Academic literature on the topic 'Spatial autoregressions'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Spatial autoregressions.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Spatial autoregressions"
Beenstock, Michael, and Daniel Felsenstein. "Spatial Vector Autoregressions." Spatial Economic Analysis 2, no. 2 (June 2007): 167–96. http://dx.doi.org/10.1080/17421770701346689.
Full textKelley Pace, R., and Ronald Barry. "Sparse spatial autoregressions." Statistics & Probability Letters 33, no. 3 (May 1997): 291–97. http://dx.doi.org/10.1016/s0167-7152(96)00140-x.
Full textBao, Yong, Xiaotian Liu, and Lihong Yang. "Indirect Inference Estimation of Spatial Autoregressions." Econometrics 8, no. 3 (September 3, 2020): 34. http://dx.doi.org/10.3390/econometrics8030034.
Full textKelley Pace, R. "Performing large spatial regressions and autoregressions." Economics Letters 54, no. 3 (July 1997): 283–91. http://dx.doi.org/10.1016/s0165-1765(97)00026-8.
Full textMartellosio, Federico. "THE CORRELATION STRUCTURE OF SPATIAL AUTOREGRESSIONS." Econometric Theory 28, no. 6 (April 27, 2012): 1373–91. http://dx.doi.org/10.1017/s0266466612000175.
Full textRobinson, Peter M., and Francesca Rossi. "Improved Lagrange multiplier tests in spatial autoregressions." Econometrics Journal 17, no. 1 (January 21, 2014): 139–64. http://dx.doi.org/10.1111/ectj.12025.
Full textGupta, Abhimanyu. "ESTIMATION OF SPATIAL AUTOREGRESSIONS WITH STOCHASTIC WEIGHT MATRICES." Econometric Theory 35, no. 2 (May 3, 2018): 417–63. http://dx.doi.org/10.1017/s0266466618000142.
Full textJenish, Nazgul. "SPATIAL SEMIPARAMETRIC MODEL WITH ENDOGENOUS REGRESSORS." Econometric Theory 32, no. 3 (December 18, 2014): 714–39. http://dx.doi.org/10.1017/s0266466614000905.
Full textGriffith, Daniel A. "SIMPLIFYING THE NORMALIZING FACTOR IN SPATIAL AUTOREGRESSIONS FOR IRREGULAR LATTICES." Papers in Regional Science 71, no. 1 (January 14, 2005): 71–86. http://dx.doi.org/10.1111/j.1435-5597.1992.tb01749.x.
Full textGriffith, Daniel A. "Simplifying the normalizing factor in spatial autoregressions for irregular lattices." Papers in Regional Science 71, no. 1 (January 1992): 71–86. http://dx.doi.org/10.1007/bf01538661.
Full textDissertations / Theses on the topic "Spatial autoregressions"
Rossi, Francesca. "Improved tests for spatial autoregressions." Thesis, London School of Economics and Political Science (University of London), 2011. http://etheses.lse.ac.uk/164/.
Full textROSSI, FRANCESCA. "Inference for spatial data." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2011. http://hdl.handle.net/10281/25536.
Full textXu, JiQiang. "Parameter estimation and interpretation in spatial autoregression models." Diss., Connect to online resource - MSU authorized users, 1998.
Find full textTitle from PDF t.p. (viewed on July 2, 2009) Includes bibliographical references (p. 148-149). Also issued in print.
Oleson, Jacob J. "Bayesian spatial models for small area estimation /." free to MU campus, to others for purchase, 2002. http://wwwlib.umi.com/cr/mo/fullcit?p3052203.
Full textGilleran, Sean. "Online Regime Switching Vector Autoregression Incorporating Spatio-temporal Aspects for Short Term Wind Power Forecasting." Thesis, KTH, Elkraftteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-217117.
Full textI detta arbete undersöks och implementeras autoregressiva modeller för vindkraftprognoser för en kort tidshorisont. Metoden tar hänsyn till samvariationer i tid och rum mellan olika vindkraftanläggningar och använder regimer som baseras på väderförhållanden för att förbättra prognoserna. Vi föreslår nya autoregressiva regimer, implementerar modellerna i .NET och utvärderar dem. Vektor autoregressiva modeller utnyttjar korrelationen mellan olika anläggningar genom att ta med information i närtid från andra anläggningar i samma region i modellen och på så vis förbättra prognoserna. Regimerna skapas med en klustermetod för K-medelvärde som baseras på väderförhållandena. Alla föreslagna modeller anpassas till historiska data för 2015 för 24 vindkraftanläggningar i Sverige och Finland. Prognoser skapas för 2016 och används för att utvärdera modellerna för var och en av de 24 anläggningarna. De föreslagna modellerna har implementerats i .NET i miljön för Vitecs Aiolos Forecast Studio, vilket är ett program som används av många operatörer i norra och västra Europa för att göra vindkraftprognoser. Aiolos modell baseras på en rad olika numeriska väderprognosmodeller och adaptiva statistiska maskinlärningsalgoritmer. De föreslagna modellerna visar sig ha lägre fel jämfört med Aiolos modell och andra autoregressiva modeller som använts som riktmärken. De förbättrade kortsiktiga vindkraftsprognoserna kommer vara underlag för operativa och finansiella beslut för Vitecs kunder och innebära betydande minskningar av balanskostnader. Förbättringen uppskattas kunna minska kostnaderna för Vitecs kunder med så mycket som mellan 9.4 miljoner och 42.3 miljoner Euro. Att utnyttja korrelationer mellan olika vindkraftanläggningar visar sig ha fortsatt stor betydelse för att förbättra vindkraftprognoser.
Yang, Kai. "Essays on Multivariate and Simultaneous Equations Spatial Autoregressive Models." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1461277549.
Full textWoodard, Roger. "Bayesian hierarchical models for hunting success rates /." free to MU campus, to others for purchase, 1999. http://wwwlib.umi.com/cr/mo/fullcit?p9951135.
Full textPeterson, Samuel. "Spatial and Temporal Employment Relationships: Southern California as a Case Study." Scholarship @ Claremont, 2018. http://scholarship.claremont.edu/cmc_theses/1813.
Full textKeser, Saniye. "Investigation Of The Spatial Relationship Of Municipal Solid Waste Generation In Turkey With Socio-economic, Demographic And Climatic Factors." Master's thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/3/12611575/index.pdf.
Full textniques are utilized. Non-spatial technique is ordinary least squares (OLS) regression while spatial techniques employed are simultaneous spatial autoregression (SAR) and geographically weighted regression (GWR). The independent variables include socio-economic, demographic and climatic indicators. The results show that nearer provinces tend to have similar solid waste generation rate. Moreover, it is shown that the effects of independent variables vary among provinces. It is demonstrated that educational status and unemployment are significant factors of waste generation in Turkey.
Christmas, Jacqueline. "Robust spatio-temporal latent variable models." Thesis, University of Exeter, 2011. http://hdl.handle.net/10036/3051.
Full textBooks on the topic "Spatial autoregressions"
Kazar, Baris M., and Mete Celik. Spatial AutoRegression (SAR) Model. Boston, MA: Springer US, 2012. http://dx.doi.org/10.1007/978-1-4614-1842-9.
Full textMete, Celik, and SpringerLink (Online service), eds. Spatial AutoRegression (SAR) Model: Parameter Estimation Techniques. Boston, MA: Springer US, 2012.
Find full textKazar, Baris M., and Mete Celik. Spatial AutoRegression Model: Parameter Estimation Techniques. Springer, 2012.
Find full textSpacey parents: Spatial autoregressive patterns in inbound FDI. Cambridge, MA: National Bureau of Economic Research, 2005.
Find full textIimi, Atsushi, Liangzhi You, Ulrike Wood-Sichra, and Richard Martin Humphrey. Agriculture Production and Transport Infrastructure in East Africa: An Application of Spatial Autoregression. The World Bank, 2015. http://dx.doi.org/10.1596/1813-9450-7281.
Full textBook chapters on the topic "Spatial autoregressions"
Beenstock, Michael, and Daniel Felsenstein. "Spatial Vector Autoregressions." In Advances in Spatial Science, 129–61. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-03614-0_6.
Full textKazar, Baris M., and Mete Celik. "Introduction." In Spatial AutoRegression (SAR) Model, 1–5. Boston, MA: Springer US, 2012. http://dx.doi.org/10.1007/978-1-4614-1842-9_1.
Full textKazar, Baris M., and Mete Celik. "Theory behind the SAR Model." In Spatial AutoRegression (SAR) Model, 7–17. Boston, MA: Springer US, 2012. http://dx.doi.org/10.1007/978-1-4614-1842-9_2.
Full textKazar, Baris M., and Mete Celik. "Parallel Exact SAR Model Solutions." In Spatial AutoRegression (SAR) Model, 19–33. Boston, MA: Springer US, 2012. http://dx.doi.org/10.1007/978-1-4614-1842-9_3.
Full textKazar, Baris M., and Mete Celik. "Comparing Exact and Approximate SAR Model Solutions." In Spatial AutoRegression (SAR) Model, 35–46. Boston, MA: Springer US, 2012. http://dx.doi.org/10.1007/978-1-4614-1842-9_4.
Full textKazar, Baris M., and Mete Celik. "Parallel Implementations of Approximate SAR Model Solutions." In Spatial AutoRegression (SAR) Model, 47–50. Boston, MA: Springer US, 2012. http://dx.doi.org/10.1007/978-1-4614-1842-9_5.
Full textKazar, Baris M., and Mete Celik. "A New Approximation: Gauss-Lanczos Approximated SAR Model Solution." In Spatial AutoRegression (SAR) Model, 51–58. Boston, MA: Springer US, 2012. http://dx.doi.org/10.1007/978-1-4614-1842-9_6.
Full textKazar, Baris M., and Mete Celik. "Conclusions and Future Work." In Spatial AutoRegression (SAR) Model, 59–60. Boston, MA: Springer US, 2012. http://dx.doi.org/10.1007/978-1-4614-1842-9_7.
Full textKazar, Baris M., and Mete Celik. "Supplementary Materials." In Spatial AutoRegression (SAR) Model, 61–73. Boston, MA: Springer US, 2012. http://dx.doi.org/10.1007/978-1-4614-1842-9_8.
Full textThayn, Jonathan B. "Eigenvector Spatial Filtering and Spatial Autoregression." In Encyclopedia of GIS, 1–11. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23519-6_1526-1.
Full textConference papers on the topic "Spatial autoregressions"
Dewan, Pranita, Raghu Ganti, Mudhakar Srivatsa, and Sebastian Stein. "NN-SAR: A Neural Network Approach for Spatial AutoRegression." In 2019 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops). IEEE, 2019. http://dx.doi.org/10.1109/percomw.2019.8730574.
Full textReports on the topic "Spatial autoregressions"
Celik, Mete, Baris M. Kazar, Shashi Shekhar, Daniel Boley, and David J. Lilja. NORTHSTAR: A Parameter Estimation Method for the Spatial Autoregression Model. Fort Belvoir, VA: Defense Technical Information Center, February 2007. http://dx.doi.org/10.21236/ada463739.
Full text