Academic literature on the topic 'Spatial and temporal movements'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Spatial and temporal movements.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Spatial and temporal movements"
Maslovat, Dana, Nicola J. Hodges, Romeo Chua, and Ian M. Franks. "Motor preparation of spatially and temporally defined movements: evidence from startle." Journal of Neurophysiology 106, no. 2 (August 2011): 885–94. http://dx.doi.org/10.1152/jn.00166.2011.
Full textParamei, Galina V., Marco Bertamini, Bruce Bridgeman, and Nicholas J. Wade. "Eye Movements: Spatial and Temporal Aspects." i-Perception 1, no. 2 (January 2010): 31–32. http://dx.doi.org/10.1068/i0102.
Full textFranz, Elizabeth A., James C. Eliassen, Richard B. Ivry, and Michael S. Gazzaniga. "Dissociation of Spatial and Temporal Coupling in the Bimanual Movements of Callosotomy Patients." Psychological Science 7, no. 5 (September 1996): 306–10. http://dx.doi.org/10.1111/j.1467-9280.1996.tb00379.x.
Full textNauert, Elliot, and Douglas J. Gillan. "Individual Measures of Time Perception Predict Performance in a Timed Reaching Task." Proceedings of the Human Factors and Ergonomics Society Annual Meeting 61, no. 1 (September 2017): 1380–84. http://dx.doi.org/10.1177/1541931213601829.
Full textCao, Rui, Wei Tu, Jinzhou Cao, and Qingquan Li. "COMPARISON OF URBAN HUMAN MOVEMENTS INFERRING FROM MULTI-SOURCE SPATIAL-TEMPORAL DATA." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B2 (June 8, 2016): 471–76. http://dx.doi.org/10.5194/isprsarchives-xli-b2-471-2016.
Full textCao, Rui, Wei Tu, Jinzhou Cao, and Qingquan Li. "COMPARISON OF URBAN HUMAN MOVEMENTS INFERRING FROM MULTI-SOURCE SPATIAL-TEMPORAL DATA." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B2 (June 8, 2016): 471–76. http://dx.doi.org/10.5194/isprs-archives-xli-b2-471-2016.
Full textShiomi, Kozue, Katsufumi Sato, Nobuhiro Katsumata, and Ken Yoda. "Temporal and spatial determinants of route selection in homing seabirds." Behaviour 156, no. 11 (2019): 1165–83. http://dx.doi.org/10.1163/1568539x-00003560.
Full textDonald, G. E., D. J. Miron, T. Dyall, and M. G. Garner. "Temporal and spatial regional cattle farm turn-off patterns in eastern Australia." Animal Production Science 50, no. 6 (2010): 359. http://dx.doi.org/10.1071/an09160.
Full textCrawford, T. J., and H. J. Muller. "Spatial and temporal effects of spatial attention on human saccadic eye movements." Vision Research 32, no. 2 (February 1992): 293–304. http://dx.doi.org/10.1016/0042-6989(92)90140-e.
Full textHaney, Justin M., Tianke Wang, Clive D’Souza, Monica L. H. Jones, and Matthew P. Reed. "Spatial and Temporal Patterns in Sequential Precision Reach Movements." Proceedings of the Human Factors and Ergonomics Society Annual Meeting 61, no. 1 (September 2017): 929–30. http://dx.doi.org/10.1177/1541931213601714.
Full textDissertations / Theses on the topic "Spatial and temporal movements"
Xia, Jianhong, and not supplied. "Modelling the spatial-temporal movement of tourists." RMIT University. Mathematical and Geospatial Sciences, 2007. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20080110.161021.
Full textTrukenbrod, Hans Arne. "Temporal and spatial aspects of eye-movement control : from reading to scanning." Phd thesis, Universität Potsdam, 2012. http://opus.kobv.de/ubp/volltexte/2014/7020/.
Full textBlickbewegungen stellen ein wichtiges Instrument dar, um kognitive Prozesse zu untersuchen. In den meisten Paradigmen ist allerdings wenig über die Entstehung von Sakkaden und Fixationen bekannt. Insbesondere die Kontrolle der Fixationsdauern wurde häufig außer acht gelassen. Eine wesentliche Ausnahme stellt die Leseforschung dar, in der sowohl zeitlichliche als auch räumliche Aspekte der Blickbewegungssteuerung im Detail betrachtet wurden. Dabei war der wissenschaftliche Diskurs durch drei Kontroversen gekennzeichnet, die untersuchten, (i), welchen Einfluss okulomotorische bzw. kognitive Prozesse auf die Blicksteuerung haben, (ii), ob Worte seriell oder parallel verarbeitet werden und, (iii), wie Fixationsdauern kontrolliert werden. Die vorliegende Arbeit zielt im wesentlichen darauf ab, die Dynamik von Fixationssequenzen zu erforschen. Ausgehend von den Erkenntnissen beim Lesen untersuchten wir Blickbewegungen in Nichtlese-Aufgaben, mit dem Ziel allgemeine Prinzipien der Blicksteuerung zu identifizieren. Zusätzlich versuchten wir mit Hilfe dieser Aufgaben, Erkenntnisse über Prozesse beim Lesen zu vertiefen. Unser Vorgehen war sowohl von der Durchführung von Experimenten als auch der Entwicklung und Evaluation computationaler Modelle geprägt. Die Hauptbefunde zeigten: Erstens, okulomotorische Phänomene des Lesens lassen sich in Suchaufgaben ohne Wortmaterial replizieren (Kapitel 2 & 4). Dabei bestimmen okulomotorische Prozesse die Fixationsposition innerhalb eines Objektes. Diese wiederum beeinflusst das nächste Sakkadenziel sowie die Fixationsdauer. Zweitens, wesentliche Vorhersagen von Modellen, in denen Blickbewegungen von seriellen Aufmerksamkeitsverschiebungen abhängen, konnten falsifiziert werden (Kapitel 3). Stattdessen legen unsere Erkenntnisse nahe, dass die Blicksteuerung von der parallelen Verarbeitung mehrerer Objekte abhängt. Drittens, Fixationsdauern werden asymmetrisch kontrolliert (Kapitel 4). Während hohe Verarbeitungsanforderungen Fixationsdauern unmittelbar verlängern können, führen niedrige Verarbeitungsanforderungen nur zeitlich verzögert zu einer Reduktion. Wir schlagen ein computationales Modell ICAT vor, um asymmetrische Kontrolle zu erklären. Grundlage des Modells ist ein autonomer Zeitgeber, der unabhängig von der momentanen Verarbeitung nach zufälligen Zeitintervallen Sakkaden initiiert. Unerwartet hohe Verarbeitungsanforderungen können die Initiierung der nächsten Sakkade hinauszögern, während unerwartet niedrige Verarbeitungsanforderungen den Beginn der nächsten Sakkade nicht verändern. Der Zeitgeber passt sich allerdings von Fixation zu Fixation neuen Verarbeitungsanforderungen an, so dass es zu einer zeitlich verzögerten Reduktion der Fixationsdauern kommen kann. In einer erweiterten Version des Modells überprüfen wir die Kompatibilität ICATs mit einer realistischen räumlichen Blicksteuerung. Die Ähnlichkeit von Blickbewegungsphänomenen über Aufgaben hinweg legt nahe, dass sie auf allgemeinen Prinzipien basieren. Grundlage der Blicksteuerung ist die verteilte Verarbeitung des visuellen Inputs, während die Kontrolle der Fixationsdauer auf den Prinzipien von ICAT beruht. Darüber hinaus tragen okulomotorische Phänomene wesentlich zur Variabilität der Blicksteuerung bei. Ein Verständnis dieses Zusammenspiels hilft entscheidend den Zusammenhang von Blickbewegungen und Kognitionen besser zu verstehen.
Yasumiishi, Misa. "Spatial and temporal analysis of human movements and applications for disaster response management| Using cell phone data." Thesis, State University of New York at Buffalo, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=1600848.
Full textThis survey study examines cell phone usage data and focuses on the application of the data to disaster response management. Through the course of this study, the structure of cell phone usage data and its characteristics will be reviewed. Cell phone usage data provides us with valuable information about human movements and their activities. The uniqueness of the data is that it contains both spatial and temporal information and this information is free of fixed routes such as roads or any preset data capturing timing. In short, it is a very fluid kind of data which reflects our activities as humans with freedom of movement. Depending on data extraction methods, the data server can provide additional information such as application activities, battery level and charge activities. However, cell phone usage data contains shortcomings including data inconsistency and sparseness. Both the richness and the shortcomings of the data expose the hurdles required in data processing and force us to devise new ways to analyze this kind of data. Once the data has been properly analyzed, the findings can be applied to our real life problems including disaster response. By understanding human movement patterns using cell phone usage data, we will be able to allocate limited emergency resources more adequately. Even more, when disaster victims lose their cell phone functionality during a disaster, we might be able to identify or predict the locations of victims or evacuees and supply them with necessary assistance. The results of this study provide some insights to cell phone usage data and human movement patterns including the concentration of cell phone activities in specific zones and rather universal cell phone charging patterns. The potential of the data as a movement analysis resource and the application to disaster response is apparent. As a base to leverage the study to the next level, a possible conceptual model of human movement factors and data processing methods will be presented.
van, Geel Catherina Francisca (Nienke). "Predator movements in complex geography : spatial distribution and temporal occurrence of low-density bottlenose dolphin communities off western Scotland." Thesis, University of the Highlands and Islands, 2016. https://pure.uhi.ac.uk/portal/en/studentthesis/predator-movements-in-complex-geography(f898982a-6509-4e73-9340-b0ad7463ae6d).html.
Full textLevy, Manuel. "From boxes to codes : adaptation of V1 nonlinearities to the temporal encoding of spatial information during simuled eye movements." Paris 6, 2007. http://www.theses.fr/2007PA066238.
Full textThis thesis focuses on the processing and temporal encoding of natural stimuli by simple cells of the primary visual cortex (V1). Neuronal responses were recorded by intra- and extra-cellular electrodes in the anaesthetized and paralysed Cat, and analysed with tools derived from system identification and information theory. We show that the recruitment of contrast gain controls and centre surround interactions, in particular by stimuli having natural eye movement dynamics, increases the reproducibility of the high temporal frequencies components of the membrane potential, as well as the temporal precision and sparseness of the spike output. The addition of a complex-like, feedforward, delayed inhibition to the classical LN model accounted largely for our results. Finally we propose that V1 nonlinearities are adapted to the coarse-to-fine processing and temporal encoding of spatial information during the course of an ocular fixation
Lättman, Håkan. "Description of spatial and temporal distributions of epiphytic lichens." Licentiate thesis, Linköping University, Linköping University, Department of Physics, Chemistry and Biology, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-11561.
Full textLichens are, in most cases, sensitive to anthropogenic factors such as air pollution, global warming, forestry and fragmentation. Two studies are included in this thesis. The first is an evaluation of the importance of old oak for the rare epiphytic lichen Cliostomum corrugatum (Ach.) Fr. This study analysed whether C. corrugatum was limited by dispersal or restricted to tree stands with an unbroken continuity or the substrate old oaks. The results provide evidence that the investigated five populations in Östergötland, Sweden, of C. corrugatum exhibit substantial gene flow, an effective dispersal and a small genetic variation between the sites. Most of the genetic variation was within the populations. Thus, C. corrugatum is more dependent of the substrate old oaks, rather than limited by dispersal. The second study investigated possible range shift of some common macrolichens, due to global warming, from 64 sites in southern Sweden comparing the two years 1986 and 2003. The centroid of three lichen species had moved a significant distance, all in a north east direction: Hypogymnia physodes (L.) Nyl. and Vulpicida pinastri (Scop.) J.-E. Mattsson and M. J. Lai on the tree species Juniperus communis L. (50 and 151 km, respectively) and H. physodes on Pinus sylvestris L. (41 km). Considering also the non-significant cases, there is strong evidence for a prevailing NE direction of centroid movement.
Oslender, Ulrich. "Black communities on the Columbian Pacific coast and the 'aquatic space' : a spatial approach to social movement theory." Thesis, University of Glasgow, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.366209.
Full textKnöll, Jonas [Verfasser], and Frank [Akademischer Betreuer] Bremmer. "Spatio-temporal representations during eye movements and their neuronal correlates / Jonas Knöll. Betreuer: Frank Bremmer." Marburg : Philipps-Universität Marburg, 2012. http://d-nb.info/1028072260/34.
Full textNadorozny, Nicole Dorathea. "A temporal and spatial comparison of the movements of three frogs, genus Rana, among farm and forested landscapes in the Annapolis Valley, Nova Scotia." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp04/mq23697.pdf.
Full textDeck, Aubrey Lynn. "Spatio-temporal relationships between feral hogs and cattle with implicatons for disease transmission." Texas A&M University, 2003. http://hdl.handle.net/1969.1/5884.
Full textBooks on the topic "Spatial and temporal movements"
Garam, Lajos. The influence of the spatial-temporal structure of movement on intonation during changes of position in violin playing. [Helsinki: Sibelius-Akatemia, 1990.
Find full textStock, Oliviero. Spatial and Temporal Reasoning. Dordrecht: Springer, 1997.
Find full textStock, Oliviero, ed. Spatial and Temporal Reasoning. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-0-585-28322-7.
Full textRoddick, John F., and Kathleen Hornsby, eds. Temporal, Spatial, and Spatio-Temporal Data Mining. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-45244-3.
Full textBaum, Rex I. Kinematics of the Aspen Grove landslide, Ephraim Canyon, central Utah: Description and anlysis of deformational structures and of spatial and temporal patterns of movement of the landslide. Denver, CO: U.S. Geological Survey, 1994.
Find full textLigozat, Gérard. Qualitative spatial and temporal reasoning. London, UK: ISTE, 2011.
Find full textLigozat, Gérard. Qualitative Spatial and Temporal Reasoning. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118601457.
Full textSchneider, David C. Quantitative ecology: Spatial and temporal scaling. San Diego: Academic Press, 1994.
Find full textMamoulis, Nikos, Thomas Seidl, Torben Bach Pedersen, Kristian Torp, and Ira Assent, eds. Advances in Spatial and Temporal Databases. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02982-0.
Full textPeters, Gareth William, and Tomoko Matsui, eds. Theoretical Aspects of Spatial-Temporal Modeling. Tokyo: Springer Japan, 2015. http://dx.doi.org/10.1007/978-4-431-55336-6.
Full textBook chapters on the topic "Spatial and temporal movements"
Galton, Antony. "Space, Time, and Movement." In Spatial and Temporal Reasoning, 321–52. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-0-585-28322-7_10.
Full textGkountouna, Olga, Dieter Pfoser, Carola Wenk, and Andreas Züfle. "A Unified Framework to Predict Movement." In Advances in Spatial and Temporal Databases, 393–97. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-64367-0_23.
Full textYan, Zhixian, Nikos Giatrakos, Vangelis Katsikaros, Nikos Pelekis, and Yannis Theodoridis. "SeTraStream: Semantic-Aware Trajectory Construction over Streaming Movement Data." In Advances in Spatial and Temporal Databases, 367–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22922-0_22.
Full textKatz, Oded, Einav Reuven, Yonatan Elfassi, Anner Paldor, Zohar Gvirtzman, and Einat Aharonov. "Spatial and Temporal Relation of Submarine Landslides and Faults Along the Israeli Continental Slope, Eastern Mediterranean." In Submarine Mass Movements and their Consequences, 351–59. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-20979-1_35.
Full textLomakina, Olga, Lubov Podladchikova, Dmitry Shaposhnikov, and Tatiana Koltunova. "Spatial and Temporal Parameters of Eye Movements During Viewing of Affective Images." In Advances in Intelligent Systems and Computing, 127–33. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32554-5_17.
Full textChen, Monchu, Nelson Alves, and Ricardo Sol. "Combining Spatial and Temporal Information of Eye Movements in Goal-Oriented Tasks." In Lecture Notes in Computer Science, 827–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-39062-3_62.
Full textGilligan, Christopher A., David Claessen, and Frank van den Bosch. "Spatial and temporal dynamics of gene movements arising from deployment of transgenic crops." In Environmental Costs and Benefits of Transgenic Crops, 143–61. Dordrecht: Springer Netherlands, 2005. http://dx.doi.org/10.1007/1-4020-3249-8_18.
Full textYan, ChunJuan. "Unsupervised Posture Modeling Based on Spatial-Temporal Movement Features." In Advanced Research on Electronic Commerce, Web Application, and Communication, 426–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20370-1_70.
Full textDavison, Adrian K., Moi Hoon Yap, Nicholas Costen, Kevin Tan, Cliff Lansley, and Daniel Leightley. "Micro-Facial Movements: An Investigation on Spatio-Temporal Descriptors." In Computer Vision - ECCV 2014 Workshops, 111–23. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16181-5_8.
Full textPearson, D. J. "Palaearctic Passerine Migrants in Kenya and Uganda: Temporal and Spatial Patterns of Their Movements." In Bird Migration, 44–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-74542-3_4.
Full textConference papers on the topic "Spatial and temporal movements"
Yang, Ning, Xiangnan Kong, Fengjiao Wang, and Philip S. Yu. "When and Where: Predicting Human Movements Based on Social Spatial-Temporal Events." In Proceedings of the 2014 SIAM International Conference on Data Mining. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2014. http://dx.doi.org/10.1137/1.9781611973440.59.
Full textDoan, Huong Giang, Hai Vu, and Thanh Hai Tran. "Recognition of hand gestures from cyclic hand movements using spatial-temporal features." In SoICT 2015: The Sixth International Symposium on Information and Communication Technology. New York, NY, USA: ACM, 2015. http://dx.doi.org/10.1145/2833258.2833301.
Full textAndrienko, Gennady, and Natalia Andrienko. "Spatio-temporal aggregation for visual analysis of movements." In 2008 IEEE Symposium on Visual Analytics Science and Technology (VAST). IEEE, 2008. http://dx.doi.org/10.1109/vast.2008.4677356.
Full textGrüner, Tobias, Sören Frey, Jens Nahm, and Dirk Reichardt. "Exploring Spatio-temporal Movements for Intelligent Mobility Services." In 6th International Conference on Vehicle Technology and Intelligent Transport Systems. SCITEPRESS - Science and Technology Publications, 2020. http://dx.doi.org/10.5220/0009563801230128.
Full textKamitani, Takuya, Hiroki Yoshimura, Masashi Nishiyama, and Yoshio Iwai. "Identifying People Using Temporal and Spatial Changes in Local Movements Measured from Body Sway." In 2017 4th IAPR Asian Conference on Pattern Recognition (ACPR). IEEE, 2017. http://dx.doi.org/10.1109/acpr.2017.82.
Full textTritsarolis, Andreas, Yannis Kontoulis, Nikos Pelekis, and Yannis Theodoridis. "MaSEC: Discovering Anchorages and Co-movement Patterns on Streaming Vessel Trajectories." In SSTD '21: 17th International Symposium on Spatial and Temporal Databases. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3469830.3470909.
Full textKonuk, I., U. O. Akpan, and D. P. Brennan. "Random Field Modeling of Rainfall-Induced Soil Movement." In 2002 4th International Pipeline Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/ipc2002-27165.
Full textKong, Dejiang, and Fei Wu. "HST-LSTM: A Hierarchical Spatial-Temporal Long-Short Term Memory Network for Location Prediction." In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/324.
Full textHamanishi, Natsuki, and Jun Rekimoto. "Temporal Manipulation Interface of Motion Data for Movement Observation in a Personal Training." In SUI '20: Symposium on Spatial User Interaction. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3385959.3422696.
Full textSunshine-Hill, Ben, Jan Allbeck, Nuria Pelechano, and Norm Badler. "Generating plausible individual agent movements from spatio-temporal occupancy data." In the 2007 workshop. New York, New York, USA: ACM Press, 2007. http://dx.doi.org/10.1145/1352922.1352924.
Full textReports on the topic "Spatial and temporal movements"
Gutiérrez Rodríguez, Encarnación. Entangled Migrations The Coloniality of Migration and Creolizing Conviviality. Maria Sibylla Merian International Centre for Advanced Studies in the Humanities and Social Sciences Conviviality-Inequality in Latin America, 2021. http://dx.doi.org/10.46877/rodriguez.2021.35.
Full textWilliams, H. Chapter 2: Temporal and spatial divisions. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1995. http://dx.doi.org/10.4095/205246.
Full textGriffiths, Hugh. Bistatic Denial Using Spatial-Temporal Coding. Fort Belvoir, VA: Defense Technical Information Center, March 2001. http://dx.doi.org/10.21236/ada387730.
Full textSchmidt, Richard A. Controlling the Temporal Structure of Limb Movements: A Response. Fort Belvoir, VA: Defense Technical Information Center, May 1986. http://dx.doi.org/10.21236/ada169261.
Full textSwinney, H. L. Complex temporal and spatial patterns in nonequilibrium systems. Office of Scientific and Technical Information (OSTI), September 1991. http://dx.doi.org/10.2172/5053202.
Full textMobley, Curtis D., and Robert A. Maffione. Spatial and Temporal Measurements of Benthic Optical Properties. Fort Belvoir, VA: Defense Technical Information Center, April 1999. http://dx.doi.org/10.21236/ada362432.
Full textMaffione, Robert A. Spatial and Temporal Measurements of Benthic Optical Properties. Fort Belvoir, VA: Defense Technical Information Center, August 2001. http://dx.doi.org/10.21236/ada627748.
Full textMaffione, Robert A. Spatial and Temporal Measurements of Benthic Optical Properties. Fort Belvoir, VA: Defense Technical Information Center, September 1997. http://dx.doi.org/10.21236/ada635926.
Full textMaffione, Robert A. Spatial and Temporal Measurements of Benthic Optical Properties. Fort Belvoir, VA: Defense Technical Information Center, September 1999. http://dx.doi.org/10.21236/ada630455.
Full textMcKenna, Sean Andrew, and Karen A. Gutierrez. Spatial-temporal event detection in climate parameter imagery. Office of Scientific and Technical Information (OSTI), October 2011. http://dx.doi.org/10.2172/1029771.
Full text