts: distinguishing black hole binaries from neutron star binaries, tracking the evolution of X-ray states, and understanding the dynamics of accretion disks, in particular the high-frequency oscillations that appear to be rooted in general relativity for strong gravitational fields. However, measurements of the power density spectrum are modified by the effects of deadtime in X-ray detectors. In this work, we focus on the Proportional Counter Array (PCA) instrument of the Rossi X-ray Timing Explorer (RXTE), an orbiting observatory that offers fast, microsecond-level time resolution and modest spectral resolution for celestial X-ray sources. We derive a new model for the effect of detector deadtime on measurements of the power density spectrum.
(cont.) The model treats in a unified manner the contributions from self-deadtime among selected events and interference from non-selected events. Using high-frequency power density spectra obtained from observations of X-ray sources, the new model is shown to be more accurate than existing approaches. The comparison between the model and the observations leads to a measurement of 8.83 s for the fundamental instrument deadtime timescale, which is dominated by the analog-to-digital conversion time. We additionally measure 59 jts and 137 /is for the Very Large Event deadtime related to observer-specified settings 1 and 2 respectively. Future refinements to the deadtimle model are discussed, such as corrections for highly variable sources and for individual X-ray energy bands.
(cont.) A preliminary comparison between power density spectra from black hole binaries and neutron star binaries is undertaken using the new deadtime model. While it may be possible to use high-frequency cut-offs in the power continuum to distinguish neutron star binaries from black hole binaries in the thermal and hard X-ray states, the comparison is inconclusive for black hole binaries in the steep power-law state. Since state definitions require considerations of X-ray spectral properties, the comparison results dispute a suggestion in the literature that accreting neutron stars and black holes can be distinguished on the basis of power density spectra alone.
by Dennis Wei.
S.B.
Zarate, Anastacio Daniela <1994>. "“Journeys End In Lovers Meeting”: The Spectral Uncanny in Carmilla and The Haunting Of Hill House." Master's Degree Thesis, Università Ca' Foscari Venezia, 2021. http://hdl.handle.net/10579/19948.
Full textKiatgamolchai, Somchai. "Maximum-entropy mobility spectrum of two-dimensional hole gas in strained-Si₁-ₓGeₓ/Si heterostructures." Thesis, University of Warwick, 2000. http://wrap.warwick.ac.uk/56132/.
Full textKell, Adam. "Energy transfer and exciton dynamics in photosynthetic pigment–protein complexes." Diss., Kansas State University, 2016. http://hdl.handle.net/2097/32539.
Full textChemistry
Ryszard J. Jankowiak
The structure-function relationships of natural pigment–protein complexes are of great interest, as the electronic properties of the pigments are tuned by the protein environment to achieve high quantum yields and photon utilization. Determination of electronic structure and exciton dynamics in protein complexes is complicated by static disorder and uncertainties in the properties of system-bath coupling. The latter is described by the phonon profile (or spectral density), whose shape can only be reliably measured experimentally for the lowest energy state. Low-temperature, laser-based spectroscopies are applied towards model pigment–protein complexes, i.e., the Fenna-Matthews-Olson (FMO) and water-soluble chlorophyll-binding (WSCP) complexes, in order to study system-bath coupling and energy transfer pathways. Site-selective techniques, e.g., hole burning (HB) and fluorescence line narrowing, are utilized to overcome static disorder and reveal details on homogeneous broadening. In addition, excitonic calculations with non-Markovian lineshapes provide information on electronic structure and exciton dynamics. A new lognormal functional form of the spectral density is recommended which appropriately defines electron-phonon parameters, i.e., Huang-Rhys factor and reorganization energy. Absorbance and fluorescence spectral shifts and HB spectra reveal that samples of FMO may contain a subpopulation of destabilized proteins with modified HB efficiencies. Simulations of spectra corresponding to intact proteins indicate that the entire trimer has to be taken into account in order to properly describe fluorescence and HB spectra. The redshifted fluorescence spectrum of WSCP is described by uncorrelated energy transfer as opposed to previous models of excited state protein relaxation. Also, based on nonconservative HB spectra measured for WSCP, a mechanism of electron transfer between chlorophylls and aromatic amino acids is proposed.
Lestari, Saskia. "Residual Stress Measurements of Unblasted and Sandblasted Mild Steel Specimens Using X-Ray Diffraction, Strain-Gage Hole Drilling, and Electronic Speckle Pattern Interferometry (ESPI) Hole Drilling Methods." ScholarWorks@UNO, 2004. http://scholarworks.uno.edu/td/90.
Full textAssef, Roberto Jose. "Properties of Active Galactic Nuclei and Galaxies: Spectral Energy Distributions, Luminosity Functions and Black Hole Masses." The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1281369360.
Full textEGRON, ELISE MARIE JEANNE. "Spectral Comparisons of Neutron Star Low-Mass X-Ray Binaries with Black Hole X-Ray Binaries." Doctoral thesis, Università degli Studi di Cagliari, 2013. http://hdl.handle.net/11584/266223.
Full textZhang, Yanwu. "Spectral feature classification of oceanographic processes using an autonomous underwater vehicle." Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/29047.
Full textIncludes bibliographical references (leaves 202-211).
The thesis develops and demonstrates methods of classifying ocean processes using an underwater moving platform such as an Autonomous Underwater Vehicle (AUV). The "mingled spectrum principle" is established which concisely relates observations from a moving platform to the frequency-wavenumber spectrum of the ocean process. It clearly reveals the role of the AUV speed in mingling temporal and spatial information. For classifying different processes, an AUV is not only able to jointly utilize the time-space information, but also at a tunable proportion by adjusting its cruise speed. In this respect, AUVs are advantageous compared with traditional oceanographic platforms. Based on the mingled spectrum principle, a parametric tool for designing an AUVbased spectral classifier is developed. An AUV's controllable speed tunes the separability between the mingled spectra of different processes. This property is the key to optimizing the classifier's performance. As a case study, AUV-based classification is applied to distinguish ocean convection from internal waves. The mingled spectrum templates are derived from the MIT Ocean Convection Model and the Garrett-Munk internal wave spectrum model. To allow for mismatch between modeled templates and real measurements, the AUVbased classifier is designed to be robust to parameter uncertainties. By simulation tests on the classifier, it is demonstrated that at a higher AUV speed, convection's distinct spatial feature is highlighted to the advantage of classification. Experimental data are used to test the AUV-based classifier. An AUV-borne flow measurement system is designed and built, using an Acoustic Doppler Velocimeter (ADV). The system is calibrated in a high-precision tow tank. In February 1998, the AUV acquired field data of flow velocity in the Labrador Sea Convection Experiment. The Earth-referenced vertical flow velocity is extracted from the raw measurements. The classification test result detects convection's occurrence, a finding supported by more traditional oceanographic analyses and observations. The thesis work provides an important foundation for future work in autonomous detection and sampling of oceanographic processes.
by Yanwu Zhang.
Ph.D.
Bartholomew, Richard John. "Dynamic plasmonic metasurfaces in the visible spectrum." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/274755.
Full textJensen, Trey W., M. Vivek, Kyle S. Dawson, Scott F. Anderson, Julian Bautista, Dmitry Bizyaev, William N. Brandt, et al. "SPECTRAL EVOLUTION IN HIGH REDSHIFT QUASARS FROM THE FINAL BARYON OSCILLATION SPECTROSCOPIC SURVEY SAMPLE." IOP PUBLISHING LTD, 2016. http://hdl.handle.net/10150/622676.
Full textPerignon, Yves. "Modélisation déterministe des états de mer - Application à la rétrodiffusion d'ondes radar." Phd thesis, Ecole centrale de nantes - ECN, 2011. http://tel.archives-ouvertes.fr/tel-00624645.
Full textRyle, Wesley Thomas. "Investigation of Fundamental Black Hole Properties of AGN through Optical Variability." Digital Archive @ GSU, 2008. http://digitalarchive.gsu.edu/phy_astr_diss/25.
Full textPintore, Fabio. "X-ray spectral states and metallicity of Ultra Luminous X-ray sources: a deeper insight into their spectral properties." Doctoral thesis, Università degli studi di Padova, 2013. http://hdl.handle.net/11577/3423019.
Full textLe Ultraluminous X-ray sources (ULXs) sono una classe di sorgenti extragalattiche, lontane dal nucleo della galassia ospite e puntiformi, con una luminosità isotropica maggiore di 1e39 erg/s. Si pensa siano buchi neri in accrescimento in sistemi binari ma i meccanismi di accrescimento alla base della loro estrema luminosità X sono ancora lontani dall'essere totalmente compresi. In questo lavoro è stata svolta una dettagliata analisi spettrale di tutte le osservazioni disponibili di XMM-Newton di due ULXs in NGC 1313, adottando un modello comune basato su un disco multicolore più una componente di comptonizzazione. Noi siamo stati capaci di descrivere l'evoluzione spettrale delle due sorgenti all'interno di tale scenario. Inoltre, è stato possibile determinare le abbondanze chimiche dei loro ambienti locali facendo uso sia di dati EPIC che di dati RGS. I risultati sembrano indicare metallicità sub-solare per entrambe le sorgenti. La possibile esistenza di due stati spettrali in NGC 1313 X-1 e X-1 hanno suggerito di cercare comportamenti simili anche in altre ULXs. Per questo motivo, un campione più vasto di sorgenti, il quale include IC 342 X-1, NGC 5204 X-1, NGC 5408 X-1, Holmberg IX X-1, Holmberg II X-1, NGC 55 ULX1 e NGC 253 X-1, è stato studiato. Queste sorgenti sono state selezionate poichè la loro luminosità è maggiore di 2e39 erg/s, sono sorgenti vicine e posseggono un'osservazione lunga e almeno altre tre ulteriori osservazioni. L'alta qualità delle osservazioni fornisce almeno 10000 conteggi nello strumento EPIC, consentendoci di determinare con più precisione la curvatura ad alta energia e di svolgere un'analisi delle abbondanze del materiale presente lungo la linea di vista. E' stato trovato che, nella maggior parte degli spettri delle sorgenti del nostro campione, la componente ad alta energia mostra una bassa temperatura ed è otticamente spessa. Ad ogni modo, a causa della bassa qualità di alcune osservazioni, i fit spettrali sono a volte influenzati da una degenerazione fra i parametri spettrali e la curvatura ad alta energia dello spettro non è facilmente individuata. Per queste ragioni, in modo simile a ciò che è stato ampiamente fatto per gli spettri di sorgenti binarie Galattiche di raggi X, abbiamo adottato il metodo degli hardness ratios che hanno anche il vantaggio di consentirci di studiare la variabilità spettrale in un modo completamente indipendente dal modello spettrale. Questa analisi suggerisce l'esistenza di un possibile caratteristico cammino evolutivo sui diagrammi colore-colore and intensità-colore collegando almeno due differenti stati spettrali. Questo comportamento può essere spiegato in termini di un disco di accrescimento non standard in cui l'aumento del tasso di accrescimento produce fuoriuscite di materiale che diventano via via più importanti alle più alte luminosità. Lo scenario di emissione di vento è stato ulteriormente studiato analizzando le proprietà spettrali e temporali della sorgente NGC 55 ULX1 che mostra un'enigmatica variabilità nel flusso. Infatti, rapide diminuzioni del flusso emesso sono osservate su tempi scala di minuti od ore che potrebbero essere prodotti da nuvole di materiale otticamente spesso che di tanto in tanto entrano all'interno della nostra linea di vista, oscurando le regioni centrali della sorgente. E' stata fatta un'analisi comparativa fra le proprietà della sua variabilità con quelle di un sistema Galattico in accrescimento, EXO 0748-676, conosciuto per ospitare una stella di neutroni e per essere una sorgente con “dips". Abbiamo caratterizzato la natura della variabilità osservata negli spettri di potenza e, in particolare, abbiamo testato la presenza di una relazione lineare tra la variabilità quadratica media (RMS) e il flusso in diverse bande di energia. E' stato trovato che, in EXO 0748-676, la predominanza di un mezzo assorbente (ionizzato) influenza fortemente la relazione fra RMS e flusso che potrebbero anti-correlare qualora le linee in assorbimento fossero non sature. D'altra parte, nessuna variabilità ulteriore è introdotta quando esse sono sature e la variabilità è dominata dal flusso d'accrescimento. In questo caso la sorgente mostra una correlazione positiva tra flusso ed RMS. Poichè noi abbiamo individuato un'anti-correlazione in NGC 55 ULX1, proponiamo che ai livelli di flusso più alti, imponenti venti, non saturi e turbolenti, siano eiettati. Infine, ULX persistenti come quelle discusse sopra, non consentono una facile comparazione con il comportameno delle sorgenti binarie Galattiche. ULX transienti sono molto più promettenti sotto questo punto di vista poichè esse attraversano differenti regimi di accrescimento. Fino ad ora, solo una manciata di ULX transienti sono state scoperte e la connessione tra loro e le sorgenti persistenti è ancora poco chiara. Noi abbiamo monitorato l'evoluzione di una nuova ULX (XMMU J004243.6+41251) scoperta nel Gennaio 2012 nella galassia M31 da XMM-Newton. La sua accensione ha mostrato che, alla luminosità di picco, la sorgente è entrata nel regime ULX. E' stata poi ampiamente seguita da Swift durante la sua fase di decadimento in flusso. La sorgente ha sperimentato un veloce incremento del flusso dopo la sua scoperta, durante il quale gli spettri ottenuti da XMM-Newton si sono evoluti da un semplice andamento a legge di potenza fino ad una forma tipica per un disco d'accrescimento in tutti gli spettri Swift, suggerendo una transizione tra gli stati canonici low/hard and high/soft. La sua luminosità è rimasta abbastanza costante per almeno 40 giorni, per poi scendere al di sotto di 1e38 erg/s. Durante il decadimento, l'emissione del disco è diventata più soft e la temperatura è diminuita da ~0.9 keV fino a ~0.5 keV. Un follow-up ottico e immagini UVOT non sono riuscite a fornire evidenze di una controparte fino a 22 mag in banda ottica e fino a 23-24 mag nel vicino Ultravioletto. Noi abbiamo comparato le proprietà di XMMU J004243.6+41251 con quelle di altre ULX transienti e buchi neri Galattici, trovando più similitudini con le ultime.
Zang, Xiaoyun 1971. "Spectral description of low frequency oceanic variability." Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/59094.
Full textIncludes bibliographical references (p. 179-187).
A simple dynamic model is used with various observations to provide an approximate spectral description of low frequency oceanic variability. Such a spectrum has wide application in oceanography, including the optimal design of observational strategy for the deployment of floats, the study of Lagrangian statistics and the estimate of uncertainty for heat content and mass flux. Analytic formulas for the frequency and wavenumber spectra of any physical variable, and for the cross spectra between any two different variables for each vertical mode of the simple dynamic model are derived. No heat transport exists in the model. No momentum flux exists either if the energy distribution is isotropic. It is found that all model spectra are related to each other through the frequency and wavenumber spectrum of the stream-function for each mode, ... , where ... represent horizontal wavenumbers, w stands for frequency, n is vertical mode number, and ... are latitude and longitude, respectively. Given ... , any model spectrum can be estimated. In this study, an inverse problem is faced: ... is unknown; however, some observational spectra are available. I want to estimate ... if it exists. Estimated spectra of the low frequency variability are derived from various measurements: (i) The vertical structure of and kinetic energy and potential energy is inferred from current meter and temperature mooring measurements, respectively. (ii) Satellite altimetry measurements produce the geographic distributions of surface kinetic energy magnitude and the frequency and wavenumber spectra of sea surface height. (iii) XBT measurements yield the temperature wavenumber spectra and their depth dependence. (v) Current meter and temperature mooring measurements provide the frequency spectra of horizontal velocities and temperature. It is found that a simple form for ... does exist and an analytical formula for a geographically varying ... is constructed. Only the energy magnitude depends on location. The wavenumber spectral shape, frequency spectral shape and vertical mode structure are universal. This study shows that motion within the large-scale low-frequency spectral band is primarily governed by quasigeostrophic dynamics and all observations can be simplified as a certain function of ... The low frequency variability is a broad-band process and Rossby waves are particular parts of it. Although they are an incomplete description of oceanic variability in the North Pacific, real oceanic motions with energy levels varying from about 10-40% of the total in each frequency band are indistinguishable from the simplest theoretical Rossby wave description. At higher latitudes, as the linear waves slow, they disappear altogether. Non-equatorial latitudes display some energy with frequencies too high for consistency with linear theory; this energy produces a positive bias if a lumped average westward phase speed is computed for all the motions present.
by Xiaoyun Zang.
Ph.D.
Ducrozet, Guillaume. "Modélisation des processus non-linéaires de génération et de propagation d'états de mer par une approche spectrale." Phd thesis, Université de Nantes, 2007. http://tel.archives-ouvertes.fr/tel-00263596.
Full textUn traitement original de la génération de houle non-linéaire est proposé. Il permet l'accès à des simulations de champs de vagues tridimensionnels complexes, fortement cambrés, dans un bassin de houle. Diverses comparaisons avec des expériences menées dans le bassin du Laboratoire de Mécanique des Fluides de l'ECN sont présentées.
Des simulations océaniques, en milieu ouvert, sont également proposées. Un intérêt particulier est porté à l'étude de l'apparition des vagues scélérates au sein de l'océan. L'importance des effets non-linéaires est pointée ainsi que l'aptitude de la méthode à modéliser de tels phénomènes. Des comparaisons avec les méthodes classiquement employées dans ce genre de problématique indiquent l'intérêt de l'approche utilisée ici.
La résolution du problème de tenue à la mer est également envisagée. L'utilisation de la méthode HOS dans les codes couplés, développés au Laboratoire de Mécanique des Fluides (potentiel, RANS, SPH), est envisagée. Elle permettra la description précise de la houle incidente ; le couplage est mis en place et validé sur un certain nombre de cas d'application.
Wortham, Cimarron James Lemuel IV. "A multi-dimensional spectral description of ocean variability with applications." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/79296.
Full text"February 2013." Cataloged from PDF version of thesis.
Includes bibliographical references (p. 175-184).
Efforts to monitor the ocean for signs of climate change are hampered by ever-present noise, in the form of stochastic ocean variability, and detailed knowledge of the character of this noise is necessary for estimating the significance of apparent trends. Typically, uncertainty estimates are made by a variety of ad hoc methods, often based on numerical model results or the variability of the data set being analyzed. We provide a systematic approach based on the four-dimensional frequency-wavenumber spectrum of low-frequency ocean variability. This thesis presents an empirical model of the spectrum of ocean variability for periods between about 20 days and 15 years and wavelengths of about 200-10,000 km, and describes applications to ocean circulation trend detection, observing system design, and satellite data processing. The horizontal wavenumber-frequency part of the model spectrum is based on satellite altimetry, current meter data, moored temperature records, and shipboard ADCP data. The spectrum is dominated by motions along a "nondispersive line". The observations considered are consistent with a universal [omega] -² power law at the high end of the frequency range, but inconsistent with a universal wavenumber power law. The model spectrum is globally varying and accounts for changes in dominant phase speed, period, and wavelength with location. The vertical structure of the model spectrum is based on numerical model results, current meter data, and theoretical considerations. We find that the vertical structure of kinetic energy is surface intensified relative to the simplest theoretical predictions. We present a theory for the interaction of linear Rossby waves with rough topography; rough topography can explain both the observed phase speeds and vertical structure of variability. The improved description of low-frequency ocean variability presented here will serve as a useful tool for future oceanographic studies.
by Cimarron James Lemuel Wortham, IV.
Ph.D.
Ghidini, Davide. "Accurate Portable Residual Stress ESPI Measurement Device." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020.
Find full textHaven, Scott. "Measuring surface ocean wave height and directional spectra using an Acoustic Doppler Current Profiler from an autonomous underwater vehicle." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/78181.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 117-119).
The Acoustic Doppler Current Profiler (ADCP) is a proven technology which is capable of measuring surface wave height and directional information, however it is generally limited to rigid, bottom mounted applications which limit its capabilities for measuring deep water waves. By employing an upward looking ADCP on a moving platform, such as an autonomous underwater vehicle or submerged float, we show that it is possible to remove the wave induced motion of the platform and accurately measure surface ocean wave information. The platform selected for testing was a REMUS-100 vehicle equipped with an upward and downward looking ADCP and high accuracy Kearfott inertial navigation unit. Additionally, a Microstrain 3DM-GX3-25 Attitude Heading Reference System was tested as a low cost alternative to the Kearfott system. An experiment consisting of multiple REMUS deployments was conducted near the Martha's Vineyard Coastal Observatory (MVCO). The wave induced motion was measured by various inertial and acoustic sensors and removed from the ADCP data record. The surface wave height and mean directional estimates were compared against a Datawell MKIII directional Waverider buoy and bottom mounted 1200 kHz upward looking ADCP at the MVCO. Results demonstrate that the non-directional spectrum of wave height and the mean wave direction as a function of frequency can be accurately measured from an underway autonomous underwater vehicle in coastal depth waters using an ADCP.
by Scott Haven.
S.M.
Oberli, Solène. "Molecular double core hole spectroscopy : the role of electronic and nuclear dynamics." Thesis, Sorbonne université, 2018. http://www.theses.fr/2018SORUS011/document.
Full textProperties of matter can be revealed through its interaction with light. In particular, X-ray based spectroscopies are widely used to gain insight into the local electronic structure of isolated elements or atoms or molecules embedded in an environment, and are element specific. Such capabilities evidence their potential as tools for chemical analysis. The recent development of X-ray free electron laser (XFEL) allows to probe matter with spatial (angström) and temporal (femtosecond) resolutions out of reach so far with optical lasers or third generation synchrotron sources. The unique characteristics of XFEL radiation are exploited in several areas, such as chemistry, physics and biology. In particular, double core hole spectroscopy, whose sensitivity is considerably enhanced compared to conventional X-ray spectroscopies, is on the rise. Double core hole states, also referred as hollow states, are characterized by two electron vacancies in the inner shell(s). In the XFEL regime, the dominant pathway to produce them is the sequential absorption of two x-ray photons, where a singly core ionized species is produced in the intermediate step. In the present thesis, we tackle the study of double core hole state formation induced by the sequential absorption of two x-ray photons from an intense femtosecond laser pulse. On one hand, we bring forward the influence of the nuclear dynamics on core photoionization processes. On the other hand, we demonstrate that an active control over the competition between photoabsorption and Auger decay in the intermediate single core hole state is possible by varying the laser pulse duration. In pursuing these goals, we develop for the first time a time-dependent full quantum model treating both the photon absorption and the nuclear dynamics explicitly as well as the Auger decay phenomenologically. This purely theoretical work paves the road for a complete description of molecular double core hole state formation in th XFEL regime
Lavielle, Vincent. "Processus atomiques cohérents appliqués à l'analyse spectrale très large bande de signaux radio fréquence." Phd thesis, Université Paris Sud - Paris XI, 2004. http://tel.archives-ouvertes.fr/tel-00007886.
Full textBurbaev, T. M., D. S. Kozirev, D. N. Lobanov, A. V. Novikov, N. N. Sibeldin, and M. L. Skorikov. "Four-Particle Recombination Luminescence of Electron-Hole Liquid and Biexcitons in SiGe Quasi-Ttwo-Dimensional Layers of Silicon Heterostructures in the Visible Spectrum." Thesis, Sumy State University, 2012. http://essuir.sumdu.edu.ua/handle/123456789/34876.
Full textCho, Steven N. (Steven Nicholas). "Spectral changes during the 0.1-4 Hz quasi-periodic oscillations in the black hole X-ray binary XTE J1550-564." Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/32312.
Full textIncludes bibliographical references (p. 61-62).
In this thesis, we describe the analysis of 0.1-4 Hz quasi-periodic oscillations (QPOs) of the black hole X-ray binary XTE J1550-564 using data obtained with the Rossi X-ray Timing Explorer (RXTE) satellite. Data from 13 consecutive observations spanning eight days were included in this analysis. By comparing the spectra of the source when it is in the high intensity phase with the low intensity phase of its QPO cycle, we hoped to gain insight into the cause of QPOs and how they relate to structures and processes in the vicinity of black holes. Like observations from the black hole X-ray binary GRS 1915+105 (Miller and Homan 2005), our observations from XTE J1550-564 showed a significant difference in the Fe ... line equivalent width between the high and low intensities of the QPO for 6 of 13 observations. However, 2 of 13 observations exhibited the opposite effect in that the Fe K [alpha] line equivalent width actually dropped significantly during periods of high intensity. Moreover, we found that the integrated flux of the Fe K [alpha] line was proportional to the flux of the continuum in 5 of 13 observations. Despite these competing effects, the ratios of the low intensity and high intensity spectra indicate an increase in the QPO strength up to about 10 keV, above which it decreases only slightly. We also found dramatic changes in the QPO strength at low energies as the QPO frequency increases. We believe this to be the result of an increase in relative contributions to the spectra as the disk blackbody component becomes more important.
(Cont.) In this thesis, we discuss five possible spectral models to explain QPOs based on the behavior of Fe K [alpha] emission lines. Then we describe whether or not our results agree with those predictions. Although our results show correlations similar to those found by Miller and Homan (2005), they also show anti-correlations in several observations. Our results support Miller and Homan's suggestion of a link between discrete timing features (QPOs) and spectral features (Fe K [alpha] emission lines) which occur in the inner disk around black holes. Our work shows that current explanations for QPOs have some physical basis, suggesting that QPOs are due to either a quasi-periodically changing reflector area in the accretion disk or an episodic modulation of the hard flux component in the corona or jets that irradiates the accretion disk. Our results also suggest that perhaps the correct model is something more complex that goes beyond current models and is able to explain the multiple effects observed in the Fe K [alpha] line.
by Steven N. Cho.
S.M.
Johannsen, Tim. "Testing General Relativity in the Strong-Field Regime with Observations of Black Holes in the Electromagnetic Spectrum." Diss., The University of Arizona, 2012. http://hdl.handle.net/10150/238893.
Full textKpogo-Nuwoklo, Agbéko Komlan. "Fiabilité d'une représentation " par événements " de la climatologie de vagues et de courants en Afrique de l'Ouest." Thesis, Brest, 2015. http://www.theses.fr/2015BRES0053/document.
Full textAccurate estimation of long-term sea conditions is a major issue in design of coastal and offshore structures, coastal zone management or wave energy harvesting. An estimation of long-term sea conditions requires long duration observational data while in West Africa, only a few (3 years) years of observational data are available. To overcome the limits in duration that observations impose, a stochastic approach, event-based representation of sea state data, is proposed to model the wave climate in West Africa. An “event” refers to a wave system (swell or wind sea) evolving over time, that can be observed for a finite, yet significant duration and that can be linked to a single meteorological source phenomenon (e.g. low pressure systems, storms, etc.). Event-based approach provides structures with physical meaning and temporal consistence for the representation of sea states data. The procedure we have used is decomposed into three following steps. First, we have extracted events from a time series of directional spectra. We have then developed a model to represent each event by a reduced number of parameters. In the last step, we have constructed the stochastic events generator which allows for simulation of individual events and for reconstruction of wave climate over durations of arbitrary lengths. Results showed good agreement between reconstructed climate and that of reference and allow to conclude that the stochastic events generator can reliably be used to simulate sea state data in West Africa for a ocean engineering applications
Li, Zhaobin. "Two-phase spectral wave explicit Navier-Stokes equations method for wave-structure interactions." Thesis, Ecole centrale de Nantes, 2018. http://www.theses.fr/2018ECDN0041/document.
Full textThis thesis proposes an efficient algorithm for simulating wave-structure interaction with two-phase Computational Fluid Dynamics (CFD) solvers. The algorithm is based on the coupling of potential wave theory and two phase Navier-Stokes equations. It is an extension of the Spectral Wave Explicit Navier-Stokes Equations (SWENSE) method for generalized two-phase CFD solvers with interface capturing techniques. In this algorithm, the total solution isdecomposed into an incident and acomplementary component. The incident solution is explicitly obtained with spectral wave models based on potential flow theory; only the complementary solution is solved with CFD solvers, representing the influence of the structure on the incident waves. The decomposition ensures the accuracy of the incident wave’s kinematics regardless of the mesh in CFD solvers. A significant reduction of the mesh size is expected in typical wave structure interaction problems. The governing equations are given in three forms: the conservative form, the non conservative form, and the Ghost of Fluid Method (GFM) form. The three sets of governing equations are implemented in OpenFOAM and validated by a series of wave-structure interaction cases. An efficient interpolation technique to map the irregular wave solution from a Higher-Order Spectral (HOS) Method onto the CFD grid is also proposed
Wang, Yunli. "Etude expérimentale et numérique des oscillations hydrodynamiques en milieux poreux partiellement saturés." Thesis, Toulouse, INPT, 2010. http://www.theses.fr/2010INPT0127/document.
Full textThis thesis aims at investigating experimentally, analytically and numerically, the consequences of hydrodynamic variations and oscillations with high temporal variability in partially saturated porous media. The problems investigated in this work involve “free surfaces” both outside and inside the porous media, the free surface being defined as the “atmospheric” water pressure isosurface (Pwater = Patm). The laboratory experiments studied in this work are, respectively: Lateral imbibition in a dry sand box with significant capillary effects; Transmission of oscillations of the free surface through a vertical sand box placed in a small wave canal (IMFT, Toulouse); Dynamics of free surface oscillations and wave propagation in a large wave canal (HYDRALAB, Barcelona), partially covered with sand, with measurements of both open water and groundwater levels, and of sand topography (erosion / deposition). For theoretical studies, we have developed linearized analytical solutions. Here is a sample problem that was treated analytically in this work: The linearized equation of Dupuit-Boussinesq (DB) for transient free surface flow, assuming horizontal flow and instantaneous wetting/drainage of the unsaturated zone: forced oscillations, wave transmission and dissipation through a rectangular sandbox. We also developed a weakly nonlinear solution of the Dupuit-Boussinesq equation to study the sudden imbibition (temporal monitoring of the wetting front). We have studied the different types of transient flow problems related to the experiments cited above by numerical simulation. In particular, we have simulated unsaturated or partially saturated transient flows in vertical cross-section, using a computer code (BIGFLOW 3D) which solves a generalized version of Richards’ equation. Thus, using the Richards / BIGFLOW 3D model, we have studied numerically the experiment of unsaturated imbibition in a dry sand (IMFT sandbox), and then, with the same model, we have also studied the partially saturated wave propagation experiment in the large Barcelona wave canal (HYDRALAB laboratory), focusing on the sloping sandy beach, with coupling between the micro-porous zone (sand) and the “macro-porous” zone (open water). To interpret the results of the latter experiment and compare them to simulations, we use several methods of signal analyzis and signal processing, such as: Fourier analysis, discrete multi-resolution wavelets (Daubechies), auto and cross-correlation functions. These methods are combined with pre-filtering methods to estimate trends and residuals (moving averages; discrete wavelet analyses). This signal analyzis has allowed us to interpret and quantify water propagation phenomena through a sandy beach. To sum up, different modeling approaches, combined with model calibration procedures, were applied to transient nonlinear coupled flow problems. These approaches have allowed us to reproduce globally the water content distributions and water level propagation in the different configurations studied in this work
Venet, Caroline. "Développement d’un filtre spectral ultra résolu pour l’imagerie acousto-optique." Thesis, Paris Sciences et Lettres (ComUE), 2019. https://pastel.archives-ouvertes.fr/tel-02929318.
Full textOptical imaging for Medicine is limited by the spatial resolution loss due to light scattering in turbid media. A hybrid imaging method called ultrasound optical tomography can overcome this botteneck. Indeed the simultaneous use of light and ultrasound gives access to optical contrast in depth within scattering medium with the ultrasounds resolution. Several interferometric methods have been developed in order to detect an acousto-optic signal. However, none of them is adapted to in vivo imaging. For this reason a filter created with spectral hole burning is of special interest. This thesis presents the development of an ultra-narrow filter based on spectral hole burning in a thulium doped yttrium aluminum garnet crystal (Tm:YAG) under magnetic field. The first part of the manuscript describes the characterization of the filter in the imaging setup. Next, the actual imaging of a scattering gel is described. The following part presents the change of the main laser and its frequency stabilization for technological maturation. The last part of the manuscript details how the experiment have been compacted to be bring in a pharmacetical laboratory in order to launch in vivo imaging trials
Caballero, García María Dolores. "Integral spectroscopy of black hole transients and multi-wavelengh study of a new accreting binary system." Doctoral thesis, Universitat de Barcelona, 2008. http://hdl.handle.net/10803/663215.
Full textLinget, Héloïse. "Programmation de cristaux dopés en ions terres rares pour le traitement du signal : application au renversement temporel et à l'analyse spectrale large bande instantanée de signaux RF." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS132/document.
Full textMany signal processing devices rely on the digitalization of the incoming signal. After being processed by a computer, the signal needs to be converted back to its original analog form. Due to the limited bandwidth of analog-to-digital and digital-to-analog stages, the data flow rate is significantly limited. A purely analog solution would then significantly improve the processing time and bandwidth. In our approach, we first transfer the incoming RF signal on an optical carrier, allowing us to process it in the optical domain. For the processing stage, we propose to engrave the absorption profile of a rare earth ion-doped crystal with different shapes (each shape is specific to one processing operation). In this work, two operations are implemented: 1) time reversal of RF signals: we analogically generate the time reversed replica s(−t) of an incoming signal s(t). For this purpose, the shape to be engraved in the absorption profile of a Er:YSO crystal is a non-periodic spectral grating. 2) instantanous broadband spectral analysis: we want to instantaneously access the spectral components of a broadband signal. For this purpose, the shape to be engraved in the absorption profile of a Tm:YAG crystal is a spectro-spatial grating with a variable period
Del, Santo Melania. "Observations of black hole binaries in the integral era : binaires à trou noir à l'ère d'INTEGRAL." Toulouse 3, 2005. http://www.theses.fr/2005TOU30052.
Full textAn X-ray binary is a system containing a compact object (black hole, neutron star or white dwarf) accreting material from a companion star. The matter falling on the compact object is an emitter of X and even soft-gamma radiation. Searching and studying these objects, either transient or persistent, is one of the main goal of INTEGRAL, the in-orbit ESA mission devoted to X-ray and gamma-ray astrophysics. Scans of the Galactic plane and deep exposures of the Galactic Centre are performed periodically by INTEGRAL in the framework of the Core Programme guaranteed time. These regions are well known to be rich of X-ray binaries. Thanks to its unprecedented combined spatial resolution (12' FHM) and sensitivity, the IBIS/ISGRI telescope on board INTEGRAL provides high resolution images and good quality spectra in the energy range 15-600 keV. The work reported in this thesis is divided in two different parts which are linked to the status of the IBIS instrument during the different stages of its operation. In the first part, on-ground and in-flight calibration activities of the IBIS telescope are described. Observations of the Crab have been used in order to improve the spectral response matrix of the instrument; sensitivity and imaging capabilities have been accurately tested with several pointings of the Cyg X-1 region. In order to give an idea of the IBIS scientific performances, among the several results of the first year of observations, I briefly report on two key results I have been contributing: the first IBIS source catalogue and the origin of the Galactic diffuse emission between 20 and 100 keV, explained as being mainly due to the emission of previously unresolved Galactic point sources. The second part concerns data analysis and interpretation of three black hole binaries observed with INTEGRAL and simultaneously with two other X-ray satellites, namely XMM-Newton and RXTE. I present in this thesis the spectral evolution and luminosity variation of two transient black hole candidates, XTE J1720-318 and IGR J17464-3213, observed during their 2003 outburst activities. .
Le, Touzé David. "Méthodes spectrales pour la modélisation non-linéaire d'écoulements à surface libre instationnaires." Phd thesis, Ecole centrale de nantes - ECN, 2003. http://tel.archives-ouvertes.fr/tel-00370200.
Full textUn bilan des différentes approches spectrales employées jusqu'à présent en hydrodynamique navale est d'abord dressé, étayant le choix des techniques développées au cours de ce travail. L'étude des propriétés de ces techniques est ensuite réalisée sur le ‘noyau' de la méthode, i.e. une cuve tri-dimensionnelle de géométrie figée. En particulier, différentes techniques High-Order Spectral sont comparées entre elles et à la méthode directe, et une nouvelle variante est proposée. Des validations sur des cas de lâchers de surface libre et d'oscillations forcées de surface libre sont présentées et confrontées à diverses méthodes.
L'approche est ensuite étendue, à partir de ce ‘noyau' et au moyen de stratégies de ‘potentiel additionnel', donnant lieu au développement de divers modèles. Ainsi, des houles non-linéaires sont modélisées à l'aide de doublets tournants instationnaires spécifiquement développés. Des cas de reproduction de signaux temporels cibles à une distance, et de génération et propagation de houle irrégulière sont présentés. De plus, une caractéristique avantageuse d'une telle approche spectrale est exploitée pour proposer des modèles originaux de diffraction autour de corps. Ceux-ci allient une génération de houle par méthode spectrale à des modèles de diffraction en fluide parfait ou visqueux, formulés en changement de variable. Des exemples illustratifs de diffraction de cette houle autour de corps bi- ou tri-dimensionnels sont proposés.
Enfin, un modèle original de simulation complète, au second-ordre, du processus de génération et propagation en bassin de houle tri-dimensionnel est réalisé. Il inclut la modélisation de différents batteurs, ainsi qu'un modèle d'absorption, permettant notamment de reproduire les caractéristiques complètes du nouveau bassin de houle de l'École Centrale de Nantes. Ce modèle est validé par comparaison à une solution analytique en régime établi et ses propriétés numériques sont étudiées. L'investigation des ondes libres et leur suppression, ainsi que la caractérisation de zones utiles sont proposées à titre d'application.
CARUSO, MATTEO FRANCESCO. "Ottimizzazione del processo produttivo degli acari della specie Dermatophagoides e dei loro allergeni." Doctoral thesis, Università Cattolica del Sacro Cuore, 2020. http://hdl.handle.net/10280/72219.
Full textThis thesis is based on collaboration between University and Lofarma S.p.A., a leading Italian pharmaceutical company which produce preparation for allergic patients like diagnostic kits and immunotherapies. To this purpose every year dozens of kilograms of adult mites are reared and collected in the Acarology department and, after manipulations, used in the Production Department as raw material for most of the preparation. The aim of this project is to analyze the current production methodology of Acarology department and investigate if some steps could be optimized to improve the yield, the production rate and the quality of the raw material while trying to reduce costs and processing times. The research has been divided in 2 main areas: 1) Rearing Procedures (quality assessment about the diet and the strain enacted) and 2) Raw Material Manipulations (optimization of the refining process and valorization of the Raw Material). Between those, most significant results have been achieved in the Raw Material Manipulation section, where is described a novel refining process capable of obtaining higher final yields in a shorter working time. After analyzing the whole manufacturing cycle, is possible to conclude that, within the context of the Acarology Department, is more convenient to proceed with a better manipulation of the raw material in the refining process rather than modifying the actual rearing procedure, which is already suitable for Lofarma needs.