Academic literature on the topic 'Sparse hyperspectral unmixing'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Sparse hyperspectral unmixing.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Sparse hyperspectral unmixing"
Deng, Chengzhi, Yaning Zhang, Shengqian Wang, Shaoquan Zhang, Wei Tian, Zhaoming Wu, and Saifeng Hu. "Approximate Sparse Regularized Hyperspectral Unmixing." Mathematical Problems in Engineering 2014 (2014): 1–11. http://dx.doi.org/10.1155/2014/947453.
Full textDeng, Chengzhi, Yonggang Chen, Shaoquan Zhang, Fan Li, Pengfei Lai, Dingli Su, Min Hu, and Shengqian Wang. "Robust Dual Spatial Weighted Sparse Unmixing for Remotely Sensed Hyperspectral Imagery." Remote Sensing 15, no. 16 (August 16, 2023): 4056. http://dx.doi.org/10.3390/rs15164056.
Full textZhang, Shuaiyang, Wenshen Hua, Gang Li, Jie Liu, Fuyu Huang, and Qianghui Wang. "Double Regression-Based Sparse Unmixing for Hyperspectral Images." Journal of Sensors 2021 (September 3, 2021): 1–14. http://dx.doi.org/10.1155/2021/5575155.
Full textFeng, Ruyi, Lizhe Wang, and Yanfei Zhong. "Joint Local Block Grouping with Noise-Adjusted Principal Component Analysis for Hyperspectral Remote-Sensing Imagery Sparse Unmixing." Remote Sensing 11, no. 10 (May 23, 2019): 1223. http://dx.doi.org/10.3390/rs11101223.
Full textLi, Yalan, Yixuan Li, Wenwu Xie, Qian Du, Jing Yuan, Lin Li, and Chen Qi. "Adaptive multiscale sparse unmixing for hyperspectral remote sensing image." Computer Science and Information Systems, no. 00 (2023): 9. http://dx.doi.org/10.2298/csis220828009l.
Full textFeng, Dan, Mingyang Zhang, and Shanfeng Wang. "Multipopulation Particle Swarm Optimization for Evolutionary Multitasking Sparse Unmixing." Electronics 10, no. 23 (December 5, 2021): 3034. http://dx.doi.org/10.3390/electronics10233034.
Full textIordache, Marian-Daniel, José M. Bioucas-Dias, and Antonio Plaza. "Sparse Unmixing of Hyperspectral Data." IEEE Transactions on Geoscience and Remote Sensing 49, no. 6 (June 2011): 2014–39. http://dx.doi.org/10.1109/tgrs.2010.2098413.
Full textSigurdsson, Jakob, Magnus O. Ulfarsson, Johannes R. Sveinsson, and Jose M. Bioucas-Dias. "Sparse Distributed Multitemporal Hyperspectral Unmixing." IEEE Transactions on Geoscience and Remote Sensing 55, no. 11 (November 2017): 6069–84. http://dx.doi.org/10.1109/tgrs.2017.2720539.
Full textTong, Lei, Jing Yu, Chuangbai Xiao, and Bin Qian. "Hyperspectral unmixing via deep matrix factorization." International Journal of Wavelets, Multiresolution and Information Processing 15, no. 06 (November 2017): 1750058. http://dx.doi.org/10.1142/s0219691317500588.
Full textZhao, Genping, Fei Li, Xiuwei Zhang, Kati Laakso, and Jonathan Cheung-Wai Chan. "Archetypal Analysis and Structured Sparse Representation for Hyperspectral Anomaly Detection." Remote Sensing 13, no. 20 (October 13, 2021): 4102. http://dx.doi.org/10.3390/rs13204102.
Full textDissertations / Theses on the topic "Sparse hyperspectral unmixing"
Vila, Jeremy P. "Empirical-Bayes Approaches to Recovery of Structured Sparse Signals via Approximate Message Passing." The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1429191048.
Full textWei, Qi. "Bayesian fusion of multi-band images : A powerful tool for super-resolution." Phd thesis, Toulouse, INPT, 2015. http://oatao.univ-toulouse.fr/14398/1/wei.pdf.
Full textBieniarz, Jakub. "Sparse Methods for Hyperspectral Unmixing and Image Fusion." Doctoral thesis, 2016. https://repositorium.ub.uni-osnabrueck.de/handle/urn:nbn:de:gbv:700-2016030214286.
Full textAhmad, Touseef. "Augmenting Hyperspectral Image Unmixing Models Using Spatial Correlation, Spectral Variability, And Sparsity." Thesis, 2022. https://etd.iisc.ac.in/handle/2005/6081.
Full textNicolae, Aurel. "A comparative analysis of classic Geometrical methods and sparse regression methods for linearly unmixing hyperspectral image data." Thesis, 2019. https://hdl.handle.net/10539/29542.
Full textThis research report presents an across-the-board comparative analysis on algorithms for linearly unmixing hyperspectral image data cubes. Convex geometry based endmember extraction algorithms (EEAs) such as the pixel purity index (PPI) algorithm and N-FINDR have been commonly used to derive the material spectral signatures called endmembers from the hyperspectral images. The estimation of their corresponding fractional abundances is done by solving the related inverse problem in a least squares sense. Semi-supervised sparse regression algorithms such as orthogonal matching pursuit (OMP) and sparse unmixing algorithm via variable splitting and augmented Lagrangian (SUnSAL) bypass the endmember extraction process by employing widely available spectral libraries a priori, automatically returning the fractional abundances and sparsity estimates. The main contribution of this work is to serve as a rich resource on hyperspectral image unmixing, providing end-to-end evaluation of a wide variety of algorithms using di erent arti cial data sets.
XN2020
Book chapters on the topic "Sparse hyperspectral unmixing"
Zhang, Shaoquan, Yuanchao Su, Xiang Xu, Jun Li, Chengzhi Deng, and Antonio Plaza. "Recent Advances in Hyperspectral Unmixing Using Sparse Techniques and Deep Learning." In Hyperspectral Image Analysis, 377–405. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-38617-7_13.
Full textWu, Feiyang, Yuhui Zheng, and Le Sun. "Sparse Unmixing for Hyperspectral Image with Nonlocal Low-Rank Prior." In Intelligence Science and Big Data Engineering. Visual Data Engineering, 506–16. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-36189-1_42.
Full textMarques, Ion, and Manuel Graña. "Hybrid Sparse Linear and Lattice Method for Hyperspectral Image Unmixing." In Lecture Notes in Computer Science, 266–73. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07617-1_24.
Full textLiu, Jing, You Zhang, Xiao-die Yang, and Yi Liu. "Hyperspectral Remote Sensing Images Unmixing Based on Sparse Concept Coding." In Advances in Natural Computation, Fuzzy Systems and Knowledge Discovery, 823–30. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70665-4_89.
Full textZenati, Tarek, Bruno Figliuzzi, and Shu Hui Ham. "Surface Oxide Detection and Characterization Using Sparse Unmixing on Hyperspectral Images." In Lecture Notes in Computer Science, 291–302. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-13321-3_26.
Full textEsmaeili Salehani, Yaser, and Mohamed Cheriet. "Non-dictionary Aided Sparse Unmixing of Hyperspectral Images via Weighted Nonnegative Matrix Factorization." In Lecture Notes in Computer Science, 596–604. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59876-5_66.
Full textChen, Mengyue, Fanqiang Kong, Shunmin Zhao, and Keyao Wen. "Hyperspectral Unmixing Method Based on the Non-convex Sparse and Spatial Correlation Constraints." In Lecture Notes in Electrical Engineering, 441–46. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-8411-4_61.
Full textLi, Denggang, Shutao Li, and Huali Li. "Hyperspectral Image Unmixing Based on Sparse and Minimum Volume Constrained Nonnegative Matrix Factorization." In Communications in Computer and Information Science, 44–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-45643-9_5.
Full textConference papers on the topic "Sparse hyperspectral unmixing"
Sigurdsson, Jakob, Magnus O. Ulfarsson, Johannes R. Sveinsson, and Jose M. Bioucas-Dias. "Sparse distributed hyperspectral unmixing." In IGARSS 2016 - 2016 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2016. http://dx.doi.org/10.1109/igarss.2016.7730824.
Full textIordache, Marian-Daniel, Jose Bioucas-Dias, and Antonio Plaza. "Unmixing sparse hyperspectral mixtures." In 2009 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2009). IEEE, 2009. http://dx.doi.org/10.1109/igarss.2009.5417368.
Full textAggarwal, Hemant Kumar, and Angshul Majumdar. "Sparse filtering based hyperspectral unmixing." In 2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS). IEEE, 2016. http://dx.doi.org/10.1109/whispers.2016.8071765.
Full textIordache, Marian-Daniel, Jose M. Bioucas-Dias, and Antonio Plaza. "Collaborative sparse unmixing of hyperspectral data." In IGARSS 2012 - 2012 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2012. http://dx.doi.org/10.1109/igarss.2012.6351900.
Full textRodriguez Alves, Jose M., Jose M. P. Nascimento, Jose M. Bioucas-Dias, Antonio Plaza, and Vitor Silva. "Parallel sparse unmixing of hyperspectral data." In IGARSS 2013 - 2013 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2013. http://dx.doi.org/10.1109/igarss.2013.6723057.
Full textIordache, Marian-Daniel, Antonio Plaza, and Jose Bioucas-Dias. "Recent developments in sparse hyperspectral unmixing." In IGARSS 2010 - 2010 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2010. http://dx.doi.org/10.1109/igarss.2010.5653075.
Full textMa, Yong, Chang Li, and Jiayi Ma. "Robust sparse unmixing of hyperspectral data." In IGARSS 2016 - 2016 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2016. http://dx.doi.org/10.1109/igarss.2016.7730618.
Full textSigurdsson, Jakob, Magnus O. Ulfarsson, and Johannes R. Sveinsson. "Sparse and low rank hyperspectral unmixing." In 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). IEEE, 2017. http://dx.doi.org/10.1109/igarss.2017.8126936.
Full textChen, Yonggang, Chengzhi Deng, Shaoquan Zhang, Fan Li, Ningyuan Zhang, and Shengqian Wang. "Dual Spatial Weighted Sparse Hyperspectral Unmixing." In IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2022. http://dx.doi.org/10.1109/igarss46834.2022.9883616.
Full textFang, Bei, Ying Li, Peng Zhang, and Bendu Bai. "Kernel sparse NMF for hyperspectral unmixing." In 2014 IEEE International Conference on Orange Technologies (ICOT). IEEE, 2014. http://dx.doi.org/10.1109/icot.2014.6954672.
Full textReports on the topic "Sparse hyperspectral unmixing"
Moeller, Michael, Ernie Esser, Stanley Osher, Guillermo Sapiro, and Jack Xin. A Convex Model for Matrix Factorization and Dimensionality Reduction on Physical Space and Its Application to Blind Hyperspectral Unmixing. Fort Belvoir, VA: Defense Technical Information Center, October 2010. http://dx.doi.org/10.21236/ada540658.
Full text