Journal articles on the topic 'Specral linewidth'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Specral linewidth.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Wenzel, Hans, Markus Kantner, Mindaugas Radziunas, and Uwe Bandelow. "Semiconductor Laser Linewidth Theory Revisited." Applied Sciences 11, no. 13 (June 28, 2021): 6004. http://dx.doi.org/10.3390/app11136004.
Full textBoller, Klaus-J., Albert van Rees, Youwen Fan, Jesse Mak, Rob Lammerink, Cornelis Franken, Peter van der Slot, et al. "Hybrid Integrated Semiconductor Lasers with Silicon Nitride Feedback Circuits." Photonics 7, no. 1 (December 21, 2019): 4. http://dx.doi.org/10.3390/photonics7010004.
Full textLIN, JIE-LI, YU-YAN LIU, HONG-PING LIU, YUAN-QING QUO, XIAO-YONG LIU, FENG-YAN LI, and JIN-RUI LI. "MEASUREMENT OF PRESSURE-BROADENING LINEWIDTHS OF NO FROM THE FITTING OF LMR SPECTRA WITH CORRECTIONS OF INSTRUMENTAL BROADENING." Modern Physics Letters B 14, no. 11 (May 10, 2000): 401–7. http://dx.doi.org/10.1142/s0217984900000537.
Full textAnikushina, T. A., M. G. Gladush, A. A. Gorshelev, and A. V. Naumov. "Single-molecule spectromicroscopy: a route towards sub-wavelength refractometry." Faraday Discussions 184 (2015): 263–74. http://dx.doi.org/10.1039/c5fd00086f.
Full textMENON, P. SUSTHITHA, KUMARAJAH KANDIAH, and SAHBUDIN SHAARI. "VARIATION OF MQW DESIGN PARAMETERS IN A GaAs/InP-BASED LW-VCSEL AND ITS EFFECTS ON THE SPECTRAL LINEWIDTH." Journal of Nonlinear Optical Physics & Materials 19, no. 02 (June 2010): 209–17. http://dx.doi.org/10.1142/s0218863510005273.
Full textGao, W., Z. W. Lu, W. M. He, Y. K. Dong, and W. L. J. Hasi. "Characteristics of amplified spectrum of a weak frequency-detuned signal in a Brillouin amplifier." Laser and Particle Beams 27, no. 3 (June 24, 2009): 465–70. http://dx.doi.org/10.1017/s0263034609990164.
Full textNguyen, Thanh-Phuong, Hans Wenzel, Olaf Brox, Frank Bugge, Peter Ressel, Max Schiemangk, Andreas Wicht, Tran Quoc Tien, and Günther Tränkle. "Spectral Linewidth vs. Front Facet Reflectivity of 780 nm DFB Diode Lasers at High Optical Output Power." Applied Sciences 8, no. 7 (July 9, 2018): 1104. http://dx.doi.org/10.3390/app8071104.
Full textKunii, T., and Y. Matsui. "Narrow spectral linewidth semiconductor lasers." Optical and Quantum Electronics 24, no. 7 (July 1992): 719–35. http://dx.doi.org/10.1007/bf00620152.
Full textTADA, K., A. YAMANAKA, and N. KARASAWA. "BROADBAND COHERENT ANTI-STOKES RAMAN SCATTERING MICROSPECTROSCOPY USING THE SOLITON PULSES FROM A PHOTONIC CRYSTAL FIBER — OBSERVATION OF RAMAN LINE IN DIAMOND POWDERS." Journal of Nonlinear Optical Physics & Materials 19, no. 04 (December 2010): 723–28. http://dx.doi.org/10.1142/s0218863510005649.
Full textWeng, Hai-Zhong, Yong-Zhen Huang, Xiu-Wen Ma, Fu-Li Wang, Ming-Long Liao, Yue-De Yang, and Jin-Long Xiao. "Spectral Linewidth Analysis for Square Microlasers." IEEE Photonics Technology Letters 29, no. 22 (November 15, 2017): 1931–34. http://dx.doi.org/10.1109/lpt.2017.2752232.
Full textAntsiferov, P. S. "Linewidth measurement under poor spectral resolution." Journal of Quantitative Spectroscopy and Radiative Transfer 55, no. 1 (January 1996): 149–50. http://dx.doi.org/10.1016/0022-4073(96)81784-5.
Full textSalerno, M., M. R. Samuelsen, and A. V. Yulin. "Spectral Linewidths of Josephson Oscillators." Physical Review Letters 86, no. 23 (June 4, 2001): 5397–400. http://dx.doi.org/10.1103/physrevlett.86.5397.
Full textWang, Guangshun, Paul A. Keifer, and Alan Peterkofsky. "Short‒chain diacyl phosphatidylglycerols: which one to choose for the NMR structural determination of a membrane‒associated peptide fromEscherichia coli?" Spectroscopy 18, no. 2 (2004): 257–64. http://dx.doi.org/10.1155/2004/719137.
Full textMerwin, Lawrence H., Curtis E. Johnson, and Wayne A. Weimer. "13C NMR investigation of CVD diamond: Correlation of NMR and Raman spectral linewidths." Journal of Materials Research 9, no. 3 (March 1994): 631–35. http://dx.doi.org/10.1557/jmr.1994.0631.
Full textThomsen, Volker B. E. "Why Do Spectral Lines Have a Linewidth?" Journal of Chemical Education 72, no. 7 (July 1995): 616. http://dx.doi.org/10.1021/ed072p616.
Full textVurgaftman, Igor, and Jasprit Singh. "Spectral linewidth in microcavity surface‐emitting lasers." Journal of Applied Physics 76, no. 10 (November 15, 1994): 5636–39. http://dx.doi.org/10.1063/1.357069.
Full textKhutsishvili, D., E. Khutsishvili, T. Kvernadze, V. Kulidzanishvili, V. Kakhiani, and M. Sikharulidze. "Spectral Linewidth Variations in the Solar Chromosphere." Astrophysics 58, no. 4 (November 9, 2015): 567–74. http://dx.doi.org/10.1007/s10511-015-9408-3.
Full textJiang, Ting, Yu Chen, Lu Mao, Alan G. Marshall, and Wei Xu. "Extracting biomolecule collision cross sections from the high-resolution FT-ICR mass spectral linewidths." Physical Chemistry Chemical Physics 18, no. 2 (2016): 713–17. http://dx.doi.org/10.1039/c5cp02987b.
Full textPollnau, Markus, and Marc Eichhorn. "Spectral coherence, Part I: Passive-resonator linewidth, fundamental laser linewidth, and Schawlow-Townes approximation." Progress in Quantum Electronics 72 (August 2020): 100255. http://dx.doi.org/10.1016/j.pquantelec.2020.100255.
Full textMawatari, Hiroyasu, Fumiyoshi Kano, Norio Yamamoto, Yasuhiro Kondo, Yuichi Tohmori, and Yuzo Yoshikuni. "Spectral Linewidth and Linewidth Enhancement Factor in1.5-µmModulation-Doped Strained Multiple-Quantum-Well Lasers." Japanese Journal of Applied Physics 33, Part 1, No. 1B (January 30, 1994): 811–14. http://dx.doi.org/10.1143/jjap.33.811.
Full textKim, Geun Wan, and Ji Won Ha. "Single-particle study: effects of oxygen plasma treatment on structural and spectral changes of anisotropic gold nanorods." Physical Chemistry Chemical Physics 22, no. 21 (2020): 11767–70. http://dx.doi.org/10.1039/d0cp00996b.
Full textChen, Yu-Cheng, Qiushu Chen, Xiaoqin Wu, Xiaotian Tan, Juanhong Wang, and Xudong Fan. "A robust tissue laser platform for analysis of formalin-fixed paraffin-embedded biopsies." Lab on a Chip 18, no. 7 (2018): 1057–65. http://dx.doi.org/10.1039/c8lc00084k.
Full textCui, Jian, Andrew P. Beyler, Igor Coropceanu, Liam Cleary, Thomas R. Avila, Yue Chen, José M. Cordero, et al. "Evolution of the Single-Nanocrystal Photoluminescence Linewidth with Size and Shell: Implications for Exciton–Phonon Coupling and the Optimization of Spectral Linewidths." Nano Letters 16, no. 1 (December 4, 2015): 289–96. http://dx.doi.org/10.1021/acs.nanolett.5b03790.
Full textPappas, Dimitri, Tiffany L. Correll, Nathan C. Pixley, Benjamin W. Smith, and J. D. Winefordner. "Detection of Mie Scattering Using a Resonance Fluorescence Monochromator." Applied Spectroscopy 56, no. 9 (September 2002): 1237–40. http://dx.doi.org/10.1366/000370202760295502.
Full textEshel, Dan, and Zvi Priel. "Spectral characterization of ciliary beating Biological meaning of the spectral linewidth." Biophysical Chemistry 23, no. 3-4 (March 1986): 261–65. http://dx.doi.org/10.1016/0301-4622(86)85012-8.
Full textLitvik, Jan, Michal Kuba, Daniel Benedikovic, Jozef Dubovan, and Milan Dado. "Numerical Estimation of Spectral Properties of Laser Based on Rate Equations." Mathematical Problems in Engineering 2016 (2016): 1–11. http://dx.doi.org/10.1155/2016/4152895.
Full textLiu Hanchen, 刘汉臣, 王庆飞 Wang Qingfei, 唐远河 Tang Yuanhe, and 严祥安 Yan Xiangan. "Spectral Linewidth Measurement Enhancement by Two United Spectrometers." Acta Optica Sinica 28, no. 4 (2008): 710–14. http://dx.doi.org/10.3788/aos20082804.0710.
Full textTanobe, H., F. Koyama, and K. Iga. "Spectral linewidth of AlGaAs/GaAs surface-emitting laser." Electronics Letters 25, no. 21 (1989): 1444. http://dx.doi.org/10.1049/el:19890965.
Full textTai, Shuichi, Keisuke Kojima, Susumu Noda, Kazuo Kyuma, Koichi Hamanaka, and Takashi Nakayama. "Narrow spectral linewidth semiconductor optical‐fiber ring laser." Applied Physics Letters 49, no. 20 (November 17, 1986): 1328–30. http://dx.doi.org/10.1063/1.97367.
Full textOkai, M., and T. Tsuchiya. "Tunable DFB lasers with ultra-narrow spectral linewidth." Electronics Letters 29, no. 4 (1993): 349. http://dx.doi.org/10.1049/el:19930236.
Full textThiel, Charles W., Rufus L. Cone, and Thomas Böttger. "Laser linewidth narrowing using transient spectral hole burning." Journal of Luminescence 152 (August 2014): 84–87. http://dx.doi.org/10.1016/j.jlumin.2013.11.038.
Full textAbel, Mark R., Samuel Graham, Justin R. Serrano, Sean P. Kearney, and Leslie M. Phinney. "Raman Thermometry of Polysilicon Microelectro-mechanical Systems in the Presence of an Evolving Stress." Journal of Heat Transfer 129, no. 3 (May 31, 2006): 329–34. http://dx.doi.org/10.1115/1.2409996.
Full textLi, Zhanguo, Gaohang He, Mingming Jiang, Jiaolong Ji, Chongxin Shan, and Dezhen Shen. "Electrical-pumping spasing action from cross-stacked microwires." Journal of Materials Chemistry C 7, no. 35 (2019): 10933–44. http://dx.doi.org/10.1039/c9tc03537k.
Full textYang, Xuyong, Fei Huang, Zhenwei Huang, Fan Cao, and Jianhua Zhang. "Small-size and monodispersed red-emitting Pr3+ doped barium molybdate nanocrystals with ultrahigh color purity." RSC Advances 6, no. 70 (2016): 65311–14. http://dx.doi.org/10.1039/c6ra14222b.
Full textGao, Min, Yonglin He, Ying Chen, Tien-Mo Shih, Weimin Yang, Jingyu Wang, Feng Zhao, Ming-De Li, Huanyang Chen, and Zhilin Yang. "Tunable surface plasmon polaritons and ultrafast dynamics in 2D nanohole arrays." Nanoscale 11, no. 35 (2019): 16428–36. http://dx.doi.org/10.1039/c9nr03478a.
Full textChoe, J. W., O. Byungsung, K. M. S. V. Bandara, and D. D. Coon. "Spectral linewidths of quantum well intersubband transitions." Superlattices and Microstructures 10, no. 1 (January 1991): 1–4. http://dx.doi.org/10.1016/0749-6036(91)90138-h.
Full textFarwell, S. O., and C. T. Kagel. "Detection of Spectral Overlap Interference in ICP-AES with an Empirical Linewidth Ratio Technique." Applied Spectroscopy 40, no. 7 (September 1986): 944–48. http://dx.doi.org/10.1366/0003702864508043.
Full textElsasser, W., and E. Gobel. "Multimode effects in the spectral linewidth of semiconductor lasers." IEEE Journal of Quantum Electronics 21, no. 6 (June 1985): 687–92. http://dx.doi.org/10.1109/jqe.1985.1072697.
Full textSato, H., and Jun Ohya. "Theory of spectral linewidth of external cavity semiconductor lasers." IEEE Journal of Quantum Electronics 22, no. 7 (July 1986): 1060–63. http://dx.doi.org/10.1109/jqe.1986.1073086.
Full textBurks, Scott R., Mallory A. Makowsky, Zachary A. Yaffe, Chad Hoggle, Pei Tsai, Sukumaran Muralidharan, Michael K. Bowman, Joseph P. Y. Kao, and Gerald M. Rosen. "The Effect of Structure on Nitroxide EPR Spectral Linewidth." Journal of Organic Chemistry 75, no. 14 (July 16, 2010): 4737–41. http://dx.doi.org/10.1021/jo1005747.
Full textTanobe, H., F. Koyama, and K. Iga. "Erratum: Spectral linewidth of AlGaAs/GaAs surface-emitting laser." Electronics Letters 25, no. 23 (1989): 1613. http://dx.doi.org/10.1049/el:19891082.
Full textHuang, Hui, Yongqing Huang, and Xiaomin Ren. "Ultra-narrow spectral linewidth photodetector based on taper cavity." Electronics Letters 39, no. 1 (2003): 113. http://dx.doi.org/10.1049/el:20030109.
Full textVoitovich, A. P., O. E. Kostik, V. V. Mashko, and L. P. Runets. "Spectral-linewidth measurement with intracavity compensation for selective losses." Journal of Applied Spectroscopy 67, no. 3 (May 2000): 387–91. http://dx.doi.org/10.1007/bf02683848.
Full textBychek, Anna, Christoph Hotter, David Plankensteiner, and Helmut Ritsch. "Superradiant lasing in inhomogeneously broadened ensembles with spatially varying coupling." Open Research Europe 1 (June 25, 2021): 73. http://dx.doi.org/10.12688/openreseurope.13781.1.
Full textBychek, Anna, Christoph Hotter, David Plankensteiner, and Helmut Ritsch. "Superradiant lasing in inhomogeneously broadened ensembles with spatially varying coupling." Open Research Europe 1 (September 22, 2021): 73. http://dx.doi.org/10.12688/openreseurope.13781.2.
Full textZhu, Lianqing, Wei He, Mingli Dong, Xiaoping Lou, and Fei Luo. "Tunable multi-wavelength thulium-doped fiber laser incorporating two-stage cascaded Sagnac loop comb filter." Modern Physics Letters B 30, no. 21 (August 10, 2016): 1650292. http://dx.doi.org/10.1142/s0217984916502924.
Full textOkamura, H., and K. Iwatsuki. "Spectral linewidth broadening in Er-doped-fibre amplifiers measured with less than 1.4 kHz linewidth light source." Electronics Letters 26, no. 23 (1990): 1965. http://dx.doi.org/10.1049/el:19901271.
Full textChao Yang, Chao Yang, Youlun Ju Youlun Ju, Baoquan Yao Baoquan Yao, Zhenguo Zhang Zhenguo Zhang, Tongyu Dai Tongyu Dai, and and Xiaoming Duan and Xiaoming Duan. "High-power Tm3+-doped all-fiber laser operating at 1908 nm by a master oscillator power amplifier configuration with narrow spectral linewidth." Chinese Optics Letters 14, no. 6 (2016): 061403–61406. http://dx.doi.org/10.3788/col201614.061403.
Full textManiloff, Eric S., Alan E. Johnson, and Thomas W. Mossberg. "Spectral Data Storage Using Rare-Earth-Doped Crystals." MRS Bulletin 24, no. 9 (September 1999): 46–50. http://dx.doi.org/10.1557/s0883769400053069.
Full textDeng, Shikai, Ran Li, Jeong-Eun Park, Jun Guan, Priscilla Choo, Jingtian Hu, Paul J. M. Smeets, and Teri W. Odom. "Ultranarrow plasmon resonances from annealed nanoparticle lattices." Proceedings of the National Academy of Sciences 117, no. 38 (September 8, 2020): 23380–84. http://dx.doi.org/10.1073/pnas.2008818117.
Full text