Academic literature on the topic 'Spatio-temporal Regulators'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Spatio-temporal Regulators.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Spatio-temporal Regulators"

1

Fritz, Rafael Dominik, and Olivier Pertz. "The dynamics of spatio-temporal Rho GTPase signaling: formation of signaling patterns." F1000Research 5 (April 26, 2016): 749. http://dx.doi.org/10.12688/f1000research.7370.1.

Full text
Abstract:
Rho GTPases are crucial signaling molecules that regulate a plethora of biological functions. Traditional biochemical, cell biological, and genetic approaches have founded the basis of Rho GTPase biology. The development of biosensors then allowed measuring Rho GTPase activity with unprecedented spatio-temporal resolution. This revealed that Rho GTPase activity fluctuates on time and length scales of tens of seconds and micrometers, respectively. In this review, we describe Rho GTPase activity patterns observed in different cell systems. We then discuss the growing body of evidence that upstream regulators such as guanine nucleotide exchange factors and GTPase-activating proteins shape these patterns by precisely controlling the spatio-temporal flux of Rho GTPase activity. Finally, we comment on additional mechanisms that might feed into the regulation of these signaling patterns and on novel technologies required to dissect this spatio-temporal complexity.
APA, Harvard, Vancouver, ISO, and other styles
2

Bakhsh, A., K. Shahzad, and T. Husnain. "Variation in the spatio-temporal expression of insecticidal genes in cotton." Czech Journal of Genetics and Plant Breeding 47, No. 1 (2011): 1–9. http://dx.doi.org/10.17221/131/2010-cjgpb.

Full text
Abstract:
The most significant breakthrough in plant biotechnology is the development of the techniques to transform genes from unrelated sources into commercially important crop plants to develop resistance against targeted insect pests. The spatio-temporal expression of insecticidal genes in transgenic cotton varies with plant age, plant parts and environmental conditions. The understanding of this temporal and spatial variation in efficacy and the resulting mechanisms is essential for cotton protection and production. This review summarizes variations in the efficacy of introduced insecticidal genes in cotton crop. The factors contributing to the variability of endotoxins have also been highlighted. The reduction in Bt protein biosynthesis in late-season cotton tissues could be attributed to the overexpression of the Bt gene at earlier stages, which leads to gene regulation at post-transcription levels and consequently results in gene silencing at a later stage. Methylation of the promoter may also play a role in the declined expression of endotoxin proteins. In genetically modified crops several environmental factors have been reported to affect the expression of transgenes. Among environmental factors nitrogen metabolism, inhibition of synthesis, degradation, remobilization and high temperature are attributable to the quantitative reduction in Bt proteins. Applying plant growth regulators or protein enhancers such as Chaperone<sup>TM</sup> may improve Bt cotton efficacy through enhancing the synthesis of proteins. Also some agronomic practices such as nitrogen fertilization and timely irrigation favour the endotoxin expression. Thus, variations in the efficacy of insecticidal genes in transgenic cotton and the involved mechanisms need to be understood fully so as to plan rational resistance management strategies to retard the rate of resistance development and to control target pests effectively by enhancing the endotoxin expression through genetic or agronomic management.
APA, Harvard, Vancouver, ISO, and other styles
3

Hill, Robert E., and Laura A. Lettice. "Alterations to the remote control of Shh gene expression cause congenital abnormalities." Philosophical Transactions of the Royal Society B: Biological Sciences 368, no. 1620 (2013): 20120357. http://dx.doi.org/10.1098/rstb.2012.0357.

Full text
Abstract:
Multi-species conserved non-coding elements occur in the vertebrate genome and are clustered in the vicinity of developmentally regulated genes. Many are known to act as cis -regulators of transcription and may reside at long distances from the genes they regulate. However, the relationship of conserved sequence to encoded regulatory information and indeed, the mechanism by which these contribute to long-range transcriptional regulation is not well understood. The ZRS, a highly conserved cis -regulator, is a paradigm for such long-range gene regulation. The ZRS acts over approximately 1 Mb to control spatio-temporal expression of Shh in the limb bud and mutations within it result in a number of limb abnormalities, including polydactyly, tibial hypoplasia and syndactyly. We describe the activity of this developmental regulator and discuss a number of mechanisms by which regulatory mutations in this enhancer function to cause congenital abnormalities.
APA, Harvard, Vancouver, ISO, and other styles
4

Sun, Shuo, Changyu Yi, Jing Ma, et al. "Analysis of Spatio-Temporal Transcriptome Profiles of Soybean (Glycine max) Tissues during Early Seed Development." International Journal of Molecular Sciences 21, no. 20 (2020): 7603. http://dx.doi.org/10.3390/ijms21207603.

Full text
Abstract:
Soybean (Glycine max) is an important crop providing oil and protein for both human and animal consumption. Knowing which biological processes take place in specific tissues in a temporal manner will enable directed breeding or synthetic approaches to improve seed quantity and quality. We analyzed a genome-wide transcriptome dataset from embryo, endosperm, endothelium, epidermis, hilum, outer and inner integument and suspensor at the global, heart and cotyledon stages of soybean seed development. The tissue specificity of gene expression was greater than stage specificity, and only three genes were differentially expressed in all seed tissues. Tissues had both unique and shared enriched functional categories of tissue-specifically expressed genes associated with them. Strong spatio-temporal correlation in gene expression was identified using weighted gene co-expression network analysis, with the most co-expression occurring in one seed tissue. Transcription factors with distinct spatiotemporal gene expression programs in each seed tissue were identified as candidate regulators of expression within those tissues. Gene ontology (GO) enrichment of orthogroup clusters revealed the conserved functions and unique roles of orthogroups with similar and contrasting expression patterns in transcript abundance between soybean and Arabidopsis during embryo proper and endosperm development. Key regulators in each seed tissue and hub genes connecting those networks were characterized by constructing gene regulatory networks. Our findings provide an important resource for describing the structure and function of individual soybean seed compartments during early seed development.
APA, Harvard, Vancouver, ISO, and other styles
5

Pintard, Lionel, and Vincent Archambault. "A unified view of spatio-temporal control of mitotic entry: Polo kinase as the key." Open Biology 8, no. 8 (2018): 180114. http://dx.doi.org/10.1098/rsob.180114.

Full text
Abstract:
The Polo kinase is an essential regulator of cell division. Its ability to regulate multiple events at distinct subcellular locations and times during mitosis is remarkable. In the last few years, a much clearer mechanistic understanding of the functions and regulation of Polo in cell division has emerged. In this regard, the importance of coupling changes in activity with changes in localization is striking, both for Polo itself and for its upstream regulators. This review brings together several new pieces of the puzzle that are gradually revealing how Polo is regulated, in space and time, to enable its functions in the early stages of mitosis in animal cells. As a result, a unified view of how mitotic entry is spatio-temporally regulated is emerging.
APA, Harvard, Vancouver, ISO, and other styles
6

Pang, Junling, Xia Zhang, Xuhui Ma, and Jun Zhao. "Spatio-Temporal Transcriptional Dynamics of Maize Long Non-Coding RNAs Responsive to Drought Stress." Genes 10, no. 2 (2019): 138. http://dx.doi.org/10.3390/genes10020138.

Full text
Abstract:
Long non-coding RNAs (lncRNAs) have emerged as important regulators in plant stress response. Here, we report a genome-wide lncRNA transcriptional analysis in response to drought stress using an expanded series of maize samples collected from three distinct tissues spanning four developmental stages. In total, 3488 high-confidence lncRNAs were identified, among which 1535 were characterized as drought responsive. By characterizing the genomic structure and expression pattern, we found that lncRNA structures were less complex than protein-coding genes, showing shorter transcripts and fewer exons. Moreover, drought-responsive lncRNAs exhibited higher tissue- and development-specificity than protein-coding genes. By exploring the temporal expression patterns of drought-responsive lncRNAs at different developmental stages, we discovered that the reproductive stage R1 was the most sensitive growth stage with more lncRNAs showing altered expression upon drought stress. Furthermore, lncRNA target prediction revealed 653 potential lncRNA-messenger RNA (mRNA) pairs, among which 124 pairs function in cis-acting mode and 529 in trans. Functional enrichment analysis showed that the targets were significantly enriched in molecular functions related to oxidoreductase activity, water binding, and electron carrier activity. Multiple promising targets of drought-responsive lncRNAs were discovered, including the V-ATPase encoding gene, vpp4. These findings extend our knowledge of lncRNAs as important regulators in maize drought response.
APA, Harvard, Vancouver, ISO, and other styles
7

Warmerdam, Daniël O., Roland Kanaar, and Veronique A. J. Smits. "Differential Dynamics of ATR-Mediated Checkpoint Regulators." Journal of Nucleic Acids 2010 (2010): 1–16. http://dx.doi.org/10.4061/2010/319142.

Full text
Abstract:
The ATR-Chk1 checkpoint pathway is activated by UV-induced DNA lesions and replication stress. Little was known about the spatio and temporal behaviour of the proteins involved, and we, therefore, examined the behaviour of the ATRIP-ATR and Rad9-Rad1-Hus1 putative DNA damage sensor complexes and the downstream effector kinase Chk1. We developed assays for the generation and validation of stable cell lines expressing GFP-fusion proteins. Photobleaching experiments in living cells expressing these fusions indicated that after UV-induced DNA damage, ATRIP associates more transiently with damaged chromatin than members of the Rad9-Rad1-Hus1 complex. Interestingly, ATRIP directly associated with locally induced UV damage, whereas Rad9 bound in a cooperative manner, which can be explained by the Rad17-dependent loading of Rad9 onto damaged chromatin. Although Chk1 dissociates from the chromatin upon UV damage, no change in the mobility of GFP-Chk1 was observed, supporting the notion that Chk1 is a highly dynamic protein.
APA, Harvard, Vancouver, ISO, and other styles
8

Shan, Xiaotong, Yueqing Li, Song Yang, et al. "The spatio‐temporal biosynthesis of floral flavonols is controlled by differential phylogenetic MYB regulators in Freesia hybrida." New Phytologist 228, no. 6 (2020): 1864–79. http://dx.doi.org/10.1111/nph.16818.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Botti, Gerardo, Clemente Cillo, Rossella De Cecio, Maria Gabriella Malzone, and Monica Cantile. "Paralogous HOX13 Genes in Human Cancers." Cancers 11, no. 5 (2019): 699. http://dx.doi.org/10.3390/cancers11050699.

Full text
Abstract:
Hox genes (HOX in humans), an evolutionary preserved gene family, are key determinants of embryonic development and cell memory gene program. Hox genes are organized in four clusters on four chromosomal loci aligned in 13 paralogous groups based on sequence homology (Hox gene network). During development Hox genes are transcribed, according to the rule of “spatio-temporal collinearity”, with early regulators of anterior body regions located at the 3’ end of each Hox cluster and the later regulators of posterior body regions placed at the distal 5’ end. The onset of 3’ Hox gene activation is determined by Wingless-type MMTV integration site family (Wnt) signaling, whereas 5’ Hox activation is due to paralogous group 13 genes, which act as posterior-inhibitors of more anterior Hox proteins (posterior prevalence). Deregulation of HOX genes is associated with developmental abnormalities and different human diseases. Paralogous HOX13 genes (HOX A13, HOX B13, HOX C13 and HOX D13) also play a relevant role in tumor development and progression. In this review, we will discuss the role of paralogous HOX13 genes regarding their regulatory mechanisms during carcinogenesis and tumor progression and their use as biomarkers for cancer diagnosis and treatment.
APA, Harvard, Vancouver, ISO, and other styles
10

Gao, Yuanhui, Hui Cao, Denggao Huang, Linlin Zheng, Zhenyu Nie, and Shufang Zhang. "RNA-Binding Proteins in Bladder Cancer." Cancers 15, no. 4 (2023): 1150. http://dx.doi.org/10.3390/cancers15041150.

Full text
Abstract:
RNA-binding proteins (RBPs) are key regulators of transcription and translation, with highly dynamic spatio-temporal regulation. They are usually involved in the regulation of RNA splicing, polyadenylation, and mRNA stability and mediate processes such as mRNA localization and translation, thereby affecting the RNA life cycle and causing the production of abnormal protein phenotypes that lead to tumorigenesis and development. Accumulating evidence supports that RBPs play critical roles in vital life processes, such as bladder cancer initiation, progression, metastasis, and drug resistance. Uncovering the regulatory mechanisms of RBPs in bladder cancer is aimed at addressing the occurrence and progression of bladder cancer and finding new therapies for cancer treatment. This article reviews the effects and mechanisms of several RBPs on bladder cancer and summarizes the different types of RBPs involved in the progression of bladder cancer and the potential molecular mechanisms by which they are regulated, with a view to providing information for basic and clinical researchers.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!