Academic literature on the topic 'Spectre de houle'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Spectre de houle.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Spectre de houle"
Caseau, P. "ETUDE THEORIQUE DE L'EXPLOITATION DES ENREGISTREMENTS DE HOULE." Coastal Engineering Proceedings 1, no. 7 (January 29, 2011): 8. http://dx.doi.org/10.9753/icce.v7.8.
Full textCholodenko, Alan. "The Crypt, the Haunted House, of Cinema." Cultural Studies Review 10, no. 2 (August 12, 2013): 99–113. http://dx.doi.org/10.5130/csr.v10i2.3474.
Full textNowak, M. A. "Leveraging high-resolution spectra to understand black hole spectra." Astronomische Nachrichten 338, no. 2-3 (March 2017): 227–33. http://dx.doi.org/10.1002/asna.201713335.
Full textAli, Mohsin, and Haewoon Nam. "Optimization of Spectrum Hole Utilization in Rayleigh Faded Cognitive Radio Networks." International Journal of Signal Processing Systems 6, no. 1 (March 2018): 1–5. http://dx.doi.org/10.18178/ijsps.6.1.1-5.
Full textLee, In‐Ja, John M. Hayes, and Gerald J. Small. "Hole and antihole profiles in nonphotochemical hole‐burned spectra." Journal of Chemical Physics 91, no. 6 (September 15, 1989): 3463–69. http://dx.doi.org/10.1063/1.456875.
Full textYou, Bei, and Xinwu Cao. "The black hole spins of quasars." Proceedings of the International Astronomical Union 10, S312 (August 2014): 143–44. http://dx.doi.org/10.1017/s1743921315007747.
Full textLynch, Jared. "Resurfacing Specters in the House of Media." Digital Literature Review 1 (January 6, 2014): 51–59. http://dx.doi.org/10.33043/dlr.1.0.51-59.
Full textEilers, Anna–Christina, David W. Hogg, Bernhard Schölkopf, Daniel Foreman-Mackey, Frederick B. Davies, and Jan–Torge Schindler. "A Generative Model for Quasar Spectra." Astrophysical Journal 938, no. 1 (October 1, 2022): 17. http://dx.doi.org/10.3847/1538-4357/ac8ead.
Full textKwofie, Francis, Nuwan Undugodage D. Perera, Kaushalya S. Dahal, George P. Affadu-Danful, Koichi Nishikida, and Barry K. Lavine. "Transmission Infrared Microscopy and Machine Learning Applied to the Forensic Examination of Original Automotive Paint." Applied Spectroscopy 76, no. 1 (December 17, 2021): 118–31. http://dx.doi.org/10.1177/00037028211057574.
Full textSumitomo, Naoko, Hideki Saito, Jun Fukue, and Kenya Watarai. "Relativistic Spectra of Hot Black-Hole Winds." Publications of the Astronomical Society of Japan 61, no. 6 (December 25, 2009): 1281–86. http://dx.doi.org/10.1093/pasj/61.6.1281.
Full textDissertations / Theses on the topic "Spectre de houle"
Wang, Weili. "Remote sensing of swell and currents in coastal zone by HF radar." Thesis, Toulon, 2015. http://www.theses.fr/2015TOUL0011/document.
Full textNearshore marine environment contains many complex processes, but the lack of high-resolution data over a large area during a long time is often the primary obstacle to further research. High-frequency (HF) radar is a mean of remote sensing which obtains continuous near-real time sea surface information over a large area. Thus the study of inversion of marine parameters from HF radar data is very meaningful. Thisthesis makes use of a 13-month-long dataset collected by two phased array HF radar to investigate the characteristics of the sea echo signals, study the data processing and inversion methods, compute sea surface parameters and evaluate the accuracy of radarinversion of swell parameters.The thesis refers to the ground wave HF radar, whose radio waves interact with ocean by Bragg resonance scattering. The development history and applications of HF radar is introduced. The basic theory of electromagnetic wave is reviewed. The principles of inversion of sea surface current, wind direction and swell parameters are described. The feasibility of the swell parameter inversion is investigated. Based on theoretical analysis and statistical studies of a large number of samples, the thesis proposes a series of methods on raw signal processing and quality control, including the determination of the noise level, data averaging in space and time, the proper identification of spectral peaks, the peak width threshold, etc. Respecting the characteristics of different physical processes, inversions of current and wind use spectra collected every 20 min; inversion of swell parameters uses one-hour averaged spectra. The statistics of qualified spectra for swell parameter calculations are presented for both stations. A set of efficient, with a reduced computational cost, automatic computing programs are developed to do the processing and derive marine parameters. Radial current velocities are derived from single radar station. Current vector fields are obtained by combination of both stations. One-year mean flow field in the Iroise Sea is shown, together with the computation of vorticity and divergence. A one-month SeaSonde radar dataset off Qingdao is studied. One-month mean flow pattern together with vorticity and divergence are presented.Relative wind direction with respect to radar look direction is measured through ratio of Bragg peaks amplitudes. Different empirical models are employed to derive radar-inverted relative wind direction. Results show reasonable agreement with model estimations. Different directional distribution models are used to measure the spreading factor for the Iroise Sea. The thesis focuses on the study of swell parameters. Results are validated by buoy and wave model (WAVEWATCH III) data. The assessments show that the accuracy of swell frequency is very good, the accuracy of swell significant waveheight is reasonable, and the accuracy of relative swell direction is low.Consistency of measurements by both radar stations is verified by comparison between the two. This also supports the use of double samples to do the inversion. Use of two radars not only further improves the accuracy but also solves the ambiguity of relative swell direction from single station and gives the absolute wave direction to a certain precision. The thesis proposes a constant relative directionmethod to derive swell significant waveheight, based on the studies of radar integral equation and the inverted results of relative swell direction. This proposal is demonstrated to improve the agreement of radar inversion and buoy/model provided significant waveheight and increases significantly the number of samples. The thesis investigates the accuracy of swell parameters obtained by HF radar. Contributions of random errors in radar observations are quantified. Comparing the differences between radar and buoy/model estimations gives assessments of the contribution of radar intrinsic uncertainty and contribution of other factors
Drevard, Déborah. "Etude expérimentale et numérique de la propagation d'ondes de gravité en zone de déferlement." Phd thesis, Université du Sud Toulon Var, 2006. http://tel.archives-ouvertes.fr/tel-00141744.
Full textL'objectif de ce travail est d'étudier expérimentalement et numériquement la propagation et le déferlement
d'ondes de gravité.
La première partie, expérimentale, propose des méthodes de calcul, basées sur les houles de Stokes, pour la mesure d'ondes partiellement stationnaires à partir d'instruments de type électromagnétique (S4) ou
acoustique (ADV) donnant des mesures synchrones de vitesses et/ou de pression. Les influences du courant,
de la direction de propagation, de la profondeur d'immersion des appareils ainsi que des effets non
linéaires sont alors étudiés à partir de données en bassin et in situ.
La deuxième partie, numérique, consiste en la validation d'une méthode de suivi de surface libre de type
SL-VOF (Semi-Lagrangian Volume Of Fluid), insérée dans un code de calcul industriel (code EOLE de la
société Principia R&D). L'onde de gravité est modélisée par un soliton. L'étude de la propagation et du
déferlement du soliton est effectuée pour deux applications : sur une marche (discontinuité du fond) puis sur un fond de pente constante 1/15. L'évolution de la surface libre, son élévation et le champ de vitesses
sont alors comparés aux résultats expérimentaux.
Canard, Maxime. "Controlled generation of unidirectional irregular sea states in experimental and numerical wave tanks." Electronic Thesis or Diss., Ecole centrale de Nantes, 2024. http://www.theses.fr/2024ECDN0001.
Full textThe objective of this thesis is to improve the wave generation and qualification procedures in the context of ocean engineering studies. The framework is limited to unidirectional irregular sea states generated in experimental and numerical wave tanks. Experiments were carried out using the ECN facilities and numerical studies were performed using the nonlinear potential wave solver HOS-NWT developed by ECN. In the first part of the thesis, the problem of irregular wave propagation in wave tank environments is addressed from theoretical, experimental, and numerical points of view. Paticular attention is paid to the evolution in space of the wave spectrum and statistics. In addition, experimental uncertainties arestudied in detail. The second part of the thesis focuses on developing methods to better control the wave fields at any target position in the domain. First, a procedure focusing on the quality of the wave spectrum is studied. Then, facing the dependence of the wave statistics on the target location, a new procedure is developed and tested to better control the statistical distributions independently of the target location
Carobolante, Jean-Baptiste. "Vers un monde spectral : théorie d'une hantise de l'image à partir du cinéma de spectre (1998-2018)." Electronic Thesis or Diss., Normandie, 2020. http://www.theses.fr/2020NORMC036.
Full textThis thesis attempts to achieve two objectives: first, to produce a general analysis of contemporary cinema of spectre where we define its genesis with Ringu (Hideo Nakata, 1998). What distinguishes spectral films from ghost films is the fact that their patterns are intimately linked to technological, social and metaphysical doubts of our contemporary societies. The concept of spectre, defined throughout this research, is intrinsically linked to the history of art and the philosophy of the image and perception. This is how we arrive at the second objective: to propose a theory of our contemporary relationship to the image based on this cinematographic genre. The initial theoretical intuition is that we live in times where the image has a predominant political value, to the point of influencing action and that we can find, in the image itself, the material for thinking about this growing influence. Thus, the "spectral" cinema, as a cinema where the spectre is defined as "an invisible form which will do everything to make itself visible", is to us the very cinema where this power of the image and its part of incarnation are played out
Attal, Yoann. "Processeurs atomiques utilisant la propriété de creusement spectral : modélisation et application à l’analyse spectrale radiofréquence large bande sur porteuse optique." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS161/document.
Full textThe Spectral Hole Burning property, found in some rare-earth ion-doped crystals at low temperature is particularly relevant for analogic processing of radiofrequency signals. Indeed, it enables processing functions to be programmed in the crystal’s absorption spectrum.Starting with the first demonstrations of a wideband radiofrequency spectrum analyser, we aim at improving its performances, which requires an accurate modelling of the light-matter interaction and all the perturbations arising from the upgrade in TRL (Technology Readiness Level). Therefore, we have developed a model and extended its validity domain to a broad variety of SHB-based protocols.We applied this model on a particular material, namely a Tm³ ⁺:YAG crystal. After measuring experimentally the relevant intrinsic parameters of this crystal, we applied our model to a protocol which is quite similar to the one of the spectrum analyser we aim at optimizing, namely the engraving of wideband spectral gratings. The comparison of our experimental results to the simulations from our model proved its validity.Finally we applied it to the exact case of the radiofrequency spectrum analyser. With the simulations, we determined how to improve its performances, and particularly increase the dynamic range with realistic experimental parameters
Miller, James Henry 1957. "Estimation of sea surface wave spectra using acoustic tomography." Thesis, Massachusetts Institute of Technology, 1987. http://hdl.handle.net/1721.1/44595.
Full textBibliography: p. 164-171.
Vita.
by James Henry Miller.
Sc.D.
Misra, Ranjeev. "The spectral characteristics of galactic black hole systems." Diss., The University of Arizona, 1996. http://hdl.handle.net/10150/290618.
Full textMonroy, Charles. "Simulation numérique de l'intéraction houle-structure en fluide visqueux par décomposition fonctionnelle." Ecole centrale de Nantes, 2010. http://www.theses.fr/2010ECDN0033.
Full textFunctional decomposition in the Navier-Stokes equations is a mathematical tool with takes advantage of the fact that the swell propagation and the evolution of the diffracted field from a body are two phenomena with different spatial scales. The principal unknowns of the problem are divided into an incident part representing the swell propagation and a diffracted part representing the perturbation due to the presence of the floating or submerged body. This decomposition is then introduced in the Reynolds-averaged Navier-Stokes equations. Potential flow theory (more precisely spectral methods) is used to compute the incident waves while viscous effects are taken into account by using a modified RANSE solver to obtain the diffracted field in the full domain. By using this approach it is possible to simulate various nonlinear incident waves in an efficient and accurate manner: regular wave trains, focused waves, irregular 2D or 3D sea states. The present work is a contribution to the developent of the SWENSE (Spectal Ware Explicit Navier-Stokes Equations) method and offers several validation cases in regular sea as well as in irregular sea. The limitations of the method in its current form are discussed, especially the over-breaking problem, and answers to them are provided
Traykovski, Peter. "Horizontal directional spectrum estimation of the Heard Island transmissions." Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/38348.
Full textIncludes bibliographical references.
by Peter Traykovski.
Ocean.E.
Bowers, Jeffrey Allan 1975. "Feasibility studies for quantum computation with spectral hole burning media." Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/50632.
Full textIncludes bibliographical references (leaves 113-115).
In this thesis I consider a scheme for quantum computation in which quantum bits (qubits) are stored in individual spectral holes of an in homogeneously broadened medium, such as a cryogenically cooled crystal of Pr:Y2 SiO 3 . Qubits are transferred between spectral holes by virtue of mutual coupling of the atoms to a single quantized cavity mode, which allows for easy implementation of two bit gate operations. I show that laser induced adiabatic passage can be used to transfer an arbitrary symmetric ground state coherence between two many-atom spectral holes. However, it is not clear how to construct entangled states of qubits which are represented by many atoms, and therefore we require that each spectral hole contain only a single atom. The many-atom coherence transfer is still useful for constructing N-photon Fock states in the cavity. The coherence transfer is susceptible to spontaneous emission and cavity decay; the latter is the dominant decay channel for Pr:YSO. I have shown that the coherence transfer can proceed in a cavity dark state which is invulnerable to cavity decay, at the cost of becoming especially susceptible to spontaneous emission, and vice versa for coherence transfer with an atomic dark state. We can achieve the strong atom-cavity coupling necessary for coherence transfer by using extremely high-finesse optical resonators and by reducing the cavity mode volume. The latter is achieved by either reducing the total cavity volume as with a microcavity, or by tightly focusing the mode to a small active volume as with a near-concentric cavity. I consider how the presense of multiple degenerate cavity modes affects the two-atom coherence transfer, and find that the transfer is only exact when both atoms couple to the same mode. For the prototype Pr:YSO material, using a tightly focused mode in a centimeter-length cavity, we can couple as many as 400 qubits with a ground state coherence lifetime of about 1 s, which would allow us to apply as many as 20 sequential gate operations.
by Jeffrey Allan Bowers.
S.B.
M.Eng.
Books on the topic "Spectre de houle"
artnoose. Ker-bloom!: Spectral Vessel. Berkeley, CA: The author, 2017.
Find full textMoerner, W. E., ed. Persistent Spectral Hole-Burning: Science and Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-83290-1.
Full textMoerner, W. E. Persistent Spectral Hole-Burning: Science and Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988.
Find full text1953-, Moerner W. E., and Bjorklund G. C, eds. Persistent spectral hole-burning: Science and application. Berlin: Springer-Verlag, 1988.
Find full textO, Silʹd, and Khaller K. Ė, eds. Zero-phonon lines and spectral hole burning in spectroscopy and photochemistry. Berlin: Springer-Verlag, 1988.
Find full textPersistent, Spectral Hole-Burning: Science and Applications Topical Meeting (1991 Monterey Calif ). Persistent spectral hole-burning--science and applications: Summaries of papers presented at the Persistent Spectral Hole-Burning--Science and Applications Topical Meeting, September 26-28, 1991, Monterey, California. Washington, DC: The Society, 1991.
Find full textPersistent, Spectral Hole-Burning: Science and Applications Topical Meeting (1991 Monterey Calif ). Persistent spectral hole-burning: Science and applications : summaries of papers presented at the Persistent Spectral Hole-Burning, Science and Applications Topical Meeting, September 26-28, 1991, Monterey, California. Washington, DC: The Society, 1991.
Find full textUnited States. National Aeronautics and Space Administration., ed. Final report for NASA RXTE AO-1 proposal: "Deep and monitoring observations of the Black Hole Candidates 1E 1740.7-2942 and GRS 1758-258". [Washington, DC: National Aeronautics and Space Administration, 1998.
Find full textSild, Olev. Zero-Phonon Lines: And Spectral Hole Burning in Spectroscopy and Photochemistry. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988.
Find full textSpectral Hole-Burning and Luminescence Line Narrowing: Science and Applications Topical Meeting (1992 Ascona, Switzerland). Spectral hole-burning and luminescence line narrowing, science and applications: Summaries of papers presented at the Spectral Hole-Burning and Luminescence Line Narrowing: Science and Applications Topical Meeting, September 14-18, 1992, Monte Verita, Ascona, Switzerland. Washington, DC: Optical Society of America, 1992.
Find full textBook chapters on the topic "Spectre de houle"
Tandy, Pippa. "Dream House." In Spectral Spaces and Hauntings, 40–50. 1 [edition]. | New York: Routledge, 2017. | Series: Routledge research in cultural and media studies; 105: Routledge, 2017. http://dx.doi.org/10.4324/9781315719115-3.
Full textGaudric, Alain, and Aude Couturier. "Macular Hole." In Spectral Domain Optical Coherence Tomography in Macular Diseases, 267–91. New Delhi: Springer India, 2016. http://dx.doi.org/10.1007/978-81-322-3610-8_20.
Full textMacfarlane, R. M., and R. M. Shelby. "Persistent Spectral Hole-Burning in Inorganic Materials." In Topics in Current Physics, 127–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-83290-1_4.
Full textOsad’ko, Igor S. "Spectral Hole Burning in Inhomogeneous Optical Bands." In Springer Series in Chemical Physics, 205–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05248-8_15.
Full textManfredi, Carla. "“Little House in the Bush”: Specters of Vailima." In Robert Louis Stevenson’s Pacific Impressions, 187–219. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-98313-4_6.
Full textChamberlin, Ralph V., Roland Böhmer, and Ranko Richert. "Nonresonant Spectral Hole Burning in Liquids and Solids." In Advances in Dielectrics, 127–85. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-77574-6_5.
Full textKikas, J. "Spectral Hole Burning (SHB): Scientific and Practical Applications." In Zero-Phonon Lines, 89–101. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73638-4_6.
Full textSildos, I., U. Bogner, and A. Osvet. "Spectral Hole-Burning Study of Neutron-Irradiated Diamond." In Springer Series in Solid-State Sciences, 515–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-84888-9_201.
Full textGilfanov, M., E. Churazov, and R. Sunyaev. "X-ray Spectral Variability of Black Hole Binaries." In Observational Evidence for Black Holes in the Universe, 319–40. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4750-7_23.
Full textMasumoto, Yasuaki. "Persistent Spectral Hole Burning in Semiconductor Quantum Dots." In Semiconductor Quantum Dots, 209–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-05001-9_5.
Full textConference papers on the topic "Spectre de houle"
Chevaller, Christophe, and Martin Sanchez. "Modélisation de la houle réelle appliquée au spectre de Pierson-Moskowitz." In Journées Nationales Génie Côtier - Génie Civil. Editions Paralia, 1996. http://dx.doi.org/10.5150/jngcgc.1996.002-c.
Full textKorotaev, O. N., I. P. Kolmakov, V. P. Karpov, and M. F. Shchanov. "The High Pressure Effects in Optical Spectra of Impurity Crystals." In Spectral Hole-Burning and Related Spectroscopies: Science and Applications. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/shbs.1994.wd58.
Full textJaaniso, R., and H. Bill. "Room-Temperature Persistent Spectral Hole Burning in Sm2+:SrFCl0.5Br0.5." In Persistent Spectral Hole Burning: Science and Applications. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/pshb.1991.fa4.
Full textBasché, Th, and W. E. Moerner. "Optical Spectra of Single Impurity Molecules in a Polymer: Spectral Diffusion and Persistent Spectral Hole-Burning." In Persistent Spectral Hole Burning: Science and Applications. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/pshb.1991.pd1.
Full textAdamec, F., M. Ambroz, E. Brynda, J. Dian, M. Vacha, and J. Hala. "Persistent Hole Burning Spectroscopy Applications On Phthalocyanine Langmuir-Blodgett Films." In Persistent Spectral Hole Burning: Science and Applications. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/pshb.1991.fe1.
Full textGalaup, J. P., A. V. Veret-Lemarinier, S. Kulikov, S. Arabei, J. P. Boilot, and F. Chaput. "Inorganic and Hybrid (organic-inorganic) Sol-Gel Glasses doped with Organic Molecules: Fluorescence Line Narrowing, Persistent Hole-Burning and Spectral Diffusion." In Spectral Hole-Burning and Related Spectroscopies: Science and Applications. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/shbs.1994.fb3.
Full textLyle, P., G. J. Small, T. J. DiMagno, and J. R. Norris. "Marker Mode Structure in the Primary Donor State of Bacterial Reaction Centers." In Persistent Spectral Hole Burning: Science and Applications. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/pshb.1991.fe5.
Full textPolivka, T., D. Engst, J. Dian, P. Kroh, J. Pšenčík, M. Vácha, L. Nedbal, W. I. M. Vermaas, and J. Hála. "Persistent Spectral Hole Burning In The Antenna Protein CP47 Of Synechocystis SP. Mutant H114Q." In Spectral Hole-Burning and Related Spectroscopies: Science and Applications. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/shbs.1994.wd18.
Full textMisawa, Kazuhiko, Takayoshi Kobayashi, Shinjiro Machida, and Kazuyuki Horie. "Wavelength and polarization dependence of hole-burning properties in highly oriented J-aggregates." In Spectral Hole-Burning and Related Spectroscopies: Science and Applications. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/shbs.1994.wd47.
Full textGorokhovsky, A. A., A. Turukhin, R. R. Alfano, and W. Phillips. "Spectral Hole Burning and Fluorescence Line Narrowing of Si Center in CVD Diamond." In Spectral Hole-Burning and Related Spectroscopies: Science and Applications. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/shbs.1994.wd54.
Full textReports on the topic "Spectre de houle"
Moerner, W. E. Photon-Gated Persistent Spectral Hole-Burning. Fort Belvoir, VA: Defense Technical Information Center, September 1989. http://dx.doi.org/10.21236/ada212689.
Full textAlfano, R. R., and Anshel Gorokhovksy. Material for Spectral Hole Burning Storage. Fort Belvoir, VA: Defense Technical Information Center, May 1996. http://dx.doi.org/10.21236/ada309672.
Full textChang, Hai Chou. Spectral hole burning studies of photosystem II. Office of Scientific and Technical Information (OSTI), September 1995. http://dx.doi.org/10.2172/130613.
Full textGillie, J. Spectral hole burning studies of Photosystem I. Office of Scientific and Technical Information (OSTI), January 1990. http://dx.doi.org/10.2172/6879252.
Full textHutcheson, R. L., and R. Cone. Materials for Spectral Hole Burning Research. Phase 1. Fort Belvoir, VA: Defense Technical Information Center, March 1994. http://dx.doi.org/10.21236/ada278480.
Full textPsaltis, Demetri. Large Scale Spectral Hole Burning Memory in Organic Materials. Fort Belvoir, VA: Defense Technical Information Center, April 2002. http://dx.doi.org/10.21236/ada408171.
Full textFarag, Ebraheem, Mathieu Renzo, Robert Farmer, Morgan Chidester, and Francis Timmes. Resolving The Peak of The Black Hole Mass Spectrum. Office of Scientific and Technical Information (OSTI), July 2022. http://dx.doi.org/10.2172/1876778.
Full textSaxena, R. Spectral Analysis of the Black Hole Candidate 4U 1630-47. Office of Scientific and Technical Information (OSTI), February 2004. http://dx.doi.org/10.2172/826725.
Full textRebane, Aleksander. Ultrafast Holographic Image Recording by Single Shot Femtosecond Spectral Hole Burning. Fort Belvoir, VA: Defense Technical Information Center, November 2001. http://dx.doi.org/10.21236/ada398192.
Full textRebane, Aleksander. Ultrafast Holographic Image Recording by Single Shot Femtosecond Spectral Hole Burning. Fort Belvoir, VA: Defense Technical Information Center, May 2001. http://dx.doi.org/10.21236/ada389022.
Full text