Dissertations / Theses on the topic 'Spatial Data'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Spatial Data.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Wiemann, Stefan. "Data Fusion in Spatial Data Infrastructures." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-216985.
Full textDie Entwicklung des Internet im Laufe des letzten Jahrzehnts hat die Verfügbarkeit und öffentliche Wahrnehmung von Geodaten, sowie Möglichkeiten zu deren Erfassung und Nutzung, wesentlich verbessert. Dies liegt sowohl an der Etablierung amtlicher Geodateninfrastrukturen (GDI), als auch an der steigenden Anzahl Communitybasierter und kommerzieller Angebote. Da der Fokus zumeist auf der Bereitstellung von Geodaten liegt, gibt es jedoch kaum Möglichkeiten die Menge an, über das Internet verteilten, Datensätzen ad hoc zu verlinken und zusammenzuführen, was mitunter zur Isolation von Geodatenbeständen führt. Möglichkeiten zu deren Fusion sind allerdings essentiell, um Informationen zur Entscheidungsunterstützung in Bezug auf raum-zeitliche Fragestellungen zu extrahieren. Um eine ad hoc Fusion von Geodaten im Internet zu ermöglichen, behandelt diese Arbeit zwei Themenschwerpunkte. Zunächst wird eine dienstebasierten Umsetzung des Fusionsprozesses konzipiert, um bestehende GDI funktional zu erweitern. Dafür werden wohldefinierte, wiederverwendbare Funktionsblöcke beschrieben und über standardisierte Diensteschnittstellen bereitgestellt. Dies ermöglicht eine dynamische Komposition anwendungsbezogener Fusionsprozesse über das Internet. Des weiteren werden Geoprozessierungspatterns definiert, um populäre und häufig eingesetzte Diensteketten zur Bewältigung bestimmter Teilaufgaben der Geodatenfusion zu beschreiben und die Komposition und Automatisierung von Fusionsprozessen zu vereinfachen. Als zweiten Schwerpunkt beschäftigt sich die Arbeit mit der Frage, wie Relationen zwischen Geodatenbeständen im Internet erstellt, beschrieben und genutzt werden können. Der gewählte Ansatz basiert auf Linked Data Prinzipien und schlägt eine Brücke zwischen diensteorientierten GDI und dem Semantic Web. Während somit Geodaten in bestehenden GDI verbleiben, können Werkzeuge und Standards des Semantic Web genutzt werden, um Informationen aus den ermittelten Geodatenrelationen abzuleiten. Zur Überprüfung der entwickelten Konzepte wurde eine Reihe von Anwendungsfällen konzipiert und mit Hilfe einer prototypischen Implementierung umgesetzt und anschließend evaluiert. Der Schwerpunkt lag dabei auf einer interoperablen, transparenten und erweiterbaren Umsetzung dienstebasierter Fusionsprozesse, sowie einer formalisierten Beschreibung von Datenrelationen, unter Nutzung offener und etablierter Standards. Die Software folgt einer modularen Struktur und ist als Open Source frei verfügbar. Sie erlaubt sowohl die Entwicklung neuer Funktionalität durch Entwickler als auch die Einbindung existierender Daten- und Prozessierungsdienste während der Komposition eines Fusionsprozesses
Fischer, Manfred M., and Daniel A. Griffith. "Modelling spatial autocorrelation in spatial interaction data." WU Vienna University of Economics and Business, 2007. http://epub.wu.ac.at/3948/1/SSRN%2Did1102183.pdf.
Full textDa, Yanan. "A Big Spatial Data System for Efficient and Scalable Spatial Data Processing." Thesis, Southern Illinois University at Edwardsville, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10682760.
Full textToday, a large amount of spatial data is generated from a variety of sources, such as mobile devices, sensors, and satellites. Traditional spatial data processing techniques no longer satisfy the efficiency and scalability requirements for large-scale spatial data processing. Existing Big Data processing frameworks such as Hadoop and Spark have been extended to support effective large-scale spatial data processing. In addition to processing data in distributed schemes utilizing computer clusters for efficiency and scalability, single node performance can also be improved by making use of multi-core processors. In this thesis, we investigate approaches to parallelize line segment intersection algorithms for spatial computations on multi-core processors, which can be used as node-level algorithms for distributed spatial data processing. We first provide our design of line segment intersection algorithms and introduce parallelization techniques. Then, we describe experimental results using multiple data sets and speed ups are examined with varying numbers of processing cores. Equipped with the efficient underlying algorithm for spatial computation, we investigate how to build a native big spatial data system from the ground up. We provide a system design for distributed large-scale spatial data management and processing using a two-level hash based Quadtree index as well as algorithms for spatial operations.
He, Ying Surveying & Spatial Information Systems Faculty of Engineering UNSW. "Spatial data quality management." Publisher:University of New South Wales. Surveying & Spatial Information Systems, 2008. http://handle.unsw.edu.au/1959.4/43323.
Full textZhang, Xiang. "Analysis of Spatial Data." UKnowledge, 2013. http://uknowledge.uky.edu/statistics_etds/4.
Full textROSSI, FRANCESCA. "Inference for spatial data." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2011. http://hdl.handle.net/10281/25536.
Full textAlkhaldi, Rawan. "Spatial data transmission security authentication of spatial data using a new temporal taxonomy /." abstract and full text PDF (free order & download UNR users only), 2005. http://0-gateway.proquest.com.innopac.library.unr.edu/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:1433280.
Full textLi, Xintong. "Modeling for Spatial and Spatio-Temporal Data with Applications." Diss., Kansas State University, 2018. http://hdl.handle.net/2097/38749.
Full textDepartment of Statistics
Juan Du
It is common to assume the spatial or spatio-temporal data are realizations of underlying random elds or stochastic processes. E ective approaches to modelling of the underlying autocorrelation structure of the same random eld and the association among multiple processes are of great demand in many areas including atmospheric sciences, meteorology and agriculture. To this end, this dissertation studies methods and application of the spatial modeling of large-scale dependence structure and spatio-temporal regression modelling. First, variogram and variogram matrix functions play important roles in modeling dependence structure among processes at di erent locations in spatial statistics. With more and more data collected on a global scale in environmental science, geophysics, and related elds, we focus on the characterizations of the variogram models on spheres of all dimensions for both stationary and intrinsic stationary, univariate and multivariate random elds. Some e cient approaches are proposed to construct a variety of variograms including simple polynomial structures. In particular, the series representation and spherical behavior of intrinsic stationary random elds are explored in both theoretical and simulation study. The applications of the proposed model and related theoretical results are demonstrated using simulation and real data analysis. Second, knowledge of the influential factors on the number of days suitable for fieldwork (DSFW) has important implications on timing of agricultural eld operations, machinery decision, and risk management. To assess how some global climate phenomena such as El Nino Southern Oscillation (ENSO) a ects DSFW and capture their complex associations in space and time, we propose various spatio-temporal dynamic models under hierarchical Bayesian framework. The Integrated Nested Laplace Approximation (INLA) is used and adapted to reduce the computational burden experienced when a large number of geo-locations and time points is considered in the data set. A comparison study between dynamics models with INLA viewing spatial domain as discrete and continuous is conducted and their pros and cons are evaluated based on multiple criteria. Finally a model with time- varying coefficients is shown to reflect the dynamic nature of the impact and lagged effect of ENSO on DSFW in US with spatio-temporal correlations accounted.
Chaudhary, Amitabh. "Applied spatial data structures for large data sets." Available to US Hopkins community, 2002. http://wwwlib.umi.com/dissertations/dlnow/3068131.
Full textWalker, Arron R. "Automated spatial information retrieval and visualisation of spatial data." Thesis, Queensland University of Technology, 2007. https://eprints.qut.edu.au/17258/1/Arron_Robert_Walker_Thesis.pdf.
Full textWalker, Arron R. "Automated spatial information retrieval and visualisation of spatial data." Queensland University of Technology, 2007. http://eprints.qut.edu.au/17258/.
Full textWilliams, Mark, and n/a. "Spatial data from image sequences." University of Otago. Department of Computer Science, 2007. http://adt.otago.ac.nz./public/adt-NZDU20080130.131733.
Full textDahlberg, Marina. "Rasterization of Fragmented Spatial Data." Thesis, Umeå universitet, Institutionen för datavetenskap, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-85411.
Full textDasari, Vivek. "Platform for spatial molecular data." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/107103.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 49-50).
I designed and implemented a comprehensive platform for storing, analyzing, visualizing, and interacting with spatial molecular data. With the advent of high throughput in situ sequencing methods, such as fluorescent in situ sequencing (FISSEQ), the need for a platform to organize spatial molecular data has become paramount. The platform is divided into seven services: raw data handling, a spatial coordinate system, an analysis service, an image service, a molecular data service, a spatial data service and a visualization service. Together, these services compose a modular system for organizing the next generation of spatial molecular data.
by Vivek Dasari.
M. Eng. in Computer Science and Molecular Biology
Onnen, Nathaniel J. "Estimation of Bivariate Spatial Data." The Ohio State University, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=osu1616243660473062.
Full textSHENCOTTAH, K. N. KALYANKUMAR. "FINDING CLUSTERS IN SPATIAL DATA." University of Cincinnati / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1179521337.
Full textLove, Alison L. "Visualizing spatial multi-valued data /." Diss., Digital Dissertations Database. Restricted to UC campuses, 2004. http://uclibs.org/PID/11984.
Full textBorisenko, Ingrida. "Modelling of Spatial Data Using Semivariograms of Stationary Spatial Processes." Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2010. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2009~D_20100303_113358-73668.
Full textDisertacijoje nagrinėjama erdvinių duomenų su stacionariomis klaidomis modeliavimo per semivariogramas ir tiesinio prognozavimo metodika. Erdvinių duomenų skiriamasis bruožas – jų išsidėstymas erdvėje, kuris dažniausiai aprašomas geografinėmis koordinatėmis. Tokių duomenų modeliavimas semivariogramomis, ir prognozavimas krigingu yra vienas iš svarbių geostatistikos mokslo uždavinių. Krigingas yra stochastinis prognozavimo metodas, kuris prie tam tikrų salygų pateikia geriausią tiesinę nepaslinktą prognozę. Krigingo rezultatų paklaidos priklauso nuo to kaip tiksliai erdvinių duomenų sklaida aprašoma kovariacine funkcija arba semivariograma. Darbe dėmesys skiriamas semivariogramoms, nes jos aprašo platesnę erdvinių procesų klasę. Pagrindinis disertacijos tikslas yra apibendrinti ir realizuoti vieningą erdvinių duomenų su stacionariomis klaidomis modeliavimo metodiką, pagrįstą semivariogramomis. Darbo objektai yra semivariogramos, jų modeliai, įvairūs erdvinių duomenų prognozavimo metodai bei erdvinių duomenų modeliavimo, prognozavimo etapai. Šių objektų analizė bei interpretacija prie tam tikrų sąlygų leidžia gauti geriausius erdvinių duomenų modeliavimo bei prognozavimo rezultatus. Taip pat disertaciniame darbe empiriniam Materon‘o semivariogramų įvertiniui MoM pateikta dispersijų-kovariacijų matricos išraiška per teorines semivariogramas stacionaraus Gauso duomenų modelio atvejui. Tiriami erdvinių duomenų vidurkio modelio parametrų bei semivariogramų vertinimo metodai... [toliau žr. visą tekstą]
Yan, Hongjia. "Statistical analysis of spatial dynamic pattern in spatial data analysis." Thesis, University of York, 2013. http://etheses.whiterose.ac.uk/4495/.
Full textBeaton, Duncan. "Integration of data description and quality information using metadata for spatial data and spatial information systems." Thesis, University of Newcastle Upon Tyne, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.321263.
Full textBai, Ping Truong Young K. Smith Richard L. "Temporal-spatial modeling for fMRI data." Chapel Hill, N.C. : University of North Carolina at Chapel Hill, 2007. http://dc.lib.unc.edu/u?/etd,1481.
Full textTitle from electronic title page (viewed Apr. 25, 2008). "... in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Statistics and Operations Research." Discipline: Statistics and Operations Research; Department/School: Statistics and Operations Research.
Shimakura, Silvia Emiko. "Statistical methods for spatial survival data." Thesis, Lancaster University, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.418824.
Full textButts, Robert O. "Heterogeneous construction of spatial data structures." Thesis, University of Colorado at Denver, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=1588178.
Full textLinear spatial trees are typically constructed in two discrete, consecutive stages: calculating location codes, and sorting the spatial data according to the codes. Additionally, a GPU R-tree construction algorithm exists which likewise consists of sorting the spatial data and calculating nodes' bounding boxes. Current GPUs are approximately three orders of magnitude faster than CPUs for perfectly vectorizable problems. However, the best known GPU sorting algorithms only achieve 10-20 times speedup over sequential CPU algorithms. Both calculating location codes and bounding boxes are perfectly vectorizable problems. We thus investigate the construction of linear quadtrees, R-trees, and linear k-d trees using the GPU for location code and bounding box calculation, and parallel CPU algorithms for sorting. In this endeavor, we show how existing GPU linear quadtree and R-tree construction algorithms may be modified to be heterogeneous, and we develop a novel linear k-d tree construction algorithm which uses an existing parallel CPU quicksort partition algorithm. We implement these heterogeneous construction algorithms, and we show that heterogeneous construction of spatial data structures can approach the speeds of homogeneous GPU algorithms, while freeing the GPU to be used for better vectorizable problems.
Fischer, Manfred M. "Recent Advances in Spatial Data Analysis." WU Vienna University of Economics and Business, 2000. http://epub.wu.ac.at/4243/1/WGI_DP_7000.pdf.
Full textSeries: Discussion Papers of the Institute for Economic Geography and GIScience
Buchanan, Hugh. "Transfer and modelling of spatial data." Thesis, University of Newcastle Upon Tyne, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.360266.
Full textWilliams, Richard David. "Organisation and analysis of spatial data." Thesis, University of Cambridge, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.304464.
Full textWang, Cunyi. "Spatial clustering algorithms for areal data." Thesis, University of Glasgow, 2018. http://theses.gla.ac.uk/39041/.
Full textLi, Jing. "GPS augmentation using digital spatial data." Thesis, University of South Wales, 2006. https://pure.southwales.ac.uk/en/studentthesis/gps-augmentation-using-digital-spatial-data(5142f388-0940-4f56-aa85-bb36f46a5a58).html.
Full textKuznetsova, O. "Spatial data infrastructure for ecological environment." Thesis, Сумський державний університет, 2013. http://essuir.sumdu.edu.ua/handle/123456789/31623.
Full textKou, Yufeng. "Abnormal Pattern Recognition in Spatial Data." Diss., Virginia Tech, 2006. http://hdl.handle.net/10919/30145.
Full textPh. D.
Davies, Jessica. "Expanding the spatial data infrastructure model to support spatial wireless applications /." Connect to thesis, 2003. http://eprints.unimelb.edu.au/archive/00001044.
Full textYudono, Adipandang. "Enhancing democracy in spatial planning through spatial data sharing in Indonesia." Thesis, University of Sheffield, 2017. http://etheses.whiterose.ac.uk/17306/.
Full textGumprecht, Daniela. "R&D Spillovers: A Non-Spatial and a Spatial Examination." Austrian Statistical Society, c/o Bundesanstalt Statistik Austria, 2007. http://epub.wu.ac.at/5388/1/316%2D1053%2D1%2DSM.pdf.
Full textYang, Zhao. "Spatial Data Mining Analytical Environment for Large Scale Geospatial Data." ScholarWorks@UNO, 2016. http://scholarworks.uno.edu/td/2284.
Full textKang, Lei. "Reduced-Dimension Hierarchical Statistical Models for Spatial and Spatio-Temporal Data." The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1259168805.
Full textWang, Boyang, and Boyang Wang. "Secure Geometric Search on Encrypted Spatial Data." Diss., The University of Arizona, 2017. http://hdl.handle.net/10150/625567.
Full textNajar, Christine Ruth. "A model-driven approach to management of integrated metadata-spatial data in the context of spatial data infrastructures /." Zürich : ETH, 2006. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=16474.
Full textAjayakumar, Jayakrishnan. "Context in Geographic Data: How to Explore, Extract and Analyze Data from Spatial Video and Spatial Video Geonarratives." Kent State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=kent1560165020968485.
Full textFischer, Manfred M., and Henk J. Scholten. "Geographic Information Systems, Spatial Data Analysis and Spatial Modelling. - Problems and Possibilities -." WU Vienna University of Economics and Business, 1994. http://epub.wu.ac.at/4194/1/WSG_DP_3794.pdf.
Full textSeries: Discussion Papers of the Institute for Economic Geography and GIScience
Al-Naymat, Ghazi. "NEW METHODS FOR MINING SEQUENTIAL AND TIME SERIES DATA." Thesis, The University of Sydney, 2009. http://hdl.handle.net/2123/5295.
Full textAl-Naymat, Ghazi. "NEW METHODS FOR MINING SEQUENTIAL AND TIME SERIES DATA." University of Sydney, 2009. http://hdl.handle.net/2123/5295.
Full textData mining is the process of extracting knowledge from large amounts of data. It covers a variety of techniques aimed at discovering diverse types of patterns on the basis of the requirements of the domain. These techniques include association rules mining, classification, cluster analysis and outlier detection. The availability of applications that produce massive amounts of spatial, spatio-temporal (ST) and time series data (TSD) is the rationale for developing specialized techniques to excavate such data. In spatial data mining, the spatial co-location rule problem is different from the association rule problem, since there is no natural notion of transactions in spatial datasets that are embedded in continuous geographic space. Therefore, we have proposed an efficient algorithm (GridClique) to mine interesting spatial co-location patterns (maximal cliques). These patterns are used as the raw transactions for an association rule mining technique to discover complex co-location rules. Our proposal includes certain types of complex relationships – especially negative relationships – in the patterns. The relationships can be obtained from only the maximal clique patterns, which have never been used until now. Our approach is applied on a well-known astronomy dataset obtained from the Sloan Digital Sky Survey (SDSS). ST data is continuously collected and made accessible in the public domain. We present an approach to mine and query large ST data with the aim of finding interesting patterns and understanding the underlying process of data generation. An important class of queries is based on the flock pattern. A flock is a large subset of objects moving along paths close to each other for a predefined time. One approach to processing a “flock query” is to map ST data into high-dimensional space and to reduce the query to a sequence of standard range queries that can be answered using a spatial indexing structure; however, the performance of spatial indexing structures rapidly deteriorates in high-dimensional space. This thesis sets out a preprocessing strategy that uses a random projection to reduce the dimensionality of the transformed space. We use probabilistic arguments to prove the accuracy of the projection and to present experimental results that show the possibility of managing the curse of dimensionality in a ST setting by combining random projections with traditional data structures. In time series data mining, we devised a new space-efficient algorithm (SparseDTW) to compute the dynamic time warping (DTW) distance between two time series, which always yields the optimal result. This is in contrast to other approaches which typically sacrifice optimality to attain space efficiency. The main idea behind our approach is to dynamically exploit the existence of similarity and/or correlation between the time series: the more the similarity between the time series, the less space required to compute the DTW between them. Other techniques for speeding up DTW, impose a priori constraints and do not exploit similarity characteristics that may be present in the data. Our experiments demonstrate that SparseDTW outperforms these approaches. We discover an interesting pattern by applying SparseDTW algorithm: “pairs trading” in a large stock-market dataset, of the index daily prices from the Australian stock exchange (ASX) from 1980 to 2002.
Dill, Robert W. "Data warehousing and data quality for a Spatial Decision Support System." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1997. http://handle.dtic.mil/100.2/ADA336886.
Full textThesis advisors, Daniel R. Dolk, George W. Thomas, and Kathryn Kocher. Includes bibliographical references (p. 203-206). Also available online.
Duan, Yuanyuan. "Statistical Predictions Based on Accelerated Degradation Data and Spatial Count Data." Diss., Virginia Tech, 2014. http://hdl.handle.net/10919/56616.
Full textPh. D.
Coetzee, Serena Martha. "An analysis of a data grid approach for spatial data infrastructures." Pretoria : [s.n.], 2008. http://upetd.up.ac.za/thesis/available/etd-09272009-152926/.
Full textGILARDI, ANDREA. "Statistical Models and Data Structures for Spatial Data on Road Networks." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2021. http://hdl.handle.net/10281/314016.
Full textIn the last years, we observed a surge of interest in the statistical analysis of spatial data lying on or alongside networks. Car crashes, vehicle thefts, bicycle incidents, roadside kiosks, neuroanatomical features, and ambulance interventions are just a few of the most typical examples, whereas the edges of the network represent an abstraction of roads, rivers, railways, cargo-ship routes or nerve fibers. This type of data is interesting for several reasons. First, the statistical analysis of the events presents several challenges because of the complex and non-homogeneous nature of the network, which creates unique methodological problems. Several authors discussed and illustrated the common pitfalls of re-adapting classical planar spatial models to network data. Second, the rapid development of open-source spatial databases (such as Open Street Map) provides the starting point for creating road networks at a wide range of spatial scales. The size and volume of the data raise complex computational problems, while common geometrical errors in the network’s software representations create another source of complexity. Third, at the time of writing, the most important software routines and functions (mainly implemented in R) are still in the process of being re-written and readapted for the new spatial support. This manuscript collects four articles presenting data structures and statistical models to analyse spatial data lying on road networks using point-pattern and network-lattice approaches. The first paper reviews classes, vital pre-processing steps and software representations to manipulate road network data. In particular, it focuses on the R packages stplanr and dodgr, highlighting their main functionalities, such as shortest paths or centrality measures, using a range of datasets, from a roundabout to a complete network covering an urban city. The second paper proposes the adoption of two indices for assessing the risk of car crashes on the street network of a metropolitan area via a dynamic zero-inflated Poisson model. The elementary statistical units are the road segments of the network. It employs a set of open-source spatial covariates representing the network’s structural and demographic characteristics (such as population density, traffic lights or crossings) extracted from Open Street Map and 2011 Italian Census. The third paper demonstrates a Bayesian hierarchical model for identifying road segments of particular concern using a network-lattice approach. It is based on a case study of a major city (Leeds, UK), in which car crashes of different severities were recorded over several years. It includes spatially structured and unstructured random effects to capture the spatial nature of the events and the dependencies between the severity levels. It also recommends a novel procedure for estimating the MAUP (Modifiable Areal Unit Problem) for network-lattice data. Finally, the fourth paper summarises a set of preliminary results related to the analysis of spatio-temporal point patterns lying on road networks using non-homogeneous Poisson processes. It focuses on the ambulance interventions that occurred in the municipality of Milan from 2015 to 2017, developing two distinct models, one for the spatial component and one for the temporal component. The spatial intensity function was estimated using a network readaptation of the classical non-parametric kernel estimator. The first two appendices briefly review the basics of INLA methodology, the corresponding R package and the supplementary materials related to the fourth chapter, while the third appendix briefly introduces an R package, named osmextract, that was developed during the PhD and focuses on Open Street Map data. The fifth chapter concludes the manuscript, summarising the main contributions and emphasising future research developments.
García, Fernández Ismael. "Parallel spatial data structures for interactive rendering." Doctoral thesis, Universitat de Girona, 2012. http://hdl.handle.net/10803/107998.
Full textLa qüestió principal explorada en aquesta tesi doctoral és la forma de definir noves formes d'accés aleatori paral•lel en estructures de dades amb informació de superfícies i d'imatge. La nostra principal aportació és un conjunt de mètodes paral•lels i eficients per avaluar imatges i geometries irregulars, i proposem: un mètode per a separar la forma i els detalls d'aparença visual partint de malles d'alta resolució, mapejant de manera interactiva la informació en dominis més simples de baixa resolució; un marc d'edició geomètrica per convertir malles irregulars de triangles d'alta resolució en representacions més simples basades en un domini de cubs, generant una estructura fàcilment paral•lelitzable basada en primitives quadrangulars; un nou esquema de hashing paral•lel per a la organització i compactació de dades espacials amb un elevat factor de càrrega, explotant la coherència espacial de les dades d'entrada i els seus patrons d'accés a memòria
Haider, Khaled. "Using Spatial Data for Geo-Environmental Studies." Diss., lmu, 2011. http://nbn-resolving.de/urn:nbn:de:bvb:19-135089.
Full textSalleh, Norzamni. "Sharing spatial data in Brunei government departments." Thesis, University of Salford, 2010. http://usir.salford.ac.uk/26890/.
Full textSiqueira, Thiago Luís Lopes. "The design of vague spatial data warehouses." Universidade Federal de São Carlos, 2015. https://repositorio.ufscar.br/handle/ufscar/298.
Full textUniversidade Federal de Minas Gerais
O data warehouse espacial (DWE) é um banco de dados multidimensional integrado e volumoso que armazena dados espaciais e dados convencionais. Já o processamento analítico espacial online (SOLAP) permite consultar o DWE, tanto pela seleção de dados espaciais que satisfazem um relacionamento topológico, quanto pela agregação dos dados espaciais. Deste modo, DWE e SOLAP beneficiam o suporte a tomada de decisão. As aplicações de DWE e SOLAP abordam majoritarimente fenômenos representados por dados espaciais exatos, ou seja, que assumem localizações e fronteiras bem definidas. Contudo, tais aplicações negligenciam dados espaciais afetados por imperfeições, tais como a vagueza espacial, a qual interfere na identificação precisa de um objeto e de seus vizinhos. Um objeto espacial vago não tem sua fronteira ou seu interior precisamente definidos. Além disso, é composto por partes que certamente pertencem a ele e partes que possivelmente pertencem a ele. Apesar de inúmeros fenômenos do mundo real serem caracterizados pela vagueza espacial, na literatura consultada não se identificaram trabalhos que considerassem a vagueza espacial no projeto de DWE e nem para consultar o DWE. Tal limitação motivou a elaboração desta tese de doutorado, a qual introduz os conceitos de DWE vago e de SOLAP vago. Um DWE vago é um DWE que armazena dados espaciais vagos, enquanto que SOLAP vago provê os meios para consultar o DWE vago. Nesta tese, o projeto de DWE vago é abordado e as principais contribuições providas são: (i) o modelo conceitual VSCube que viabiliza a criação de um cubos de dados multidimensional para representar o esquema conceitual de um DWE vago; (ii) o modelo conceitual VSMultiDim que permite criar um diagrama para representar o esquema conceitual de um DWE vago; (iii) diretrizes para o projeto lógico do DWE vago e de suas restrições de integridade, e para estender a linguagem SQL visando processar as consultas de SOLAP vago no DWE vago; e (iv) o índice VSB-index que aprimora o desempenho do processamento de consultas no DWE vago. A aplicabilidade dessas contribuições é demonstrada em dois estudos de caso no domínio da agricultura, por meio da criação de esquemas conceituais de DWE vago, da transformação dos esquemas conceituais em esquemas lógicos de DWE vago, e do processamento de consultas envolvendo as regiões vagas do DWE vago.
Spatial data warehouses (SDW) and spatial online analytical processing (SOLAP) enhance decision making by enabling spatial analysis combined with multidimensional analytical queries. A SDW is an integrated and voluminous multidimensional database containing both conventional and spatial data. SOLAP allows querying SDWs with multidimensional queries that select spatial data that satisfy a given topological relationship and that aggregate spatial data. Existing SDW and SOLAP applications mostly consider phenomena represented by spatial data having exact locations and sharp boundaries. They neglect the fact that spatial data may be affected by imperfections, such as spatial vagueness, which prevents distinguishing an object from its neighborhood. A vague spatial object does not have a precisely defined boundary and/or interior. Thus, it may have a broad boundary and a blurred interior, and is composed of parts that certainly belong to it and parts that possibly belong to it. Although several real-world phenomena are characterized by spatial vagueness, no approach in the literature addresses both spatial vagueness and the design of SDWs nor provides multidimensional analysis over vague spatial data. These shortcomings motivated the elaboration of this doctoral thesis, which addresses both vague spatial data warehouses (vague SDWs) and vague spatial online analytical processing (vague SOLAP). A vague SDW is a SDW that comprises vague spatial data, while vague SOLAP allows querying vague SDWs. The major contributions of this doctoral thesis are: (i) the Vague Spatial Cube (VSCube) conceptual model, which enables the creation of conceptual schemata for vague SDWs using data cubes; (ii) the Vague Spatial MultiDim (VSMultiDim) conceptual model, which enables the creation of conceptual schemata for vague SDWs using diagrams; (iii) guidelines for designing relational schemata and integrity constraints for vague SDWs, and for extending the SQL language to enable vague SOLAP; (iv) the Vague Spatial Bitmap Index (VSB-index), which improves the performance to process queries against vague SDWs. The applicability of these contributions is demonstrated in two applications of the agricultural domain, by creating conceptual schemata for vague SDWs, transforming these conceptual schemata into logical schemata for vague SDWs, and efficiently processing queries over vague SDWs.
Xie, Enhai. "Spatial data structure indexing for video databases." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape3/PQDD_0023/MQ62164.pdf.
Full text