Academic literature on the topic 'Spatial formation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Spatial formation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Spatial formation"
Last, Nana. "Flow’s Socio-spatial Formation." Thresholds 40 (January 2012): 39–46. http://dx.doi.org/10.1162/thld_a_00130.
Full textJiang, Luo-Luo, Wen-Xu Wang, and Bing-Hong Wang. "Pattern formation in spatial games." Physics Procedia 3, no. 5 (August 2010): 1933–39. http://dx.doi.org/10.1016/j.phpro.2010.07.038.
Full textNagel, Kai, Martin Shubik, Maya Paczuski, and Per Bak. "Spatial competition and price formation." Physica A: Statistical Mechanics and its Applications 287, no. 3-4 (December 2000): 546–62. http://dx.doi.org/10.1016/s0378-4371(00)00392-7.
Full textEggers, J., T. Grava, M. A. Herrada, and G. Pitton. "Spatial structure of shock formation." Journal of Fluid Mechanics 820 (May 5, 2017): 208–31. http://dx.doi.org/10.1017/jfm.2017.205.
Full textLeonova, E. I., M. V. Baranov, and O. V. Galzitskaya. "Formation of RNA spatial structures." Molecular Biology 46, no. 1 (February 2012): 34–46. http://dx.doi.org/10.1134/s0026893312010104.
Full textPuu, T. "Pattern formation in spatial economics." Chaos, Solitons & Fractals 3, no. 1 (January 1993): 99–129. http://dx.doi.org/10.1016/0960-0779(93)90043-z.
Full textCortes-Poza, Yuriria, Pablo Padilla-Longoria, and Elena Alvarez-Buylla. "Spatial dynamics of floral organ formation." Journal of Theoretical Biology 454 (October 2018): 30–40. http://dx.doi.org/10.1016/j.jtbi.2018.05.032.
Full textFUJIMOTO, Koichi, Shuji ISHIHARA, and Kunihiko KANEKO. "Network Evolution of Spatial Pattern Formation." Seibutsu Butsuri 50, no. 1 (2010): 018–22. http://dx.doi.org/10.2142/biophys.50.018.
Full textTainaka, K., S. Fukazawa, H. Nishimori, M. Yokosawa, and S. Mineshige. "Spatial Pattern Formation of Interstellar Medium." International Astronomical Union Colloquium 134 (1993): 117–20. http://dx.doi.org/10.1017/s0252921100014007.
Full textMüller, Stefan C., and John Ross. "Spatial Structure Formation in Precipitation Reactions." Journal of Physical Chemistry A 107, no. 39 (October 2003): 7997–8008. http://dx.doi.org/10.1021/jp030364o.
Full textDissertations / Theses on the topic "Spatial formation"
Cruywagen, Gerhard C. "Tissue interaction and spatial pattern formation." Thesis, University of Oxford, 1992. http://ora.ox.ac.uk/objects/uuid:f242b785-9b46-4c21-a789-477b025ce4b3.
Full textCOLOMBO, EDUARDO HENRIQUE FILIZZOLA. "SPATIAL PATTERN FORMATION IN POPULATION DYNAMICS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2014. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=24777@1.
Full textCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
FUNDAÇÃO DE APOIO À PESQUISA DO ESTADO DO RIO DE JANEIRO
PROGRAMA DE SUPORTE À PÓS-GRADUAÇÃO DE INSTS. DE ENSINO
BOLSA NOTA 10
Motivado pela riqueza de fenômenos produzidos pelos seres vivos, este trabalho busca estudar a formação de padrões espaciais de populações biológicas. De um ponto de vista mesoscópico, definimos os processos básicos que podem ocorrer na dinâmica, construindo uma equação diferencial parcial para a evolução da distribuição da população. Essa equação incorpora duas generalizações de um modelo pre-existente para a dinâmica de um espécie, que leva em conta interações de longo alcance (não locais). A primeira generalização consiste em considerar que a difusão é não linear, isto é, é afetada pela densidade local de tal modo que o coeficiente de difusão segue uma lei de potência. Por outro lado, visto a alta complexidade envolvida na natureza dos parâmetros do modelo, introduzimos como segunda generalização parâmetros que flutuam no tempo. Idealizamos estas flutuações como um ruído descorrelacionado temporalmente e que obedece uma distribuição gaussiana (ruído branco). Para estudar o modelo resultante, utilizamos uma abordagem analítica e numérica. As ferramentas analíticas se baseiam na linearização da equação de evolução e portanto são aproximadas. Todavia, complementadas com resultados numéricos, conseguimos extrair conclusões relevantes. A não localidade das interações induz a formação de padrões. O alcance dessas interações é o que determina o modo dominante presente nos padrões. Assim, para valores dos parâmetros acima de um limiar crítico, emergem padrões. Analiticamente, mostramos que, mesmo abaixo desse limiar, as flutuações nos parâmetros podem induzir a aparição de ordem espacial. Os efeitos da difusão não-linear são captados superficialmente pela análise linear. Numericamente, mostraremos que sua presença modifica a forma dos padrões. Observamos, especialmente, a existência de uma transição quando alternamos entre o caso em que a difusão é facilitada por altas densidades e o caso oposto. Para o primeiro caso, verificamos que os padrões se tornam fragmentados, ou seja, a população é agora composta de sub-grupos desconectados.
Motivated by the richness of phenomena produced by living beings, this work aims to study the formation of spatial patterns in biological populations. From the mesoscopic point of view, we define the basic processes that may occur in the dynamics, building a partial differential equation for the evolution of the population distribution. This equation incorporates two generalizations of a pre-existing model for the dynamics of one species, which takes into account long-range (nonlocal) interactions. The first generalization is to consider that diffusion is nonlinear, i.e., it is affected by the local density such that the diffusion coeficient follows a power law. On the other hand, because of the high complexity involved in the nature of model parameters, we introduced as a second generalization time-fluctuating parameters. We idealize these fluctuations as Gaussian temporally uncorrelated (white) noises. To study the resulting model, we use an analytical and numerical approach. Analytical tools are based on the linearization of the evolution equation and are therefore approximate. However, as evidenced by numerical results, we draw important conclusions. The nonlocal feature of the interaction is the main mechanism which induces pattern formation. We show that the extent of these interactions is what characterizes the dominant mode. Thus, for parameter values above a critical threshold patterns emerge. Analytically, we also show that even below this threshold, fluctuations in the parameters can induce the appearance of spatial order. The effects of nonlinear diffusion are only superficially captured by the linear analysis. Numerically, we show that their presence modifies the patterns shape. We mainly observed the existence of a qualitative difference between the cases when diffusion is facilitated or not by high densities. In the first case, we note that the patterns become fragmented, that is, population becomes composed of disconnected clusters.
Tse, Dawn Po-Ling. "Spatial period-multiplying bifurcations in pattern formation." Thesis, University of Cambridge, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.616060.
Full textJulien, Keith Anthony. "Strong spatial resonance in convection." Thesis, University of Cambridge, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.386110.
Full textIrvine, Michael Alastair. "Pattern formation and persistence in spatial plant ecology." Thesis, University of Warwick, 2014. http://wrap.warwick.ac.uk/67166/.
Full textKose, Semra. "Spatial Formation Of The Interface Between University And City." Master's thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/12612586/index.pdf.
Full textAnkara University and METU. In this context, the spatial character of interface area is defined by examining this space as a transitional area, boundary and threshold. Then universities and their historical developments are examined in urban space and the relations between these two domains are investigated through the selected universities in Europe and USA. Finally, the situation of the university in Turkey is handled and searched the formation of the interface areas around the campuses of the two selected universities in Ankara.
Ali, Adnan. "Stochastic pattern formation in growth models with spatial competition." Thesis, University of Warwick, 2012. http://wrap.warwick.ac.uk/54323/.
Full textMadzvamuse, Anotida. "A numerical approach to the study of spatial pattern formation." Thesis, University of Oxford, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.343437.
Full textMoss, Jennifer Leigh. "The spatial and temporal distribution of pipe and pockmark formation." Thesis, Cardiff University, 2010. http://orca.cf.ac.uk/54111/.
Full textSasaki, Yuya. "Dynamics of Spatial Pattern Formation: Cases of Spikes and Droplets." DigitalCommons@USU, 2007. https://digitalcommons.usu.edu/etd/7131.
Full textBooks on the topic "Spatial formation"
Korablev, G. A. Spatial-energy principles of the processes for complex structure formation. Leiden: VSP/Brill, 2005.
Find full textIranian cities: Formation and development. Syracuse, NY: Syracuse University Press, 2000.
Find full textKheirabadi, Masoud. Iranian cities: Formation and development. Austin: University of Texas Press, 1991.
Find full textThrift, N. J. Spatial formations. London: Sage, 1996.
Find full textWalgraef, D. Spatio-temporal pattern formation: With examples from physics, chemistry, and materials science. New York: Springer, 1997.
Find full textWalgraef, Daniel. Spatio-Temporal Pattern Formation. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4612-1850-0.
Full textKrekotnev, Sergey. State policy in relation to cities and regions with mono-specialization: experience and priorities. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/1098273.
Full textDamen, Mario, and Kim Overlaet, eds. Constructing and Representing Territory in Late Medieval and Early Modern Europe. NL Amsterdam: Amsterdam University Press, 2021. http://dx.doi.org/10.5117/9789463726139.
Full textPackevich, Alla. Model of the settlement system of the future. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/997136.
Full textWalgraef, D. Spatio-Temporal Pattern Formation: With Examples from Physics, Chemistry, and Materials Science. New York, NY: Springer New York, 1997.
Find full textBook chapters on the topic "Spatial formation"
Puu, Tönu. "Spatial Pattern Formation." In Nonlinear Economic Dynamics, 8–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-662-00754-9_2.
Full textPuu, Tönu. "Spatial Pattern Formation." In Nonlinear Economic Dynamics, 10–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-97450-2_2.
Full textPuu, Tönu. "Spatial Pattern Formation." In Nonlinear Economic Dynamics, 8–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-97291-1_2.
Full textPuu, T. "Pattern Formation in Spatial Economics." In Economics of Space and Time, 161–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60877-3_9.
Full textCoullet, P., C. Elphick, and D. Repaux. "Spatial Disorder in Extended Systems." In The Physics of Structure Formation, 290–302. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-73001-6_23.
Full textPuu, Tönu. "Optimality Versus Stability: Pattern Formation in Spatial Economics." In Advances in Spatial Science, 155–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-00627-2_5.
Full textHerben, Tomáš, and Toshihiko Hara. "Spatial Pattern Formation in Plant Communities." In Morphogenesis and Pattern Formation in Biological Systems, 223–35. Tokyo: Springer Japan, 2003. http://dx.doi.org/10.1007/978-4-431-65958-7_19.
Full textTainaka, K., S. Fukazawa, H. Nishimori, M. Yokosawa, and S. Mineshige. "Spatial Pattern Formation of Interstellar Medium." In Nonlinear Phenomena in Stellar Variability, 117–20. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1062-4_12.
Full textGomes, M. Gabriela M., Isabel S. Labouriau, and Eliana M. Pinho. "Spatial Hidden Symmetries in Pattern Formation." In Pattern Formation in Continuous and Coupled Systems, 83–99. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4612-1558-5_7.
Full textMüller, S. C. "Spatial Ordering Processes in Chemical Reactions." In Thermodynamics and Pattern Formation in Biology, edited by Ingolf Lamprecht and A. I. Zotin, 127–48. Berlin, Boston: De Gruyter, 1988. http://dx.doi.org/10.1515/9783110848403-009.
Full textConference papers on the topic "Spatial formation"
Liu, Weifeng, and Long Han. "Stereo vision for spacecraft formation flying relative navigation." In Second International Conference on Spatial Information Technology, edited by Cheng Wang, Shan Zhong, and Jiaolong Wei. SPIE, 2007. http://dx.doi.org/10.1117/12.772924.
Full textZheng, Yibo, Lei Zhang, Liping Jia, Qiang Liu, and Junjian Kang. "Spatial Pattern Formation in Biological System." In 2009 2nd International Conference on Biomedical Engineering and Informatics. IEEE, 2009. http://dx.doi.org/10.1109/bmei.2009.5305542.
Full textShi, Chao, Michihiro Shimada, Takayuki Kanda, Hiroshi Ishiguro, and Norihiro Hagita. "Spatial Formation Model for Initiating Conversation." In Robotics: Science and Systems 2011. Robotics: Science and Systems Foundation, 2011. http://dx.doi.org/10.15607/rss.2011.vii.039.
Full textQiu, Wenxun, Xiaochun Gong, and Guodong Xu. "Real-time performance validation of spread spectrum aloha for satellite formation flying." In Second International Conference on Spatial Information Technology, edited by Cheng Wang, Shan Zhong, and Jiaolong Wei. SPIE, 2007. http://dx.doi.org/10.1117/12.772974.
Full textZhang, Changfang, Hongwen Yang, Weidong Hu, and Wenxian Yu. "Ship formation recognition based on information fusion of spaceborne IMINT and ELINT." In Second International Conference on Spatial Information Technology, edited by Cheng Wang, Shan Zhong, and Jiaolong Wei. SPIE, 2007. http://dx.doi.org/10.1117/12.775016.
Full textDelRe, Eugenio, and Aharon J. Agranat. "Dielectric nonlinearity in photorefractive spatial soliton formation." In Nonlinear Guided Waves and Their Applications. Washington, D.C.: OSA, 2002. http://dx.doi.org/10.1364/nlgw.2002.nltud39.
Full textShevchenko, A., V. Zamyatin, and I. Bondarenko. "Impulse Formation by Spatial-Time Phase Encoding." In 2006 3rd International Conference on Ultrawideband and Ultrashort Impulse Signals. IEEE, 2006. http://dx.doi.org/10.1109/uwbus.2006.307213.
Full textGergova, Evdokia. "FORMATION OF SPATIAL THINKING IN GEOGRAPHY TRAINING." In 7th International Scientific Conference GEOBALCANICA 2021. Geobalcanica Society, 2021. http://dx.doi.org/10.18509/gbp210603g.
Full textLi, Hui, Qinyu Zhang, and Naitong Zhang. "Neural networks filter for hybrid navigation of formation flying spacecraft in deep space." In Second International Conference on Spatial Information Technology, edited by Cheng Wang, Shan Zhong, and Jiaolong Wei. SPIE, 2007. http://dx.doi.org/10.1117/12.773339.
Full textDu, Yong-jun, Yong-jun Jin, and Han Li. "Research on cooperative detection of UAV formation system based on multi-agent technology." In Second International Conference on Spatial Information Technology, edited by Cheng Wang, Shan Zhong, and Jiaolong Wei. SPIE, 2007. http://dx.doi.org/10.1117/12.775076.
Full textReports on the topic "Spatial formation"
Agresar, Grenmarie, and Michael A. Savageau. Final Report, December, 1999. Sloan - US Department of Energy joint postdoctoral fellowship in computational molecular biology [Canonical nonlinear methods for modeling and analyzing gene circuits and spatial variations during pattern formation in embryonic development]. Office of Scientific and Technical Information (OSTI), December 1999. http://dx.doi.org/10.2172/811376.
Full textAndricevic, R. Transport of sorbing solutes in randomly heterogeneous formations: Spatial moments, macrodispersion, and parameter uncertainty. Office of Scientific and Technical Information (OSTI), June 1993. http://dx.doi.org/10.2172/10105844.
Full textVas, Dragos, Steven Peckham, Carl Schmitt, Martin Stuefer, Ross Burgener, and Telayna Wong. Ice fog monitoring near Fairbanks, AK. Engineer Research and Development Center (U.S.), March 2021. http://dx.doi.org/10.21079/11681/40019.
Full textBrophy, Kenny, and Alison Sheridan, eds. Neolithic Scotland: ScARF Panel Report. Society of Antiquaries of Scotland, June 2012. http://dx.doi.org/10.9750/scarf.06.2012.196.
Full text