Academic literature on the topic 'Specific oxidation rate'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Specific oxidation rate.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Specific oxidation rate"

1

Fujita, M., K. Tsuji, and A. Akashi. "Temporal variation in maximum cell-specific nitrification rate." Water Science and Technology 61, no. 8 (April 1, 2010): 2069–73. http://dx.doi.org/10.2166/wst.2010.978.

Full text
Abstract:
The cell numbers of ammonia-oxidising bacteria (AOBs), Nitrospira and Nitrobacter in activated sludge used to treat wastewater from a thermal power plant in Japan were examined for nine months using a real-time PCR quantification technique. AOB cell numbers ranged 2.8 × 1010–2.3 × 1011 cell/L. The amoA clone analysis showed that the only Nitrosomonas halophila was responsible for ammonia oxidation over the period. Nitrospira were in the range of 2.6 × 109–2.4 × 1010 cell/L and Nitrobacter were less than 1% as common as Nitrospira. Meanwhile, maximum nitrification rates, maximum ammonia- and nitrite-oxidation rates obtained from aerobic batch tests, ranged 0.5–1.3 mmol-N/L h and 1.0–2.5 mmol-N/L h, respectively. No clear correlations were observed between the cell numbers of AOBs or Nitrospira and their maximum rates, because the maximum cell-specific ammonia- and nitrite-oxidation rates varied remarkably over the ranges of 1.1–11.9 and 2.4–21.6 fmol-N/cell h, respectively. To explore the factors controlling maximum cell-specific nitrification rates, the relationship to influent nitrogen loads per AOB or Nitrospira cell numbers was investigated. Fairly good correlations were obtained. Considering the effluent ammonia and nitrite concentrations were zero and only Nitrosomonas halophila had a role in ammonia oxidation over the period, we conclude that the amount of nitrogen oxidised per AOB or Nitrospira cell numbers likely controls maximum cell-specific ammonia- or nitrite-oxidation rates, respectively.
APA, Harvard, Vancouver, ISO, and other styles
2

TSUJI, Koji, Masafumi FUJITA, Tetsuo YAMASHITA, Takashi MINO, and Akira AKASHI. "Response of Maximum Cell-Specific Nitrite Oxidation Rate to Hysteresis of Nitrite Oxidation by Nitrite-Oxidation Bacteria." Journal of Japan Society on Water Environment 31, no. 11 (2008): 693–99. http://dx.doi.org/10.2965/jswe.31.693.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Blair, Megan C., Michael D. Neinast, and Zoltan Arany. "Whole-body metabolic fate of branched-chain amino acids." Biochemical Journal 478, no. 4 (February 24, 2021): 765–76. http://dx.doi.org/10.1042/bcj20200686.

Full text
Abstract:
Oxidation of branched-chain amino acids (BCAAs) is tightly regulated in mammals. We review here the distribution and regulation of whole-body BCAA oxidation. Phosphorylation and dephosphorylation of the rate-limiting enzyme, branched-chain α-ketoacid dehydrogenase complex directly regulates BCAA oxidation, and various other indirect mechanisms of regulation also exist. Most tissues throughout the body are capable of BCAA oxidation, and the flux of oxidative BCAA disposal in each tissue is influenced by three key factors: 1. tissue-specific preference for BCAA oxidation relative to other fuels, 2. the overall oxidative activity of mitochondria within a tissue, and 3. total tissue mass. Perturbations in BCAA oxidation have been implicated in many disease contexts, underscoring the importance of BCAA homeostasis in overall health.
APA, Harvard, Vancouver, ISO, and other styles
4

Morash, Andrea J., Aleksandra O. Kotwica, and Andrew J. Murray. "Tissue-specific changes in fatty acid oxidation in hypoxic heart and skeletal muscle." American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 305, no. 5 (September 1, 2013): R534—R541. http://dx.doi.org/10.1152/ajpregu.00510.2012.

Full text
Abstract:
Exposure to hypobaric hypoxia is sufficient to decrease cardiac PCr/ATP and alters skeletal muscle energetics in humans. Cellular mechanisms underlying the different metabolic responses of these tissues and the time-dependent nature of these changes are currently unknown, but altered substrate utilization and mitochondrial function may be a contributory factor. We therefore sought to investigate the effects of acute (1 day) and more sustained (7 days) hypoxia (13% O2) on the transcription factor peroxisome proliferator-activated receptor α (PPARα) and its targets in mouse cardiac and skeletal muscle. In the heart, PPARα expression was 40% higher than in normoxia after 1 and 7 days of hypoxia. Activities of carnitine palmitoyltransferase (CPT) I and β-hydroxyacyl-CoA dehydrogenase (HOAD) were 75% and 35% lower, respectively, after 1 day of hypoxia, returning to normoxic levels after 7 days. Oxidative phosphorylation respiration rates using palmitoyl-carnitine followed a similar pattern, while respiration using pyruvate decreased. In skeletal muscle, PPARα expression and CPT I activity were 20% and 65% lower, respectively, after 1 day of hypoxia, remaining at this level after 7 days with no change in HOAD activity. Oxidative phosphorylation respiration rates using palmitoyl-carnitine were lower in skeletal muscle throughout hypoxia, while respiration using pyruvate remained unchanged. The rate of CO2 production from palmitate oxidation was significantly lower in both tissues throughout hypoxia. Thus cardiac muscle may remain reliant on fatty acids during sustained hypoxia, while skeletal muscle decreases fatty acid oxidation and maintains pyruvate oxidation.
APA, Harvard, Vancouver, ISO, and other styles
5

Nguyen, V. H., A. S. Filimono, B. V. Peshnev, and A. I. Nikolaev. "OXIDATION OF DISPERSE CARBON MATERIALS." Fine Chemical Technologies 13, no. 3 (June 28, 2018): 57–63. http://dx.doi.org/10.32362/24106593-2018-13-3-57-63.

Full text
Abstract:
It is proposed to consider the process of carbon materials oxidative activation from the positions of topochemical reactions involving chemisorption of the activating agent (oxidizer) on the material surface active centers followed by chemical interaction. Such an approach makes it possible to control the process of creating a carbon material with the desired characteristics of the porous space. It is assumed that the oxidizer chemisorption active centers are amorphous carbon, which is localized on the material crystallites boundaries. The change in the length of these boundaries will lead to a change in the process rate. It is shown that the number of such active centers on the carbon material surface depends on the size of the crystallites. It will have a significant impact not only on the rate of activation, but also on the possibility of the process flow on the surface or with porosity formation. Mathematical models describing the carbon sample specific surface changing in the oxidation process are proposed. They allow quantifying the proportion of carbon that is oxidized on the sample surface or with pores formation, as well as quantifying the number of pores. It is shown that the ratio of pore formation and surface oxidation processes depends on the oxidation temperature, the oxidizer nature and its flow rate. The proportion of porosity formation decreases with the increase in the oxidant flow rate and the increase in temperature. It was experimentally shown that in order to obtain a material with a more developed porous space and a high specific surface it is preferable to use carbon dioxide as an oxidizing agent.
APA, Harvard, Vancouver, ISO, and other styles
6

Asamoah, Richmond K. "Specific Refractory Gold Flotation and Bio-Oxidation Products: Research Overview." Minerals 11, no. 1 (January 19, 2021): 93. http://dx.doi.org/10.3390/min11010093.

Full text
Abstract:
This paper presents a research overview, reconciling key and useful case study findings, towards uncovering major causes of gold refractoriness and maximising extraction performance of specific gold flotation and bio-oxidation products. Through systematic investigation of the ore mineralogical and gold deportment properties, leaching mechanisms, and kinetic behaviour and pulp rheology, it was observed that the predominant cause of the poor extraction efficacy of one bio-oxidised product is the presence of recalcitrant sulphate minerals (e.g., jarosite and gypsum) produced during the oxidation process. This was followed by carbonaceous matter and other gangue minerals such as muscovite, quartz, and rutile. The underpining leaching mechanism and kinetics coupled with the pulp rheology were influenced by the feed mineralogy/chemistry, time, agitation/shear rate, interfacial chemistry, pH modifier type, and mechano-chemical activation. For instance, surface exposure of otherwise unavailable gold particles by mechano-chemical activation enhanced the gold leaching rate and yield. This work reflect the remarkable impact of subtle deposit feature changes on extraction performance.
APA, Harvard, Vancouver, ISO, and other styles
7

Shaw, C. S., C. Swinton, M. G. Morales-Scholz, N. McRae, T. Erftemeyer, A. Aldous, R. M. Murphy, and K. F. Howlett. "Impact of exercise training status on the fiber type-specific abundance of proteins regulating intramuscular lipid metabolism." Journal of Applied Physiology 128, no. 2 (February 1, 2020): 379–89. http://dx.doi.org/10.1152/japplphysiol.00797.2019.

Full text
Abstract:
Endurance training enhances the capacity for fat oxidation during exercise due to increased utilization of intramuscular lipid (IMCL). This study quantitatively investigated the impact of exercise training status on muscle fiber type-specific abundance of regulatory proteins involved in IMCL utilization. Endurance-trained [ n = 7 subjects, peak oxygen consumption (V̇o2peak) 62.6 ± 4.1 (SD) mL·min−1·kg−1] and non-endurance-trained ( n = 8 subjects, V̇o2peak 44.9 ± 5.3 mL·min−1·kg−1) young men completed an incremental exercise test to determine maximal fat oxidation (MFO) and maximal oxygen uptake. Fiber type-specific IMCL content and protein abundance were assessed with immunofluorescence microscopy and immunoblot analysis of pooled single muscle fibers and whole muscle. Endurance-trained individuals displayed a higher MFO rate (0.45 ± 0.15 vs. 0.19 ± 0.07 g/min, P < 0.05), a greater proportion of type I muscle fibers, and higher IMCL content compared with untrained individuals ( P < 0.05). Adipose triglyceride lipase, hormone-sensitive lipase, perilipin 2, perilipin 5, and hydroxyacyl-coenzyme A dehydrogenase abundances were ~2–3-fold higher in type I muscle fibers compared with type IIa fibers ( P < 0.05). Correspondingly, these lipid proteins and oxidative enzymes were higher in endurance-trained individuals when assessed in whole muscle. MFO rate was strongly related to the proportion of type I fibers ( R = 0.81, P < 0.01). The abundance of proteins involved in the regulation of IMCL storage and oxidation is highly muscle fiber type specific. The increased capacity for fat oxidation in endurance-trained individuals corresponded with increased IMCL content and elevated abundance of lipolytic and oxidative enzymes in combination with a greater proportion of type I muscle fibers. NEW & NOTEWORTHY We have utilized contemporary techniques to compare the fiber type-specific characteristics of skeletal muscle from endurance-trained athletes and untrained individuals. We show that type I muscle fibers have a coordinated upregulation of proteins controlling intramuscular lipid storage, mobilization, and oxidation. Furthermore, the enhanced capacity for intramuscular lipid storage and utilization in endurance-trained individuals is related to the increased expression of lipid regulatory proteins combined with a greater proportion of type I muscle fibers.
APA, Harvard, Vancouver, ISO, and other styles
8

Sondergaard, Esben, Iben Rahbek, Lars P. Sørensen, Jens S. Christiansen, Lars C. Gormsen, Michael D. Jensen, and Søren Nielsen. "Effects of exercise on VLDL-triglyceride oxidation and turnover." American Journal of Physiology-Endocrinology and Metabolism 300, no. 5 (May 2011): E939—E944. http://dx.doi.org/10.1152/ajpendo.00031.2011.

Full text
Abstract:
Lipids are important substrates for oxidation at rest and during exercise. Aerobic exercise mediates a delayed onset decrease in total and VLDL-triglyceride (TG) plasma concentration. However, the acute effects of exercise on VLDL-TG oxidation and turnover remain unclear. Here, we studied the acute effects of 90 min of moderate-intensity exercise in healthy women and men. VLDL-TG kinetics were assessed using a primed constant infusion of ex vivo labeled [1-14C]triolein VLDL-TG. Fractional VLDL-TG-derived fatty acid oxidation was measured from 14CO2 specific activity in expired air. VLDL-TG concentration was unaltered during exercise and early recovery, whereas non-VLDL-TG concentration decreased significantly.VLDL-TG secretion rate decreased significantly during exercise and remained suppressed during recovery. Total VLDL-TG oxidation rate was unaffected by exercise. However, the contribution of VLDL-TG oxidation to total energy expenditure fell from 14 ± 9% at rest to 3 ± 4% during exercise. We conclude that VLDL-TG fatty acids are quantitatively important oxidative substrates under basal postabsorptive conditions but remain unaffected during 90-min moderate-intensity exercise and, thus, become relatively less important during exercise. Lower VLDL secretion rate during exercise may contribute to the decrease in TG concentrations during and after exercise.
APA, Harvard, Vancouver, ISO, and other styles
9

KITAMURA, Keizo. "Measurement of Thermal Oxidation Rate for Various Deep-Fat Frying Oils by Specific Gravity." Journal of Japan Oil Chemists' Society 48, no. 3 (1999): 253–56. http://dx.doi.org/10.5650/jos1996.48.253.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Janssen, Antoon JM, Frans JM Trijbels, Rob CA Sengers, Liesbeth TM Wintjes, Wim Ruitenbeek, Jan AM Smeitink, Eva Morava, Baziel GM van Engelen, Lambert P. van den Heuvel, and Richard JT Rodenburg. "Measurement of the Energy-Generating Capacity of Human Muscle Mitochondria: Diagnostic Procedure and Application to Human Pathology." Clinical Chemistry 52, no. 5 (May 1, 2006): 860–71. http://dx.doi.org/10.1373/clinchem.2005.062414.

Full text
Abstract:
Abstract Background: Diagnosis of mitochondrial disorders usually requires a muscle biopsy to examine mitochondrial function. We describe our diagnostic procedure and results for 29 patients with mitochondrial disorders. Methods: Muscle biopsies were from 43 healthy individuals and 29 patients with defects in one of the oxidative phosphorylation (OXPHOS) complexes, the pyruvate dehydrogenase complex (PDHc), or the adenine nucleotide translocator (ANT). Homogenized muscle samples were used to determine the oxidation rates of radiolabeled pyruvate, malate, and succinate in the absence or presence of various acetyl Co-A donors and acceptors, as well as specific inhibitors of tricarboxylic acid cycle or OXPHOS enzymes. We determined the rate of ATP production from oxidation of pyruvate. Results: Each defect in the energy-generating system produced a specific combination of substrate oxidation impairments. PDHc deficiencies decreased substrate oxidation reactions containing pyruvate. Defects in complexes I, III, and IV decreased oxidation of pyruvate plus malate, with normal to mildly diminished oxidation of pyruvate plus carnitine. In complex V defects, pyruvate oxidation improved by addition of carbonyl cyanide 3-chlorophenyl hydrazone, whereas other oxidation rates were decreased. In most patients, ATP production was decreased. Conclusion: The proposed method can be successfully applied to the diagnosis of defects in PDHc, OXPHOS complexes, and ANT.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Specific oxidation rate"

1

Bakharieva, Ganna, Serhii Petrov, and Tetiana Falalieieva. "Development of the mathematical model of the kinetics of the stationary process of bio-cleaning with substratic inhibition." Thesis, Scientific Route OU, 2018. http://repository.kpi.kharkov.ua/handle/KhPI-Press/46262.

Full text
Abstract:
A scientifically sound method for calculating the parameters of bio-cleaning should contain as a basic a reliable mathematical description of the stationary process. The results of stationary laboratory experiments are presented in the coordinates “specific rate of destruction V – concentration ρ”. Statistical processing proves the presence of substrate inhibition for both gaseous and soluble and dissolved harmful substances in water. For an analytical description of the dependence of the biooxidation rate on the concentration of contaminants, a phenomenological approach is applied, taking into account in a simple form two obvious phenomena: the contact of a microorganism with a substrate molecule and the inhibitory effect of the medium on it. The numerical values of empirical dependency coefficients for the studied processes are calculated. A differential equation is proposed at the macro level that describes the kinetics of biochemical destruction. The concept of a macrokinetic mathematical model of bioremediation is defined as a system of two functions that quantitatively reflect the dependence of the specific oxidation rate of pollution on its concentration and concentration on time, as well as satisfying the relationship between the relationships of the same parameters in differential form. The dependence of concentration on time is defined both in the form of a numerical integration algorithm and in the form of an approximate formula. The adequacy and universality of the proposed model for the studied processes is proved. The advantage of the proposed model of substrate inhibition kinetics is the simplicity of the structure of the basic formula and the ease of determining empirical coefficients based on this. In addition to numerical integration for determining the time of destruction, an approximate analytical solution is found, which can be adequately used in the concentration range of the experimental study. Further research is aimed at developing methods for calculating non-stationary processes in biochemical purification plants of certain specific types.
APA, Harvard, Vancouver, ISO, and other styles
2

Lu, Huogen. "The oxidative burst in tomato plants induced by race-specific elicitors of Cladosporium fulvum." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ35232.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ohara, Hiroki. "Stage-specific roles of fibulin-5 during oxidative stress-induced renal carcinogenesis in rats." Kyoto University, 2011. http://hdl.handle.net/2433/142113.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Specific oxidation rate"

1

Lu, Huogen. The oxidative burst in tomato plants induced by race specific elicitors of Cladosporium fulvum. 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hall, Andrew, and Shamima Rahman. Mitochondrial diseases and the kidney. Edited by Neil Turner. Oxford University Press, 2015. http://dx.doi.org/10.1093/med/9780199592548.003.0340.

Full text
Abstract:
Mitochondrial disease can affect any organ in the body including the kidney. As increasing numbers of patients with mitochondrial disease are either surviving beyond childhood or being diagnosed in adulthood, it is important for all nephrologists to have some understanding of the common renal complications that can occur in these individuals. Mitochondrial proteins are encoded by either mitochondrial or nuclear DNA (mtDNA and nDNA, respectively); therefore, disease causing mutations may be inherited maternally (mtDNA) or autosomally (nDNA), or can arise spontaneously. The commonest renal phenotype in mitochondrial disease is proximal tubulopathy (Fanconi syndrome in the severest cases); however, as all regions of the nephron can be affected, from the glomerulus to the collecting duct, patients may also present with proteinuria, decreased glomerular filtration rate, nephrotic syndrome, water and electrolyte disorders, and renal tubular acidosis. Understanding of the relationship between underlying genotype and clinical phenotype remains incomplete in mitochondrial disease. Proximal tubulopathy typically occurs in children with severe multisystem disease due to mtDNA deletion or mutations in nDNA affecting mitochondrial function. In contrast, glomerular disease (focal segmental glomerulosclerosis) has been reported more commonly in adults, mainly in association with the m.3243A<G point mutation. Co-enzyme Q10 (CoQ10) deficiency has been particularly associated with podocyte dysfunction and nephrotic syndrome in children. Underlying mitochondrial disease should be considered as a potential cause of unexplained renal dysfunction; clinical clues include lack of response to conventional therapy, abnormal mitochondrial morphology on kidney biopsy, involvement of other organs (e.g. diabetes, cardiomyopathy, and deafness) and a maternal family history, although none of these features are specific. The diagnostic approach involves acquiring tissue (typically skeletal muscle) for histological analysis, mtDNA screening and oxidative phosphorylation (OXPHOS) complex function tests. A number of nDNA mutations causing mitochondrial disease have now been identified and can also be screened for if clinically indicated. Management of mitochondrial disease requires a multidisciplinary approach, and treatment is largely supportive as there are currently very few evidence-based interventions. Electrolyte deficiencies should be corrected in patients with urinary wasting due to tubulopathy, and CoQ10 supplementation may be of benefit in individuals with CoQ10 deficiency. Nephrotic syndrome in mitochondrial disease is not typically responsive to steroid therapy. Transplantation has been performed in patients with end-stage kidney disease; however, immunosuppressive agents such as steroids and tacrolimus should be used with care given the high incidence of diabetes in mitochondrial disease.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Specific oxidation rate"

1

V. Morozova, Olga, and Dmitry V. Klinov. "Nanosilver in Biomedicine: Advantages and Restrictions." In Silver Micro-Nanoparticles - Properties, Synthesis, Characterization, and Applications. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.96331.

Full text
Abstract:
Nanosilver (in a range 1–100 nm) binds with thyol-, amino- and carboxy-groups of aminoacid residues of proteins and nucleic acids, thus providing inactivation of pathogenic multidrug-resistant microorganisms. Besides antibacterial, antiviral, antifungal and anti-cancer properties Ag-based nanomaterials possess anti-inflammatory, anti-angiogenesis and antiplatelet features. Drug efficacy depends on their stability, toxicity and host immune response. Citrate coated Ag nanoparticles (NPs) remain stable colloid solutions in deionized water but not in the presence of ions due to replacement of Ag+ by electrolyte ions, potential formation of insoluble AgCl, subsequent catalyzed oxidative corrosion of Ag and further dissolution of surface layer of Ag2O. Protein shells protect core of AgNPs from oxidation, dissolution, aggregation and provide specific interactions with ligands. These nanoconjugates can be used for immunoassays and diagnostics but the sensitivity threshold does not exceed 10 pg Cytotoxicity of AgNPs conjugated with proteins is associated with the rate of intracellular Ag+ release, a ‘Trojan horse’ effect, and exceeds one of Ag+ because of endocytosis uptake of NPs but not ions. Relatively toxic nanosilver causes immunosuppression of the majority of cytokines with a few exceptions (IL-1β, G-CSF, MCP-1) whereas AgNO3 additionally activate TNFα and IL8 gene expression.
APA, Harvard, Vancouver, ISO, and other styles
2

Singh, S. "Electrochemical Oxidation of Perfluorooctanoic Acid (PFOA) from Aqueous Solution using Non-Active Ti/SnO2-Sb2O5/PbO2 Anodes." In Advances in Wastewater Treatment II, 48–67. Materials Research Forum LLC, 2021. http://dx.doi.org/10.21741/9781644901397-2.

Full text
Abstract:
In this study, electrochemical oxidation of perfluorooctanoic acid (PFOA, C7H15CO2H) from aqueous solution was examined in terms of PFOA and total organic carbon (TOC) removal by using Ti/SnO2-Sb2O5/PbO2non-active electrodes. The effects of operating parameters: initial pH (pHo), current density (j), and electrolyte concentration (m) at different time intervals were examined. Specific energy consumption (SEC) was used to determine the process proficiency. The C-C bond between C7F15 was first cleaved and thendegraded into fluoride ions (F−) and short carbon-chain per-fluorinated carboxylic acids (PFCAs) ((∼C2−C7) such as perfluoroethanoic acid (PFEA: C2F5CO2H), perfluoropropanoic acid (PFPA: C3F7CO2H), perfluorobutanoic acid (PFBA: C4F9CO2H), perfluoropentanoic acid (PFPeA: C5F11CO2H), perfluorohexanoic acid (PFHxA: C6F13CO2H), perfluoheptanoic acid (PFHpA: C7F14CO2H). These intermediates by-products were determined using the gas chromatograph-mass spectrometry (GC/MS) analysis. The rate of PFOA decomposition was followed the pseudo-first-order kinetics. About 82%TOC and 94% PFOA removals were formed at the optimal condition of pHo = 3.58, j=168.34 Am-2, and m = 250 mgL-1 at 120 min of electrolysis with SEC = 593 kWh/kg TOC. A plausible degradation mechanism was also proposed at the optimal treatment condition.
APA, Harvard, Vancouver, ISO, and other styles
3

Rodney, Rebecca L., and Alan J. Russell. "Enzyme Chemistry in Carbon Dioxide." In Green Chemistry Using Liquid and Supercritical Carbon Dioxide. Oxford University Press, 2004. http://dx.doi.org/10.1093/oso/9780195154832.003.0010.

Full text
Abstract:
Enzymes are biocatalysts constructed of a folded chain of amino acids. They may be used under mild conditions for specific and selective reactions. While many enzymes have been found to be catalytically active in both aqueous and organic solutions, it was not until quite recently that enzymes were used to catalyze reactions in carbon dioxide when Randolph et al. (1985) performed the enzyme-catalyzed hydrolysis of disodium p-nitrophenol using alkaline phosphatase and Hammond et al. (1985) used polyphenol oxidase to catalyze the oxidation of p-cresol and p-chlorophenol. Since that time, more than 80 papers have been published concerning reactions in this medium. Enzymes can be 10–15 times more active in carbon dioxide than in organic solvents (Mori and Okahata, 1998). Reactions include hydrolysis, esterification, transesterification, and oxidation. Reactor configurations for these reactions were batch, semibatch, and continuous. There are many factors that influence the outcome of enzymatic reactions in carbon dioxide. These include enzyme activity, enzyme stability, temperature, pH, pressure, diffusional limitations of a two-phase heterogeneous mixture, solubility of enzyme and/or substrates, water content of the reaction system, and flow rate of carbon dioxide (continuous and semibatch reactions). It is important to understand the aspects that control and limit biocatalysis in carbon dioxide if one wants to improve upon the process. This chapter serves as a brief introduction to enzyme chemistry in carbon dioxide. The advantages and disadvantages of running reactions in this medium, as well as the factors that influence reactions, are all presented. Many of the reactions studied in this area are summarized in a manner that is easy to read and referenced in Table 6.1. Carbon dioxide is cited as a good choice of solvents for a number of reasons. Some of the advantages of running reactions in carbon dioxide instead of the more traditional organic solvents include the low viscosity of the solvent, the convenient recovery of the products and non-reacted components, abundant availability, low cost, no solvent contamination of products, full miscibility with other gases, non-existent toxicity, low surface tension, non-flammability, and recyclability. The low mass-transfer limitations are an advantage because of the large diffusivity of reactants.
APA, Harvard, Vancouver, ISO, and other styles
4

Luzzatto, Lucio. "Glucose-6-phosphate dehydrogenase deficiency." In Oxford Textbook of Medicine, edited by Chris Hatton and Deborah Hay, 5472–79. Oxford University Press, 2020. http://dx.doi.org/10.1093/med/9780198746690.003.0541.

Full text
Abstract:
Deficiency of the enzyme glucose-6-phosphate dehydrogenase (G6PD) in red blood cells is an inherited abnormality due to mutations of the G6PD gene on the X chromosome that renders the cells vulnerable to oxidative damage. The condition is widespread in many populations living in or originating from tropical and subtropical areas of the world because it confers a selective advantage against Plasmodium falciparum malaria. Clinical features—G6PD deficiency is mostly an asymptomatic trait, but it predisposes to acute haemolytic anaemia in response to exogenous triggers, including (1) ingestion of fava beans—favism; (2) certain bacterial and viral infections; and (3) some drugs—notably some antimalarials (e.g. primaquine), some antibiotics (e.g. sulphanilamide, dapsone, nitrofurantoin), and even aspirin in high doses. Other manifestations include (1) severe neonatal jaundice; and (2) chronic nonspherocytic haemolytic anaemia—the latter is only seen with rare specific genetic variants. The acute haemolytic attack typically starts with malaise, weakness, and abdominal or lumbar pain, followed by the development of jaundice and passage of dark urine (haemoglobinuria). Most episodes resolve spontaneously. Diagnosis relies on the direct demonstration of decreased activity of G6PD in red cells: a variety of screening tests are available, with (ideally) subsequent confirmation by quantitative assay. Prevention is by avoiding exposure to triggering factors of previously screened subjects. Prompt blood transfusion is indicated in severe acute haemolytic anaemia and may be life-saving.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Specific oxidation rate"

1

Leoni, Mario, Lee Frederickson, and Fletcher Miller. "Oxidation Rate Analysis of Carbon Nanoparticles for a Small Particle Heat Exchange Receiver." In ASME 2014 8th International Conference on Energy Sustainability collocated with the ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/es2014-6648.

Full text
Abstract:
A new experimental set-up has been introduced at San Diego State University’s Combustion and Solar Energy Lab to study the thermal oxidation characteristics of in-situ generated carbon particles in air at high pressure. The study is part of a project developing a Small Particle Heat Exchange Receiver (SPHER) utilizing concentrated solar power to run a Brayton cycle. The oxidation data obtained will further be used in different existing and planned computer models in order to accurately predict reactor temperatures and flow behavior in the SPHER. The carbon black particles were produced by thermal decomposition of natural gas at 1250 °C and a pressure of 5.65 bar (82 psi). Particles were analyzed using a Diesel Particle Scatterometer (DPS) and scanning electron microscopy (SEM) and found to have a 310 nm average diameter. The size distribution and the complex index of refraction were measured and the data were used to calculate the specific extinction cross section γ of the spherical particles. The oxidation rate was determined using 2 extinction tubes and a tube furnace and the values were compared to literature. The activation energy of the carbon particles was determined to be 295.02 kJ/mole which is higher than in comparable studies. However, the oxidation of carbon particles bigger than 100 nm is hardly studied and almost no previous data is available at these conditions.
APA, Harvard, Vancouver, ISO, and other styles
2

Korotkikh, A., I. Sorokin, E. Selikhova, and V. Arkhipov. "THE BURNING RATE OF HIGH-ENERGY MATERIALS CONTAINING METAL FUELS BASED ON AL AND B." In 9TH INTERNATIONAL SYMPOSIUM ON NONEQUILIBRIUM PROCESSES, PLASMA, COMBUSTION, AND ATMOSPHERIC PHENOMENA. TORUS PRESS, 2020. http://dx.doi.org/10.30826/nepcap9a-32.

Full text
Abstract:
An effective method of increasing the energy characteristics of high-energy materials (HEMs) is the use of boron and metal borides powders, which have high values of specific energy released during oxidation and combustion. This study investigates powders of amorphous boron and aluminum borides, which are used in compositions of solid propellants based on ammonium perchlorate, ammonium nitrate, and active fuel-binder.
APA, Harvard, Vancouver, ISO, and other styles
3

Venstrom, Luke J., Nicholas Petkovich, Stephen Rudisill, Andreas Stein, and Jane H. Davidson. "The Oxidation of Macroporous Cerium and Cerium-Zirconium Oxide for the Solar Thermochemical Production of Fuels." In ASME 2011 5th International Conference on Energy Sustainability. ASMEDC, 2011. http://dx.doi.org/10.1115/es2011-54160.

Full text
Abstract:
The H2 and CO productivity and reactivity of three-dimensionally ordered macroporous (3DOM) cerium and cerium-zirconium oxide upon H2O and CO2 oxidation at 1073K is presented in comparison to the productivity and reactivity of non-ordered porous and low porosity cerium oxide. The production of H2 and CO2 constitutes the second step of the two-step solar thermochemical H2O and CO2 splitting cycles. The 3DOM cerium oxide, with a specific surface area of 25 m2 g−1, increases the average H2 and CO production rates over the non-ordered porous cerium oxide with a specific surface area of 112 m2 g−1: the average H2 production rate increases from 5.2 cm3 g−1 min−1 to 7.9 cm3 g−1 min−1 and the average CO production rate increases from 7.7 cm3 g−1 min−1 to 21.9 cm3 g−1 min−1. The superior reactivity of 3DOM cerium oxide is attributed primarily to the stability of the 3DOM structure and also to the improved transport of reacting species to and from oxidation sites realized with the interconnected and ordered pores of the 3DOM structure. Doping the 3DOM cerium oxide with 20 mol% zirconia further stabilizes the structure and increases the average H2 and CO production rates to 10.2 cm3 g−1 min−1 and 22.1 cm3 g−1 min−1, respectively.
APA, Harvard, Vancouver, ISO, and other styles
4

Koç, Mehmet, Ulaş Baysan, A. Güngör, and Figen Kaymak-Ertekin. "Effect of tray dryer’s independent variables (drying temperature and air velocity) on the quality of olive pomace and system’s energy efficiency." In 21st International Drying Symposium. Valencia: Universitat Politècnica València, 2018. http://dx.doi.org/10.4995/ids2018.2018.7719.

Full text
Abstract:
In this study, the effects of drying temperature (70, 80, 90°C) and air velocity (0.5, 1.8 m/s) of hot air drying (tray drying) on quality of dried 2-phase olive pomace and system’s energy efficiency were investigated. The drying experiments were carried out in a tray dryer. The effects of drying conditions were evaluated with analyzing drying time, the primary and secondary oxidation and calculating specific moisture extraction rate (SMER), moisture extraction rate (MER) and specific energy consumption (SEC). The results showed that increase in drying temperature and decrease in air velocity led to decrease in quality of dried olive pomace. Keywords: Waste valorization, 2-phase olive pomace, Tray dryer, Energy efficiency, oxidation stability
APA, Harvard, Vancouver, ISO, and other styles
5

Merino, Juan, Esther Cera, Jordi Bruno, Trygve Eriksen, Javier Quiñones, and Aurora Martínez-Esparza. "Long Term Modelling of Spent Fuel Oxidation/Dissolution Under Repository Conditions." In ASME 2001 8th International Conference on Radioactive Waste Management and Environmental Remediation. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/icem2001-1130.

Full text
Abstract:
Abstract A model to study the stability of the spent fuel under repository conditions has been developed. The fuel-water interface is a dynamic redox system, where oxidising conditions due to the radiolysis of water can lead to the release of the uranium and the radionuclides embedded in the fuel matrix. Both kinetic and thermodynamic processes have been taken into account. Special attention is given to the unit rate of matrix oxidation/dissolution, which has been the subject of a specific radiolytic model. The findings of this work have important implications for the applicability of solubility limits in establishing source term models.
APA, Harvard, Vancouver, ISO, and other styles
6

Veronda, Brenda, and Matthew Dingens. "The State of Permanganate With Relation to In Situ Chemical Oxidation." In The 11th International Conference on Environmental Remediation and Radioactive Waste Management. ASMEDC, 2007. http://dx.doi.org/10.1115/icem2007-7002.

Full text
Abstract:
In Situ Chemical Oxidation (ISCO) with permanganate had its beginnings over 10 years ago. Since that time, many sites have been successfully treated for organic compounds including chlorinated ethenes (perchloroethylene, trichloroethylene, etc.) phenols, explosives such as RDX, and many other organics. The successful application of ISCO with permanganate requires the integration of many site-specific factors into the remedial design. ISCO with permanganate is an effective technology, not only for its oxidative properties and persistence, but also for its application flexibility to remediate soil and groundwater. The merits of any type of treatment technology can be assessed in terms of effectiveness, ease of use, reaction rate, and cost. The use of permanganate for in-situ chemical oxidation results in the complete mineralization of TCE and PCE and can result in treatment levels below detection limits. Permanganate is a single component oxidizer, which is easily handled, mixed and distributed to the subsurface. Permanganate is also inexpensive to design and implement as compared to other technologies. This presentation will provide a general overview of the application and safety aspects of ISCO with permanganate. This paper will discuss the advantages and limitations of this technology, typical cost ranges, site evaluation and application technologies.
APA, Harvard, Vancouver, ISO, and other styles
7

Negami, Masahiro, Shinya Hibino, Akihito Kawano, Yoshimichi Nomura, Ryozo Tanaka, and Kenichiroh Igashira. "Development of Highly Durable Thermal Barrier Coating by Suppression of Thermally Grown Oxide." In ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/gt2017-64046.

Full text
Abstract:
Durability of thermal barrier coating (TBC) systems is important because of recent rising of TIT (Turbine inlet temperature) for improved efficiency of industrial gas turbine engines. However, high-temperature environment accelerates the degradation of the TBC as well as causes spalling of the top coat. Spalling of the top coat may be attributed to several factors, but evidently the growth of thermally grown oxide (TGO) should be considered as an important factor. One method for reducing the growth rate of TGO is to provide a dense α-Al2O3 layer at the boundary of the bond coat and top coat. This α-Al2O3 layer will protect the bond coat against oxidation and prevent outward diffusion of aluminum of the bond coat which causes further oxidation. In this study, we focused on thermal pre-oxidation of the bond coat as a means for forming an α-Al2O3 barrier layer that would be effective at reducing the growth rate of TGO and we studied the suitable pre-oxidation conditions. In the primary stage we analyzed the oxidation behavior of the bond coat surface during pre-oxidation heat treatment by means of in-situ synchrotron X-ray diffraction (XRD) analysis. As a result, we learned that during oxidation in ambient air environment, in the initial stage of oxidation metastable alumina is produced in addition to α-Al2O3, but if the thermal treatment is conducted under some specific low oxygen partial pressure condition, unlike in the ambient air environment, only α-Al2O3 is formed with suppressing formation of metastable alumina. We also conducted TEM and XRD analysis of oxide scale formed after pre-oxidation heat treatment of the bond coat. As a result, we learned that if pre-oxidation is performed under specific oxygen partial pressure conditions, a monolithic α-Al2O3 layer is formed on the bond coat. We performed a durability evaluation test of TBC with the monolithic α-Al2O3 layer formed by pre-oxidation of the bond coat. An isothermal oxidation test confirmed that the growth of TGO in the TBC that had undergone pre-oxidation was suppressed more thoroughly than that in the TBC that had not undergone pre-oxidation. Cyclic thermal shock test by hydrogen burner rig was also carried out. TBC with the monolithic α-Al2O3 layer has resistance to >2000 cycle thermal shock at a load equivalent to that of actual gas turbine.
APA, Harvard, Vancouver, ISO, and other styles
8

Newby, R. A., W. C. Yang, and R. L. Bannister. "An Evaluation of a Partial Oxidation Concept for Combustion Turbine Power Systems." In ASME 1997 Turbo Asia Conference. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/97-aa-024.

Full text
Abstract:
In the partial oxidation concept, a high pressure, low-heating-value fuel gas is generated by partially combusting fuel with air. This fuel gas is expanded in a high-pressure turbine prior to being burned in a second-stage, conventional combustion turbine. This process reduces the specific air requirements of the power system and increases the power output. The performance, practicality, and cost of a heavy duty combustion turbine power system incorporating partial oxidation (PO) of natural gas has been estimated to assess the potential merits of this technology. Compared to conventional combustion turbine power cycles, the PO power cycle shows the potential for significant plant heat rate and cost-of-electricity improvements. However, significant development remains to verify and commercialize PO for combustion turbine power systems.
APA, Harvard, Vancouver, ISO, and other styles
9

Ayvaz, Safiye İpek, and Mehmet Ayvaz. "Investigation of the Wear Behavior of AA6082 Against Different Counterparts." In International Students Science Congress. Izmir International Guest Student Association, 2021. http://dx.doi.org/10.52460/issc.2021.045.

Full text
Abstract:
In this study, the effect of different counterparts on the wear resistance of AA6082 aluminum alloy was investigated. In tests using pin-on-disk method, 6 mm diameter Al2O3, 100Cr6 and WC-6Co balls were used as counterparts. The tests were carried out using 500 m sliding distance and 5N load. The lowest specific wear rate was measured as 7.58x10-4 mm3/Nm in WC-6Co / AA6082 couple, and the highest value was measured as 9.71x10-4 mm3/Nm in 100Cr6/AA6082 couple. In the Al2O3/AA6082 couple, the specific wear rate of the AA6082-T6 sample was determined as 8.23x10-4 mm3/Nm.While it was observed that the dominant wear type in the 100Cr6/AA6082 pair was abrasive wear, oxidation wear and oxide tribofilm were detected in the WC-6Co/AA6082 and Al2O3/AA6082 couple besides the abrasive wear.
APA, Harvard, Vancouver, ISO, and other styles
10

Slottner, Pontus. "A Prognostics Approach Connecting Oxidation Damage to Mechanical Criteria." In ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/gt2020-15946.

Full text
Abstract:
Abstract Oxidation of gas turbine parts is one of the damage mechanisms limiting firing rate and outage interval, thereby reducing potential efficiency and increasing operational cost. While oxidation isn’t an immediate integrity threat in itself, it has indirect impact by reducing load carrying cross sections, changing weight and stiffness distribution, causing cooling air leakages, changing material properties, changing parts aerodynamics characteristics et cetera. This in turn potentially results in shorter creep life, drifting eigenfrequencies, overheating of other parts, increased brittleness and performance loss. Since it is very complicated to analyze all these possible situations in detail, parts are often rejected because of their appearance rather than because of actually approaching a level of damage where it will have consequences on the operability of the turbine. Further, the rules tend to be general rather than customer specific, being set for the entire allowed operation envelope of the part rather than based upon the particular conditions of the unit where the part is in service. This paper presents a simple, first-step prognostics model that connects oxidation damage to local one-dimensional stress and stiffness and local cross-sectional force. An example is given where simple oxidation models are used to predict a detailed oxidation state with regard to multiple aspects. Herein, this oxidation state includes different aspects with regard to the type of oxidation and includes additional characteristics to be considered in the following. By connecting the model to measured characteristics instead of pure oxidation criteria it will be easier to: firstly, apply more relevant criteria that can be evaluated on a site-by-site basis. This will allow high-precision oxidation prognostics with criteria relevant for the operational safety of the equipment. Secondly, more accurately compare predictions to experiences, allowing more detailed operation experience evaluation as well as more relevant input to root cause investigations. This will allow more accurate root cause determination and will result in fewer data points needed to draw statistically sound conclusions from field experiences. Providing such possibility has a significant impact on corresponding applications, as it includes larger operation. Simultaneously, risks can be controlled and quantified better than today providing an important benefit for an application like gas turbines depending strongly on the reliability of the components utilized. The model is general in its nature and is formulated to allow application with any oxidation rule that can be formulated as a mathematical algorithm that is suitable for time integration. The main limitations are its restriction to one space dimension and the assumption of a constant temperature field. If the model is found useful, natural next steps are to extend the model to three space dimensions and a more complex temperature model. The model should also be tested with more accurate oxidation models.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Specific oxidation rate"

1

Rafaeli, Ada, Wendell Roelofs, and Anat Zada Byers. Identification and gene regulation of the desaturase enzymes involved in sex-pheromone biosynthesis of pest moths infesting grain. United States Department of Agriculture, March 2008. http://dx.doi.org/10.32747/2008.7613880.bard.

Full text
Abstract:
The original objectives of the approved proposal included: 1. Establishment of the biosynthetic pathways for pheromone production using labeled precursors and GC-MS. 2. The elucidation of a circadian regulation of key enzymes in the biosynthetic pathway. 3. The identification, characterization and confirmation of functional expression of the delta-desaturases. 4. The identification of gene regulatory processes involved in the expression of the key enzymes in the biosynthetic pathway. Background to the topic: Moths constitute one of the major groups of pest insects in agriculture and their reproductive behavior is dependent on chemical communication. Sex-pheromone blends are utilized by a variety of moth species to attract conspecific mates. The sex pheromones used are commonly composed of blends of aliphatic molecules that vary in chain length, geometry, degree and position of double bonds and functional groups. They are formed by various actions of specific delta-desaturases to which chain shortening, elongation, reduction, acetylation, and oxidation of a common fatty acyl precursor is coupled. In most of the moth species sex-pheromone biosynthesis is under circadian control by the neurohormone, PBAN (pheromone-biosynthesis-activating neuropeptide). The development of specific and safe insect control strategies utilizing pheromone systems depends on a clear knowledge of the molecular mechanisms involved. In this proposal we aimed at identifying and characterizing specific desaturases involved in the biosynthetic pathway of two moth pest-speciesof stored products, P. interpunctella and S. cerealella, and to elucidate the regulation of the enzymes involved in pheromone biosynthesis. Due to technical difficulties the second stored product pest was excluded from the study at an early phase of the research project. Major conclusions: Within the framework of the planned objectives we confirmed the pheromone biosynthetic pathway of P. interpunctella and H. armigera by using labeled precursor molecules. In addition, in conjunction with various inhibitors we determined the PBAN-stimulated rate-limiting step for these biosynthetic pathways. We thereby present conclusive evidence that the enzyme Acetyl Coenzyme A Carboxylase is activated as a result of PBAN stimulation. We also found that P. interpunctella produce the main pheromone component Z9, E12 Tetradecenyl acetate through the action of a D11 desaturase working on the 16:Acid precursor. This is evidenced by the high amount of incorporation of ²H-labeled 16:Acid into pheromone when compared to the incorporation of ²H-labeled 14:Acid. However, in contrast to reports on other moth species, P. interpunctella is also capable of utilizing the 14:Acid precursor, although to a much lesser extent than the 16:Acid precursor. Despite the discovery of nine different desaturase gene transcripts in this species, from the present study it is evident that although PCR detected all nine gene transcripts, specific to female pheromone glands, only two are highly expressed whereas the other 7 are expressed at levels of at least 10⁵ fold lower showing very low abundance. These two genes correspond to D11-like desaturases strengthening the hypothesis that the main biosynthetic pathway involves a D11 desaturase.
APA, Harvard, Vancouver, ISO, and other styles
2

Landau, Sergei Yan, John W. Walker, Avi Perevolotsky, Eugene D. Ungar, Butch Taylor, and Daniel Waldron. Goats for maximal efficacy of brush control. United States Department of Agriculture, March 2008. http://dx.doi.org/10.32747/2008.7587731.bard.

Full text
Abstract:
Background. Brush encroachment constitutes a serious problem in both Texas and Israel. We addressed the issue of efficacy of livestock herbivory - in the form of goat browsing - to change the ecological balance to the detriment of the shrub vegetation. Shrub consumption by goats is kept low by plant chemical defenses such as tannins and terpenes. Scientists at TAES and ARO have developed an innovative, cost-effective methodology using fecal Near Infrared Spectrometry to elucidate the dietary percentage of targeted, browse species (terpene-richredberry and blueberry juniper in the US, and tannin-rich Pistacialentiscus in Israel) for a large number of animals. The original research objectives of this project were: 1. to clarify the relative preference of goat breeds and the individual variation of goats within breeds, when consuming targeted brush species; 2. to assess the heritability of browse intake and validate the concept of breeding goat lines that exhibit high preference for chemically defended brush, using juniper as a model; 3. to clarify the relative contributions of genetics and learning on the preference for target species; 4. to identify mechanisms that are associated with greater intake of brush from the two target species; 5. to establish when the target species are the most vulnerable to grazing. (Issue no.5 was addressed only partly.) Major conclusions, solutions, achievements: Both the Israel and US scientists put significant efforts into improving and validating the technique of Fecal NIRS for predicting the botanical composition of goat diets. Israeli scientists validated the use of observational data for calibrating fecal NIRS, while US scientists established that calibrations could be used across animals differing in breed and age but that caution should be used in making comparisons between different sexes. These findings are important because the ability to select goat breeds or individuals within a breed for maximal efficiency of brush control is dependent upon accurate measurement of the botanical composition of the diet. In Israel it was found that Damascus goats consume diets more than twice richer in P. lentiscus than Mamber or Boer goats. In the US no differences were found between Angora and Boer cross goats but significant differences were found between individuals within breeds in juniper dietary percentage. In both countries, intervention strategies were found that further increased the consumption of the chemically defended plant. In Israel feeding polyethylene glycol (PEG, MW 4,000) that forms high-affinity complexes with tannins increased P. lentiscus dietary percentage an average of 7 percentage units. In the US feeding a protein supplement, which enhances rates of P450-catalyzed oxidations and therefore the rate of oxidation of monoterpenes, increased juniper consumption 5 percentage units. However, the effects of these interventions were not as large as breed or individual animal effects. Also, in a wide array of competitive tannin-binding assays in Israel with trypsin, salivary proteins did not bind more tannic acid or quebracho tannin than non-specific bovine serum albumin, parotid saliva did not bind more tannins than mixed saliva, no response of tannin-binding was found to levels of dietary tannins, and the breed effect was of minor importance, if any. These fundings strongly suggest that salivary proteins are not the first line of defense from tannin astringency in goats. In the US relatively low values for heritability and repeatability for juniper consumption were found (13% and 30%, respectively), possibly resulting from sampling error or non-genetic transfer of foraging behavior, i.e., social learning. Both alternatives seem to be true as significant variation between sequential observations were noted on the same animal and cross fostering studies conducted in Israel demonstrated that kids raised by Mamber goats showed lower propensity to consume P. lentiscus than counterparts raised by Damascus goats.
APA, Harvard, Vancouver, ISO, and other styles
3

Lahav, Ori, Albert Heber, and David Broday. Elimination of emissions of ammonia and hydrogen sulfide from confined animal and feeding operations (CAFO) using an adsorption/liquid-redox process with biological regeneration. United States Department of Agriculture, March 2008. http://dx.doi.org/10.32747/2008.7695589.bard.

Full text
Abstract:
The project was originally aimed at investigating and developing new efficient methods for cost effective removal of ammonia (NH₃) and hydrogen sulfide (H₂S) from Concentrated Animal Feeding Operations (CAFO), in particular broiler and laying houses (NH₃) and hog houses (H₂S). In both cases, the principal idea was to design and operate a dedicated air collection system that would be used for the treatment of the gases, and that would work independently from the general ventilation system. The advantages envisaged: (1) if collected at a point close to the source of generation, pollutants would arrive at the treatment system at higher concentrations; (2) the air in the vicinity of the animals would be cleaner, a fact that would promote animal growth rates; and (3) collection efficiency would be improved and adverse environmental impact reduced. For practical reasons, the project was divided in two: one effort concentrated on NH₃₍g₎ removal from chicken houses and another on H₂S₍g₎ removal from hog houses. NH₃₍g₎ removal: a novel approach was developed to reduce ammonia emissions from CAFOs in general, and poultry houses in particular. Air sucked by the dedicated air capturing system from close to the litter was shown to have NH₃₍g₎ concentrations an order of magnitude higher than at the vents of the ventilation system. The NH₃₍g₎ rich waste air was conveyed to an acidic (0<pH<~5) bubble column reactor where NH₃ was converted to NH₄⁺. The reactor operated in batch mode, starting at pH 0 and was switched to a new acidic absorption solution just before NH₃₍g₎ breakthrough occurred, at pH ~5. Experiments with a wide range of NH₃₍g₎ concentrations showed that the absorption efficiency was practically 100% throughout the process as long as the face velocity was below 4 cm/s. The potential advantages of the method include high absorption efficiency, lower NH₃₍g₎ concentrations in the vicinity of the birds, generation of a valuable product and the separation between the ventilation and ammonia treatment systems. A small scale pilot operation conducted for 5 weeks in a broiler house showed the approach to be technically feasible. H₂S₍g₎ removal: The main goal of this part was to develop a specific treatment process for minimizing H₂S₍g₎ emissions from hog houses. The proposed process consists of three units: In the 1ˢᵗ H₂S₍g₎ is absorbed into an acidic (pH<2) ferric iron solution and oxidized by Fe(III) to S⁰ in a bubble column reactor. In parallel, Fe(III) is reduced to Fe(II). In the 2ⁿᵈ unit Fe(II) is bio-oxidized back to Fe(III) by Acidithiobacillus ferrooxidans (AF).In the 3ʳᵈ unit S⁰ is separated from solution in a gravity settler. The work focused on three sub-processes: the kinetics of H₂S absorption into a ferric solution at low pH, the kinetics of Fe²⁺ oxidation by AF and the factors that affect ferric iron precipitation (a main obstacle for a continuous operation of the process) under the operational conditions. H₂S removal efficiency was found higher at a higher Fe(III) concentration and also higher for higher H₂S₍g₎ concentrations and lower flow rates of the treated air. The rate limiting step of the H₂S reactive absorption was found to be the chemical reaction rather than the transition from gas to liquid phase. H₂S₍g₎ removal efficiency of >95% was recorded with Fe(III) concentration of 9 g/L using typical AFO air compositions. The 2ⁿᵈ part of the work focused on kinetics of Fe(II) oxidation by AF. A new lab technique was developed for determining the kinetic equation and kinetic parameters (KS, Kₚ and mₘₐₓ) for the bacteria. The 3ʳᵈ part focused on iron oxide precipitation under the operational conditions. It was found that at lower pH (1.5) jarosite accumulation is slower and that the performance of the AF at this pH was sufficient for successive operation of the proposed process at the H₂S fluxes predicted from AFOs. A laboratory-scale test was carried out at Purdue University on the use of the integrated system for simultaneous hydrogen sulfide removal from a H₂S bubble column filled with ferric sulfate solution and biological regeneration of ferric ions in a packed column immobilized with enriched AFbacteria. Results demonstrated the technical feasibility of the integrated system for H₂S removal and simultaneous biological regeneration of Fe(III) for potential continuous treatment of H₂S released from CAFO. NH₃ and H₂S gradient measurements at egg layer and swine barns were conducted in winter and summer at Purdue. Results showed high potential to concentrate NH₃ and H₂S in hog buildings, and NH₃ in layer houses. H₂S emissions from layer houses were too low for a significant gradient. An NH₃ capturing system was designed and tested in a 100-chicken broiler room. Five bell-type collecting devices were installed over the litter to collect NH₃ emissions. While the air extraction system moved only 10% of the total room ventilation airflow rate, the fraction of total ammonia removed was 18%, because of the higher concentration air taken from near the litter. The system demonstrated the potential to reduce emissions from broiler facilities and to concentrate the NH₃ effluent for use in an emission control system. In summary, the project laid a solid foundation for the implementation of both processes, and also resulted in a significant scientific contribution related to AF kinetic studies and ferrous analytical measurements.
APA, Harvard, Vancouver, ISO, and other styles
4

Droby, Samir, Michael Wisniewski, Ron Porat, and Dumitru Macarisin. Role of Reactive Oxygen Species (ROS) in Tritrophic Interactions in Postharvest Biocontrol Systems. United States Department of Agriculture, December 2012. http://dx.doi.org/10.32747/2012.7594390.bard.

Full text
Abstract:
To elucidate the role of ROS in the tri-trophic interactions in postharvest biocontrol systems a detailed molecular and biochemical investigation was undertaken. The application of the yeast biocontrol agent Metschnikowia fructicola, microarray analysis was performed on grapefruit surface wounds using an Affymetrix Citrus GeneChip. the data indicated that 1007 putative unigenes showed significant expression changes following wounding and yeast application relative to wounded controls. The expression of the genes encoding Respiratory burst oxidase (Rbo), mitogen-activated protein kinase (MAPK) and mitogen-activated protein kinase kinase (MAPKK), G-proteins, chitinase (CHI), phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS) and 4-coumarate-CoA ligase (4CL). In contrast, three genes, peroxidase (POD), superoxide dismutase (SOD) and catalase (CAT), were down-regulated in grapefruit peel tissue treated with yeast cells. The yeast antagonists, Metschnikowia fructicola (strain 277) and Candida oleophila (strain 182) generate relatively high levels of super oxide anion (O2−) following its interaction with wounded fruit surface. Using laser scanning confocal microscopy we observed that the application of M. fructicola and C. oleophila into citrus and apple fruit wounds correlated with an increase in H2O2 accumulation in host tissue. The present data, together with our earlier discovery of the importance of H₂O₂ production in the defense response of citrus flavedo to postharvest pathogens, indicate that the yeast-induced oxidative response in fruit exocarp may be associated with the ability of specific yeast species to serve as biocontrol agents for the management of postharvest diseases. Effect of ROS on yeast cells was also studied. Pretreatment of the yeast, Candida oleophila, with 5 mM H₂O₂ for 30 min (sublethal) increased yeast tolerance to subsequent lethal levels of oxidative stress (50 mM H₂O₂), high temperature (40 °C), and low pH (pH 4). Suppression subtractive hybridization analysis was used to identify genes expressed in yeast in response to sublethal oxidative stress. Transcript levels were confirmed using semi quantitative reverse transcription-PCR. Seven antioxidant genes were up regulated. Pretreatment of the yeast antagonist Candida oleophila with glycine betaine (GB) increases oxidative stress tolerance in the microenvironment of apple wounds. ROS production is greater when yeast antagonists used as biocontrol agents are applied in the wounds. Compared to untreated control yeast cells, GB-treated cells recovered from the oxidative stress environment of apple wounds exhibited less accumulation of ROS and lower levels of oxidative damage to cellular proteins and lipids. Additionally, GB-treated yeast exhibited greater biocontrol activity against Penicillium expansum and Botrytis cinerea, and faster growth in wounds of apple fruits compared to untreated yeast. The expression of major antioxidant genes, including peroxisomal catalase, peroxiredoxin TSA1, and glutathione peroxidase was elevated in the yeast by GB treatment. A mild heat shock (HS) pretreatment (30 min at 40 1C) improved the tolerance of M. fructicola to subsequent high temperature (45 1C, 20–30 min) and oxidative stress (0.4 mol-¹) hydrogen peroxide, 20–60 min). HS-treated yeast cells showed less accumulation of reactive oxygen species (ROS) than non-treated cells in response to both stresses. Additionally, HS-treated yeast exhibited significantly greater (P≥0.0001) biocontrol activity against Penicillium expansum and a significantly faster (Po0.0001) growth rate in wounds of apple fruits stored at 25 1C compared with the performance of untreated yeast cells. Transcription of a trehalose-6-phosphate synthase gene (TPS1) was up regulated in response to HS and trehalose content also increased.
APA, Harvard, Vancouver, ISO, and other styles
5

Ohad, Itzhak, and Himadri Pakrasi. Role of Cytochrome B559 in Photoinhibition. United States Department of Agriculture, December 1995. http://dx.doi.org/10.32747/1995.7613031.bard.

Full text
Abstract:
The aim of this research project was to obtain information on the role of the cytochrome b559 in the function of Photosystem-II (PSII) with special emphasis on the light induced photo inactivation of PSII and turnover of the photochemical reaction center II protein subunit RCII-D1. The major goals of this project were: 1) Isolation and sequencing of the Chlamydomonas chloroplast psbE and psbF genes encoding the cytochrome b559 a and b subunits respectively; 2) Generation of site directed mutants and testing the effect of such mutation on the function of PSII under various light conditions; 3) To obtain further information on the mechanism of the light induced degradation and replacement of the PSII core proteins. This information shall serve as a basis for the understanding of the role of the cytochrome b559 in the process of photoinhibition and recovery of photosynthetic activity as well as during low light induced turnover of the D1 protein. Unlike in other organisms in which the psbE and psbF genes encoding the a and b subunits of cytochrome b559, are part of an operon which also includes the psbL and psbJ genes, in Chlamydomonas these genes are transcribed from different regions of the chloroplast chromosome. The charge distribution of the derived amino-acid sequences of psbE and psbF gene products differs from that of the corresponding genes in other organisms as far as the rule of "positive charge in" is concerned relative to the process of the polypeptide insertion in the thylakoid membrane. However, the sum of the charges of both subunits corresponds to the above rule possibly indicating co-insertion of both subunits in the process of cytochrome b559 assembly. A plasmid designed for the introduction of site-specific mutations into the psbF gene of C. reinhardtii. was constructed. The vector consists of a DNA fragment from the chromosome of C. reinhardtii which spans the region of the psbF gene, upstream of which the spectinomycin-resistance-conferring aadA cassette was inserted. This vector was successfully used to transform wild type C. reinhardtii cells. The spectinomycin resistant strain thus obtained can grow autotrophically and does not show significant changes as compared to the wild-type strain in PSII activity. The following mutations have been introduced in the psbF gene: H23M; H23Y; W19L and W19. The replacement of H23 involved in the heme binding to M and Y was meant to permit heme binding but eventually alter some or all of the electron transport properties of the mutated cytochrome. Tryptophane W19, a strictly conserved residue, is proximal to the heme and may interact with the tetrapyrole ring. Therefore its replacement may effect the heme properties. A change to tyrosine may have a lesser affect on the potential or electron transfer rate while a replacement of W19 by leucine is meant to introduce a more prominent disturbance in these parameters. Two of the mutants, FW19L and FH23M have segregated already and are homoplasmic. The rest are still grown under selection conditions until complete segregation will be obtained. All mutants contain assembled and functional PSII exhibiting an increased sensitivity of PSII to the light. Work is still in progress for the detailed characterization of the mutants PSII properties. A tobacco mutant, S6, obtained by Maliga and coworkers harboring the F26S mutation in the b subunit was made available to us and was characterized. Measurements of PSII charge separation and recombination, polypeptide content and electron flow indicates that this mutation indeed results in light sensitivity. Presently further work is in progress in the detailed characterization of the properties of all the above mutants. Information was obtained demonstrating that photoinactivation of PSII in vivo initiates a series of progressive changes in the properties of RCII which result in an irreversible modification of the RCII-D1 protein leading to its degradation and replacement. The cleavage process of the modified RCII-D1 protein is regulated by the occupancy of the QB site of RCII by plastoquinone. Newly synthesized D1 protein is not accumulated in a stable form unless integrated in reassembled RCII. Thus the degradation of the irreversibly modified RCII-D1 protein is essential for the recovery process. The light induced degradation of the RCII-D1 protein is rapid in mutants lacking the pD1 processing protease such as in the LF-1 mutant of the unicellular alga Scenedesmus obliquus. In this case the Mn binding site of PSII is abolished, the water oxidation process is inhibited and harmful cation radicals are formed following light induced electron flow in PSII. In such mutants photo-inactivation of PSII is rapid, it is not protected by ligands binding at the QB site and the degradation of the inactivated RCII-D1 occurs rapidly also in the dark. Furthermore the degraded D1 protein can be replaced in the dark in absence of light driven redox controlled reactions. The replacement of the RCII-D1 protein involves the de novo synthesis of the precursor protein, pD1, and its processing at the C-terminus end by an unknown processing protease. In the frame of this work, a gene previously isolated and sequenced by Dr. Pakrasi's group has been identified as encoding the RCII-pD1 C-terminus processing protease in the cyanobacterium Synechocystis sp. PCC 6803. The deduced sequence of the ctpA protein shows significant similarity to the bovine, human and insect interphotoreceptor retinoid-binding proteins. Results obtained using C. reinhardtii cells exposes to low light or series of single turnover light flashes have been also obtained indicating that the process of RCII-D1 protein turnover under non-photoinactivating conditions (low light) may be related to charge recombination in RCII due to back electron flow from the semiquinone QB- to the oxidised S2,3 states of the Mn cluster involved in the water oxidation process.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography