Academic literature on the topic 'Sparse Matrix Storage Formats'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Sparse Matrix Storage Formats.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Sparse Matrix Storage Formats"

1

Langr, Daniel, and Pavel Tvrdik. "Evaluation Criteria for Sparse Matrix Storage Formats." IEEE Transactions on Parallel and Distributed Systems 27, no. 2 (February 1, 2016): 428–40. http://dx.doi.org/10.1109/tpds.2015.2401575.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

MUKADDES, ABUL MUKID MOHAMMAD, MASAO OGINO, and RYUJI SHIOYA. "PERFORMANCE EVALUATION OF DOMAIN DECOMPOSITION METHOD WITH SPARSE MATRIX STORAGE SCHEMES IN MODERN SUPERCOMPUTER." International Journal of Computational Methods 11, supp01 (November 2014): 1344007. http://dx.doi.org/10.1142/s0219876213440076.

Full text
Abstract:
The use of proper data structures with corresponding algorithms is critical to achieve good performance in scientific computing. The need of sparse matrix vector multiplication in each iteration of the iterative domain decomposition method has led to implementation of a variety of sparse matrix storage formats. Many storage formats have been presented to represent sparse matrix and integrated in the method. In this paper, the storage efficiency of those sparse matrix storage formats are evaluated and compared. The performance results of sparse matrix vector multiplication used in the domain decomposition method is considered. Based on our experiments in the FX10 supercomputer system, some useful conclusions that can serve as guidelines for the optimization of domain decomposition method are extracted.
APA, Harvard, Vancouver, ISO, and other styles
3

Chen, Shizhao, Jianbin Fang, Chuanfu Xu, and Zheng Wang. "Adaptive Hybrid Storage Format for Sparse Matrix–Vector Multiplication on Multi-Core SIMD CPUs." Applied Sciences 12, no. 19 (September 29, 2022): 9812. http://dx.doi.org/10.3390/app12199812.

Full text
Abstract:
Optimizing sparse matrix–vector multiplication (SpMV) is challenging due to the non-uniform distribution of the non-zero elements of the sparse matrix. The best-performing SpMV format changes depending on the input matrix and the underlying architecture, and there is no “one-size-fit-for-all” format. A hybrid scheme combining multiple SpMV storage formats allows one to choose an appropriate format to use for the target matrix and hardware. However, existing hybrid approaches are inadequate for utilizing the SIMD cores of modern multi-core CPUs with SIMDs, and it remains unclear how to best mix different SpMV formats for a given matrix. This paper presents a new hybrid storage format for sparse matrices, specifically targeting multi-core CPUs with SIMDs. Our approach partitions the target sparse matrix into two segmentations based on the regularities of the memory access pattern, where each segmentation is stored in a format suitable for its memory access patterns. Unlike prior hybrid storage schemes that rely on the user to determine the data partition among storage formats, we employ machine learning to build a predictive model to automatically determine the partition threshold on a per matrix basis. Our predictive model is first trained off line, and the trained model can be applied to any new, unseen sparse matrix. We apply our approach to 956 matrices and evaluate its performance on three distinct multi-core CPU platforms: a 72-core Intel Knights Landing (KNL) CPU, a 128-core AMD EPYC CPU, and a 64-core Phytium ARMv8 CPU. Experimental results show that our hybrid scheme, combined with the predictive model, outperforms the best-performing alternative by 2.9%, 17.5% and 16% on average on KNL, AMD, and Phytium, respectively.
APA, Harvard, Vancouver, ISO, and other styles
4

Sanderson, Conrad, and Ryan Curtin. "Practical Sparse Matrices in C++ with Hybrid Storage and Template-Based Expression Optimisation." Mathematical and Computational Applications 24, no. 3 (July 19, 2019): 70. http://dx.doi.org/10.3390/mca24030070.

Full text
Abstract:
Despite the importance of sparse matrices in numerous fields of science, software implementations remain difficult to use for non-expert users, generally requiring the understanding of the underlying details of the chosen sparse matrix storage format. In addition, to achieve good performance, several formats may need to be used in one program, requiring explicit selection and conversion between the formats. This can be both tedious and error-prone, especially for non-expert users. Motivated by these issues, we present a user-friendly and open-source sparse matrix class for the C++ language, with a high-level application programming interface deliberately similar to the widely-used MATLAB language. This facilitates prototyping directly in C++ and aids the conversion of research code into production environments. The class internally uses two main approaches to achieve efficient execution: (i) a hybrid storage framework, which automatically and seamlessly switches between three underlying storage formats (compressed sparse column, red-black tree, coordinate list) depending on which format is best suited and/or available for specific operations, and (ii) a template-based meta-programming framework to automatically detect and optimise the execution of common expression patterns. Empirical evaluations on large sparse matrices with various densities of non-zero elements demonstrate the advantages of the hybrid storage framework and the expression optimisation mechanism.
APA, Harvard, Vancouver, ISO, and other styles
5

FRAGUELA, BASILIO B., RAMÓN DOALLO, and EMILIO L. ZAPATA. "MEMORY HIERARCHY PERFORMANCE PREDICTION FOR BLOCKED SPARSE ALGORITHMS." Parallel Processing Letters 09, no. 03 (September 1999): 347–60. http://dx.doi.org/10.1142/s0129626499000323.

Full text
Abstract:
Nowadays the performance gap between processors and main memory makes an efficient usage of the memory hierarchy necessary for good program performance. Several techniques have been proposed for this purpose. Nevertheless most of them consider only regular access patterns, while many scientific and numerical applications give place to irregular patterns. A typical case is that of indirect accesses due to the use of compressed storage formats for sparse matrices. This paper describes an analytic approach to model both regular and irregular access patterns. The application modeled is an optimized sparse matrix-dense matrix product algorithm with several levels of blocking. Our model can be directly applied to any memory hierarchy consisting of K-way associative caches. Results are shown for several current microprocessor architectures.
APA, Harvard, Vancouver, ISO, and other styles
6

Smith, Barry F., and William D. Gropp. "The Design of Data-Structure-Neutral Libraries for the Iterative Solution of Sparse Linear Systems." Scientific Programming 5, no. 4 (1996): 329–36. http://dx.doi.org/10.1155/1996/417629.

Full text
Abstract:
Over the past few years several proposals have been made for the standardization of sparse matrix storage formats in order to allow for the development of portable matrix libraries for the iterative solution of linear systems. We believe that this is the wrong approach. Rather than define one standard (or a small number of standards) for matrix storage, the community should define an interface (i.e., the calling sequences) for the functions that act on the data. In addition, we cannot ignore the interface to the vector operations because, in many applications, vectors may not be stored as consecutive elements in memory. With the acceptance of shared memory, distributed memory, and cluster memory parallel machines, the flexibility of the distribution of the elements of vectors is also extremely important. This issue is ignored in most proposed standards. In this article we demonstrate how such libraries may be written using data encapsulation techniques.
APA, Harvard, Vancouver, ISO, and other styles
7

Guo, Dahai, and William Gropp. "Applications of the streamed storage format for sparse matrix operations." International Journal of High Performance Computing Applications 28, no. 1 (January 3, 2013): 3–12. http://dx.doi.org/10.1177/1094342012470469.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Akhunov, R. R., S. P. Kuksenko, V. K. Salov, and T. R. Gazizov. "Sparse matrix storage formats and acceleration of iterative solution of linear algebraic systems with dense matrices." Journal of Mathematical Sciences 191, no. 1 (April 21, 2013): 10–18. http://dx.doi.org/10.1007/s10958-013-1296-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Merrill, Duane, and Michael Garland. "Merge-based sparse matrix-vector multiplication (SpMV) using the CSR storage format." ACM SIGPLAN Notices 51, no. 8 (November 9, 2016): 1–2. http://dx.doi.org/10.1145/3016078.2851190.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zhang, Jilin, Jian Wan, Fangfang Li, Jie Mao, Li Zhuang, Junfeng Yuan, Enyi Liu, and Zhuoer Yu. "Efficient sparse matrix–vector multiplication using cache oblivious extension quadtree storage format." Future Generation Computer Systems 54 (January 2016): 490–500. http://dx.doi.org/10.1016/j.future.2015.03.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Sparse Matrix Storage Formats"

1

Haque, Sardar Anisul, and University of Lethbridge Faculty of Arts and Science. "A computational study of sparse matrix storage schemes." Thesis, Lethbridge, Alta. : University of Lethbridge, Deptartment of Mathematics and Computer Science, 2008, 2008. http://hdl.handle.net/10133/777.

Full text
Abstract:
The efficiency of linear algebra operations for sparse matrices on modern high performance computing system is often constrained by the available memory bandwidth. We are interested in sparse matrices whose sparsity pattern is unknown. In this thesis, we study the efficiency of major storage schemes of sparse matrices during multiplication with dense vector. A proper reordering of columns or rows usually results in reduced memory traffic due to the improved data reuse. This thesis also proposes an efficient column ordering algorithm based on binary reflected gray code. Computational experiments show that this ordering results in increased performance in computing the product of a sparse matrix with a dense vector.
xi, 76 leaves : ill. ; 29 cm.
APA, Harvard, Vancouver, ISO, and other styles
2

Pawlowski, Filip igor. "High-performance dense tensor and sparse matrix kernels for machine learning." Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEN081.

Full text
Abstract:
Dans cette thèse, nous développons des algorithmes à haute performance pour certains calculs impliquant des tenseurs denses et des matrices éparses. Nous abordons les opérations du noyau qui sont utiles pour les tâches d'apprentissage de la machine, telles que l'inférence avec les réseaux neuronaux profonds. Nous développons des structures de données et des techniques pour réduire l'utilisation de la mémoire, pour améliorer la localisation des données et donc pour améliorer la réutilisation du cache des opérations du noyau. Nous concevons des algorithmes parallèles à mémoire séquentielle et à mémoire partagée.Dans la première partie de la thèse, nous nous concentrons sur les noyaux tenseurs denses. Les noyaux tenseurs comprennent la multiplication tenseur-vecteur (TVM), la multiplication tenseur-matrice (TMM) et la multiplication tenseur-tendeur (TTM). Parmi ceux-ci, la MVT est la plus liée à la largeur de bande et constitue un élément de base pour de nombreux algorithmes. Nous proposons une nouvelle structure de données qui stocke le tenseur sous forme de blocs, qui sont ordonnés en utilisant la courbe de remplissage de l'espace connue sous le nom de courbe de Morton (ou courbe en Z). L'idée clé consiste à diviser le tenseur en blocs suffisamment petits pour tenir dans le cache et à les stocker selon l'ordre de Morton, tout en conservant un ordre simple et multidimensionnel sur les éléments individuels qui les composent. Ainsi, des routines BLAS haute performance peuvent être utilisées comme micro-noyaux pour chaque bloc. Les résultats démontrent non seulement que l'approche proposée est plus performante que les variantes de pointe jusqu'à 18%, mais aussi que l'approche proposée induit 71% de moins d'écart-type d'échantillon pour le MVT dans les différents modes possibles. Enfin, nous étudions des algorithmes de mémoire partagée parallèles pour la MVT qui utilisent la structure de données proposée. Nos résultats sur un maximum de 8 systèmes de prises montrent une performance presque maximale pour l'algorithme proposé pour les tenseurs à 2, 3, 4 et 5 dimensions.Dans la deuxième partie de la thèse, nous explorons les calculs épars dans les réseaux de neurones en nous concentrant sur le problème d'inférence profonde épars à haute performance. L'inférence sparse DNN est la tâche d'utiliser les réseaux sparse DNN pour classifier un lot d'éléments de données formant, dans notre cas, une matrice de caractéristiques sparse. La performance de l'inférence clairsemée dépend de la parallélisation efficace de la matrice clairsemée - la multiplication matricielle clairsemée (SpGEMM) répétée pour chaque couche dans la fonction d'inférence. Nous introduisons ensuite l'inférence modèle-parallèle, qui utilise un partitionnement bidimensionnel des matrices de poids obtenues à l'aide du logiciel de partitionnement des hypergraphes. Enfin, nous introduisons les algorithmes de tuilage modèle-parallèle et de tuilage hybride, qui augmentent la réutilisation du cache entre les couches, et utilisent un module de synchronisation faible pour cacher le déséquilibre de charge et les coûts de synchronisation. Nous évaluons nos techniques sur les données du grand réseau du IEEE HPEC 2019 Graph Challenge sur les systèmes à mémoire partagée et nous rapportons jusqu'à 2x l'accélération par rapport à la ligne de base
In this thesis, we develop high performance algorithms for certain computations involving dense tensors and sparse matrices. We address kernel operations that are useful for machine learning tasks, such as inference with deep neural networks (DNNs). We develop data structures and techniques to reduce memory use, to improve data locality and hence to improve cache reuse of the kernel operations. We design both sequential and shared-memory parallel algorithms. In the first part of the thesis we focus on dense tensors kernels. Tensor kernels include the tensor--vector multiplication (TVM), tensor--matrix multiplication (TMM), and tensor--tensor multiplication (TTM). Among these, TVM is the most bandwidth-bound and constitutes a building block for many algorithms. We focus on this operation and develop a data structure and sequential and parallel algorithms for it. We propose a novel data structure which stores the tensor as blocks, which are ordered using the space-filling curve known as the Morton curve (or Z-curve). The key idea consists of dividing the tensor into blocks small enough to fit cache, and storing them according to the Morton order, while keeping a simple, multi-dimensional order on the individual elements within them. Thus, high performance BLAS routines can be used as microkernels for each block. We evaluate our techniques on a set of experiments. The results not only demonstrate superior performance of the proposed approach over the state-of-the-art variants by up to 18%, but also show that the proposed approach induces 71% less sample standard deviation for the TVM across the d possible modes. Finally, we show that our data structure naturally expands to other tensor kernels by demonstrating that it yields up to 38% higher performance for the higher-order power method. Finally, we investigate shared-memory parallel TVM algorithms which use the proposed data structure. Several alternative parallel algorithms were characterized theoretically and implemented using OpenMP to compare them experimentally. Our results on up to 8 socket systems show near peak performance for the proposed algorithm for 2, 3, 4, and 5-dimensional tensors. In the second part of the thesis, we explore the sparse computations in neural networks focusing on the high-performance sparse deep inference problem. The sparse DNN inference is the task of using sparse DNN networks to classify a batch of data elements forming, in our case, a sparse feature matrix. The performance of sparse inference hinges on efficient parallelization of the sparse matrix--sparse matrix multiplication (SpGEMM) repeated for each layer in the inference function. We first characterize efficient sequential SpGEMM algorithms for our use case. We then introduce the model-parallel inference, which uses a two-dimensional partitioning of the weight matrices obtained using the hypergraph partitioning software. The model-parallel variant uses barriers to synchronize at layers. Finally, we introduce tiling model-parallel and tiling hybrid algorithms, which increase cache reuse between the layers, and use a weak synchronization module to hide load imbalance and synchronization costs. We evaluate our techniques on the large network data from the IEEE HPEC 2019 Graph Challenge on shared-memory systems and report up to 2x times speed-up versus the baseline
APA, Harvard, Vancouver, ISO, and other styles
3

Dičpinigaitis, Petras. "Delninukų energijos suvartojimo apdorojant išretintas matricas saugomas stulpeliais modeliavimas." Master's thesis, Lithuanian Academic Libraries Network (LABT), 2008. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2008~D_20080128_103036-96655.

Full text
Abstract:
Kiekvienas mobilus įrenginys turi bateriją, o tai reiškia, kad jų darbo laikas ribotas, kadangi nėra išrasta ilgaamžė baterija. Todėl šiuo metu egzistuojanti problema - kaip pasiekti, kuo ilgesnį mobiliojo įrenginio darbo laiką, be papildomo pakrovimo. Darbo metu naudojamas mobilus įrenginys - delninukas. Iš visų delninuko baterijos energiją suvartojančių komponentų visas dėmesys skiriamas procesoriui ir atminčiai. Tyrimo metu buvo apkrautas procesorius ir atmintis ir stebimi atitinkami baterijos parametrai. Apkrovimui naudojama paprastų ir išretintų matricų saugomų stulpelių metodu daugyba. Išretintų matricų daugybos metu užimama mažiau atminties, o procesorius atlieka daugiau komandų lyginant su paprastu metodu, kuris užima daugiau atminties. Iš gautų rezultatų pamatėme, kad išretintų matricų saugomų stulpelių metodu daugyba yra daug efektyvesnė negu paprastų matricų daugyba. Todėl kuriant programas, kur reikia naudoti matricas geriau naudoti išretintų matricų stulpelių saugojimo metodo daugybą, kadangi galima sutrumpinti operacijos vykdymo laika, sunaudoti mažiau baterijos resursų ir sutaupyti atminties.
Nowadays major problem is energy consumtion in portable devices which has a battery. In this job we have evaluated energy consumption for Pocket PC. We wanted to see memory and processor influence in battery energy consumption. We have created a program which can do matrix multiplication and sparse matrix „storage by columns“ multiplication. During multiplication program takes battery information and saves it into the file. After that I have investigated the result and saw, that sparse matrix storage by columns multiplication is much more effectived than normal matrix multiplication. Sparce matrix storage by columns multiplication take less memory and more processor commands then normal matrix multiplication. We suggest to use sparse matrix storage by columns model instead simple model, because you can save much more operation time, battery resources and memory.
APA, Harvard, Vancouver, ISO, and other styles
4

Ramesh, Chinthala. "Hardware-Software Co-Design Accelerators for Sparse BLAS." Thesis, 2017. http://etd.iisc.ac.in/handle/2005/4276.

Full text
Abstract:
Sparse Basic Linear Algebra Subroutines (Sparse BLAS) is an important library. Sparse BLAS includes three levels of subroutines. Level 1, Level2 and Level 3 Sparse BLAS routines. Level 1 Sparse BLAS routines do computations over sparse vector and spare/dense vector. Level 2 deals with sparse matrix and vector operations. Level 3 deals with sparse matrix and dense matrix operations. The computations of these Sparse BLAS routines on General Purpose Processors (GPPs) not only suffer from less utilization of hardware resources but also takes more compute time than the workload due to poor data locality of sparse vector/matrix storage formats. In the literature, tremendous efforts have been put into software to improve these Sparse BLAS routines performance on GPPs. GPPs best suit for applications with high data locality, whereas Sparse BLAS routines operate on applications with less data locality hence, GPPs performance is poor. Various Custom Function Units (Hardware Accelerators) are proposed in the literature and are proved to be efficient than soft wares which tried to accelerate Sparse BLAS subroutines. Though existing hardware accelerators improved the Sparse BLAS performance compared to software Sparse BLAS routines, there is still lot of scope to improve these accelerators. This thesis describes both the existing software and hardware software co-designs (HW/SW co-design) and identifies the limitations of these existing solutions. We propose a new sparse data representation called Sawtooth Compressed Row Storage (SCRS) and corresponding SpMV and SpMM algorithms. SCRS based SpMV and SpMM are performing better than existing software solutions. Even though SCRS based SpMV and SpMM algorithms perform better than existing solutions, they still could not reach theoretical peak performance. The knowledge gained from the study of limitations of these existing solutions including the proposed SCRS based SpMV and SpMM is used to propose new HW/SW co-designs. Software accelerators are limited by the hardware properties of GPPs, and GPUs itself, hence, we propose HW/SW co-designs to accelerate few basic Sparse BLAS operations (SpVV and SpMV). Our proposed Parallel Sparse BLAS HW/SW co-design achieves near theoretical peak performance with reasonable hardware resources.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Sparse Matrix Storage Formats"

1

D’Azevedo, Eduardo F., Mark R. Fahey, and Richard T. Mills. "Vectorized Sparse Matrix Multiply for Compressed Row Storage Format." In Lecture Notes in Computer Science, 99–106. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11428831_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Luján, Mikel, Anila Usman, Patrick Hardie, T. L. Freeman, and John R. Gurd. "Storage Formats for Sparse Matrices in Java." In Lecture Notes in Computer Science, 364–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11428831_45.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Scott, Jennifer, and Miroslav Tůma. "Sparse Matrix Ordering Algorithms." In Nečas Center Series, 135–61. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-25820-6_8.

Full text
Abstract:
AbstractSo far, our focus has been on the theoretical and algorithmic principles involved in sparse Gaussian elimination-based factorizations. To limit the storage and the work involved in the computation of the factors and in their use during the solve phase it is generally necessary to reorder (permute) the matrix before the factorization commences. The complexity of the most critical steps in the factorization is highly dependent on the amount of fill-in, as can be seen from the following observation.
APA, Harvard, Vancouver, ISO, and other styles
4

Usman, Anila, Mikel Luján, Len Freeman, and John R. Gurd. "Performance Evaluation of Storage Formats for Sparse Matrices in Fortran." In High Performance Computing and Communications, 160–69. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11847366_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ecker, Jan Philipp, Rudolf Berrendorf, and Florian Mannuss. "New Efficient General Sparse Matrix Formats for Parallel SpMV Operations." In Lecture Notes in Computer Science, 523–37. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-64203-1_38.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Marichal, Raúl, Ernesto Dufrechou, and Pablo Ezzatti. "Optimizing Sparse Matrix Storage for the Big Data Era." In Communications in Computer and Information Science, 121–35. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-84825-5_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Katagiri, Takahiro, Takao Sakurai, Mitsuyoshi Igai, Satoshi Ohshima, Hisayasu Kuroda, Ken Naono, and Kengo Nakajima. "Control Formats for Unsymmetric and Symmetric Sparse Matrix–Vector Multiplications on OpenMP Implementations." In Lecture Notes in Computer Science, 236–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-38718-0_24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kubota, Yuji, and Daisuke Takahashi. "Optimization of Sparse Matrix-Vector Multiplication by Auto Selecting Storage Schemes on GPU." In Computational Science and Its Applications - ICCSA 2011, 547–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21887-3_42.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Neuss, Nicolas. "A New Sparse Matrix Storage Method for Adaptive Solving of Large Systems of Reaction-Diffusion-Transport Equations." In Scientific Computing in Chemical Engineering II, 175–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-60185-9_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Jamalmohammed, Saira Banu, Lavanya K., Sumaiya Thaseen I., and Biju V. "Review on Sparse Matrix Storage Formats With Space Complexity Analysis." In Applications of Artificial Intelligence for Smart Technology, 122–45. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-3335-2.ch009.

Full text
Abstract:
Sparse matrix-vector multiplication (SpMV) is a challenging computational kernel in linear algebra applications, like data mining, image processing, and machine learning. The performance of this kernel is greatly dependent on the size of the input matrix and the underlying hardware features. Various sparse matrix storage formats referred to commonly as sparse formats have been proposed in the literature to reduce the size of the matrix. In modern multi-core and many-core architectures, the performance of the kernel is mainly dependent on memory wall and power wall problem. Normally review on sparse formats is done with specific architecture or with specific application. This chapter presents a comparative study on various sparse formats in cross platform architecture like CPU, graphics processor unit (GPU), and single instruction multiple data stream (SIMD) registers. Space complexity analysis of various formats with its representation is discussed. Finally, the merits and demerits of each format have been summarized into a table.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Sparse Matrix Storage Formats"

1

imecek, Ivan, D. Langr, and P. Tvrdik. "Space-efficient Sparse Matrix Storage Formats for Massively Parallel Systems." In 2012 IEEE 14th Int'l Conf. on High Performance Computing and Communication (HPCC) & 2012 IEEE 9th Int'l Conf. on Embedded Software and Systems (ICESS). IEEE, 2012. http://dx.doi.org/10.1109/hpcc.2012.18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Liang Yuan, Yunquan Zhang, Xiangzheng Sun, and Ting Wang. "Optimizing Sparse Matrix Vector Multiplication Using Diagonal Storage Matrix Format." In 2010 IEEE 12th International Conference on High Performance Computing and Communications (HPCC 2010). IEEE, 2010. http://dx.doi.org/10.1109/hpcc.2010.67.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Simecek, Ivan. "Sparse Matrix Computations Using the Quadtree Storage Format." In 2009 11th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC). IEEE, 2009. http://dx.doi.org/10.1109/synasc.2009.55.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Shi, Shaohuai, Qiang Wang, and Xiaowen Chu. "Efficient Sparse-Dense Matrix-Matrix Multiplication on GPUs Using the Customized Sparse Storage Format." In 2020 IEEE 26th International Conference on Parallel and Distributed Systems (ICPADS). IEEE, 2020. http://dx.doi.org/10.1109/icpads51040.2020.00013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sriram, Sumithra, Saira Banu J., and Rajasekhara Babu. "Space complexity analysis of various sparse matrix storage formats used in rectangular segmentation image compression technique." In 2014 International Conference on Electronics,Communication and Computational Engineering (ICECCE). IEEE, 2014. http://dx.doi.org/10.1109/icecce.2014.7086618.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kawamura, Tomoki, Yoneda Kazunori, Takashi Yamazaki, Takashi Iwamura, Masahiro Watanabe, and Yasushi Inoguchi. "A Compression Method for Storage Formats of a Sparse Matrix in Solving the Large-Scale Linear Systems." In 2017 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW). IEEE, 2017. http://dx.doi.org/10.1109/ipdpsw.2017.174.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wang, Kebing, Bianny Bian, and Yan Hao. "Innovative Unit-Vector-Block Storage Format of Sparse Matrix and Vector." In 2019 IEEE 4th International Conference on Computer and Communication Systems (ICCCS). IEEE, 2019. http://dx.doi.org/10.1109/ccoms.2019.8821708.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chen, Haonan, Zhuowei Wang, and Lianglun Cheng. "GPU Sparse Matrix Vector Multiplication Optimization Based on ELLB Storage Format." In ICSCA 2023: 2023 12th International Conference on Software and Computer Applications. New York, NY, USA: ACM, 2023. http://dx.doi.org/10.1145/3587828.3587834.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Greathouse, Joseph L., and Mayank Daga. "Efficient Sparse Matrix-Vector Multiplication on GPUs Using the CSR Storage Format." In SC14: International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE, 2014. http://dx.doi.org/10.1109/sc.2014.68.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Merrill, Duane, and Michael Garland. "Merge-based sparse matrix-vector multiplication (SpMV) using the CSR storage format." In PPoPP '16: 21st ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2851141.2851190.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography