Dissertations / Theses on the topic 'Sparse features'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Sparse features.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Strohmann, Thomas. "Very sparse kernel models: Predicting with few examples and few features." Diss., Connect to online resource, 2006. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3239405.
Full textRadwan, Noha [Verfasser], and Wolfram [Akademischer Betreuer] Burgard. "Leveraging sparse and dense features for reliable state estimation in urban environments." Freiburg : Universität, 2019. http://d-nb.info/1190031361/34.
Full textHata, Alberto Yukinobu. "Road features detection and sparse map-based vehicle localization in urban environments." Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-08062017-090428/.
Full textNo contexto de veículos autônomos, a localização é um dos componentes fundamentais, pois possibilita tarefas como ultrapassagem, direção assistida e navegação autônoma. A presença de edifícios e o mau tempo interferem na recepção do sinal de GPS que consequentemente dificulta o uso de tal tecnologia para a localização de veículos dentro das cidades. Alternativamente, a localização com suporte aos mapas vem sendo empregada para estimar a posição sem a dependência do GPS. Nesta solução, a posição do veículo é dada pela região em que ocorre a melhor correspondência entre o mapa do ambiente e a leitura do sensor. Antes da criação dos mapas, características dos ambientes devem ser extraídas a partir das leituras dos sensores. Dessa forma, guias e sinalizações horizontais têm sido largamente utilizados para o mapeamento. Entretanto, métodos de mapeamento urbano geralmente necessitam de repetidas leituras do mesmo lugar para compensar as oclusões. A construção de representações precisas dos ambientes é essencial para uma adequada associação dos dados dos sensores como mapa durante a localização. De forma a evitar a necessidade de um processo manual para remover obstáculos que causam oclusão e áreas não observadas, propõe-se um método de localização de veículos com suporte aos mapas construídos a partir de observações parciais do ambiente. No sistema de localização proposto, os mapas são construídos a partir de guias e sinalizações horizontais extraídas a partir de leituras de um sensor multicamadas. As guias podem ser detectadas mesmo na presença de veículos que obstruem a percepção das ruas, por meio do uso de regressão robusta. Na detecção de sinalizações horizontais é empregado o método de limiarização por Otsu que analisa dados de reflexão infravermelho, o que torna o método insensível à variação de luminosidade. Dois tipos de mapas são empregados para a representação das guias e das sinalizações horizontais: mapa de grade de ocupação (OGM) e mapa de ocupação por processo Gaussiano (GPOM). O OGM é uma estrutura que representa o ambiente por meio de uma grade reticulada. OGPOM é uma representação contínua que possibilita a estimação de áreas não observadas. O método de localização por Monte Carlo (MCL) foi adaptado para suportar os mapas construídos. Dessa forma, a localização de veículos foi testada em MCL com suporte ao OGM e MCL com suporte ao GPOM. No caso do MCL baseado em GPOM, um novo modelo de verossimilhança baseado em função densidade probabilidade de distribuição multi-normal é proposto. Experimentos foram realizados em ambientes urbanos reais. Mapas do ambiente foram gerados a partir de dados de laser esparsos de forma a verificar a reconstrução de áreas não observadas. O sistema de localização foi avaliado por meio da comparação das posições estimadas comum GPS de alta precisão. Comparou-se também o MCL baseado em OGM com o MCL baseado em GPOM, de forma a verificar qual abordagem apresenta melhores resultados.
Pundlik, Shrinivas J. "Motion segmentation from clustering of sparse point features using spatially constrained mixture models." Connect to this title online, 2009. http://etd.lib.clemson.edu/documents/1252937182/.
Full textQuadros, Alistair James. "Representing 3D shape in sparse range images for urban object classification." Thesis, The University of Sydney, 2013. http://hdl.handle.net/2123/10515.
Full textMairal, Julien. "Sparse coding for machine learning, image processing and computer vision." Phd thesis, École normale supérieure de Cachan - ENS Cachan, 2010. http://tel.archives-ouvertes.fr/tel-00595312.
Full textAbbasnejad, Iman. "Learning spatio-temporal features for efficient event detection." Thesis, Queensland University of Technology, 2018. https://eprints.qut.edu.au/121184/1/Iman_Abbasnejad_Thesis.pdf.
Full textLakemond, Ruan. "Multiple camera management using wide baseline matching." Thesis, Queensland University of Technology, 2010. https://eprints.qut.edu.au/37668/1/Ruan_Lakemond_Thesis.pdf.
Full textUmakanthan, Sabanadesan. "Human action recognition from video sequences." Thesis, Queensland University of Technology, 2016. https://eprints.qut.edu.au/93749/1/Sabanadesan_Umakanthan_Thesis.pdf.
Full textDhanjal, Charanpal. "Sparse Kernel feature extraction." Thesis, University of Southampton, 2008. https://eprints.soton.ac.uk/64875/.
Full textPrimadhanty, Audi. "Low-rank regularization for high-dimensional sparse conjunctive feature spaces in information extraction." Doctoral thesis, Universitat Politècnica de Catalunya, 2017. http://hdl.handle.net/10803/461682.
Full textUno de los retos en Procesamiento del Lenguaje Natural (NLP, del inglés Natural Language Processing) es la naturaleza no estructurada del texto, que hace que la información útil y relevante no sea fácilmente identificable. Los métodos de Extracción de Información (IE, del inglés Information Extraction) afrontan este problema mediante la extracción automática de información estructurada de dichos textos. La estructura resultante facilita la búsqueda, la organización y el análisis datos textuales. Esta tesis se centra en dos tareas relacionadas dentro de IE: (i) clasificación de entidades nombradas (NEC, del inglés Named Entity Classification), y (ii) rellenado de plantillas (en inglés, template filling). Concretamente, esta tesis estudia el problema de aprender clasificadores de secuencias textuales y explora su aplicación a la extracción de entidades nombradas y de valores para campos de plantillas. El objetivo general es desarrollar un método para aprender clasificadores que: (i) requieran poca supervisión; (ii) funcionen bien en espacios de características de alta dimensión y dispersión; y (iii) sean capaces de clasificar elementos nunca vistos (por ejemplo entidades o valores de campos que no hayan sido vistos en fase de entrenamiento). La idea principal de nuestra contribución es la utilización de características conjuntivas que no aparecen en el conjunto de entrenamiento. Una característica conjuntiva es una conjunción de características elementales. Por ejemplo, para clasificar la mención de una entidad en una oración, se utilizan características de la mención, del contexto de ésta, y a su vez conjunciones de los dos grupos de características. Cuando se aprende un clasificador en un conjunto de entrenamiento concreto, sólo se observará una fracción de estas características conjuntivas, dejando el resto (es decir, características no vistas) sin ser utilizado para predecir elementos en fase de evaluación y explotación del modelo. Nuestra hipótesis es que la utilización de estas conjunciones nunca vistas pueden ser potencialmente muy útiles, especialmente para reconocer entidades nuevas. Desarrollamos un marco de regularización general específicamente diseñado para espacios de características conjuntivas dispersas. Nuestra estrategia se basa en utilizar tensores para representar el espacio de características conjuntivas y obligar al modelo a inducir "embeddings" de baja dimensión de los vectores de características vía regularización de bajo rango en los parámetros de tensor. Dicha representación comprimida ayudará a la predicción, generalizando a nuevos ejemplos donde la mayoría de las conjunciones no han sido vistas durante la fase de entrenamiento. Presentamos experimentos sobre el aprendizaje de clasificadores de entidades nombradas, y clasificadores de valores en campos de plantillas, centrándonos en la extracción de elementos no vistos. Demostramos que al aprender los clasificadores bajo mínima supervisión, nuestro enfoque es más efectivo en el control de la capacidad del modelo que las técnicas estándar para la clasificación lineal
Behúň, Kamil. "Příznaky z videa pro klasifikaci." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2013. http://www.nusl.cz/ntk/nusl-236367.
Full textMeghnoudj, Houssem. "Génération de caractéristiques à partir de séries temporelles physiologiques basée sur le contrôle optimal parcimonieux : application au diagnostic de maladies et de troubles humains." Electronic Thesis or Diss., Université Grenoble Alpes, 2024. http://www.theses.fr/2024GRALT003.
Full textIn this thesis, a novel methodology for features generation from physiological signals (EEG, ECG) has been proposed that is used for the diagnosis of a variety of brain and heart diseases. Based on sparse optimal control, the generation of Sparse Dynamical Features (SDFs) is inspired by the functioning of the brain. The method's fundamental concept revolves around sparsely decomposing the signal into dynamical modes that can be switched on and off at the appropriate time instants with the appropriate amplitudes. This decomposition provides a new point of view on the data which gives access to informative features that are faithful to the brain functioning. Nevertheless, the method remains generic and versatile as it can be applied to a wide range of signals. The methodology's performance was evaluated on three use cases using openly accessible real-world data: (1) Parkinson's Disease, (2) Schizophrenia, and (3) various cardiac diseases. For all three applications, the results are highly conclusive, achieving results that are comparable to the state-of-the-art methods while using only few features (one or two for brain applications) and a simple linear classifier supporting the significance and reliability of the findings. It's worth highlighting that special attention has been given to achieving significant and meaningful results with an underlying explainability
Nziga, Jean-Pierre. "Incremental Sparse-PCA Feature Extraction For Data Streams." NSUWorks, 2015. http://nsuworks.nova.edu/gscis_etd/365.
Full textBrunnegård, Oliver, and Daniel Wikestad. "Visual SLAM using sparse maps based on feature points." Thesis, Högskolan i Halmstad, Halmstad Embedded and Intelligent Systems Research (EIS), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-34681.
Full textO'Brien, Cian John. "Supervised feature learning via sparse coding for music information rerieval." Thesis, Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/53615.
Full textZennaro, Fabio. "Feature distribution learning for covariate shift adaptation using sparse filtering." Thesis, University of Manchester, 2017. https://www.research.manchester.ac.uk/portal/en/theses/feature-distribution-learning-for-covariate-shift-adaptation-using-sparse-filtering(67989db2-b8a0-4fac-8832-f611e9236ed5).html.
Full textFriess, Thilo-Thomas. "Perceptrons in kernel feature spaces." Thesis, University of Sheffield, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.327730.
Full textChen, Jihong. "Sparse Modeling in Classification, Compression and Detection." Diss., Georgia Institute of Technology, 2004. http://hdl.handle.net/1853/5051.
Full textFourie, Christoff. "A one-class object-based system for sparse geographic feature identification." Thesis, Stellenbosch : University of Stellenbosch, 2011. http://hdl.handle.net/10019.1/6666.
Full textENGLISH ABSTRACT: The automation of information extraction from earth observation imagery has become a field of active research. This is mainly due to the high volumes of remotely sensed data that remain unused and the possible benefits that the extracted information can provide to a wide range of interest groups. In this work an earth observation image processing system is presented and profiled that attempts to streamline the information extraction process, without degradation of the quality of the extracted information, for geographic object anomaly detection. The proposed system, implemented as a software application, combines recent research in automating image segment generation and automatically finding statistical classifier parameters and attribute subsets using evolutionary inspired search algorithms. Exploratory research was conducted on the use of an edge metric as a fitness function to an evolutionary search heuristic to automate the generation of image segments for a region merging segmentation algorithm having six control parameters. The edge metric for such an application is compared with an area based metric. The use of attribute subset selection in conjunction with a free parameter tuner for a one class support vector machine (SVM) classifier, operating on high dimensional object based data, was also investigated. For common earth observation anomaly detection problems using typical segment attributes, such a combined free parameter tuning and attribute subset selection system provided superior statistically significant results compared to a free parameter tuning only process. In some extreme cases, due to the stochastic nature of the search algorithm employed, the free parameter only strategy provided slightly better results. The developed system was used in a case study to map a single class of interest on a 22.5 x 22.5km subset of a SPOT 5 image and is compared with a multiclass classification strategy. The developed system generated slightly better classification accuracies than the multiclass classifier and only required samples from the class of interest.
AFIKAANSE OPSOMMING: Die outomatisering van die verkryging van inligting vanaf aardwaarnemingsbeelde het in sy eie reg 'n navorsingsveld geword as gevolg van die groot volumes data wat nie benut word nie, asook na aanleiding van die moontlike bydrae wat inligting wat verkry word van hierdie beelde aan verskeie belangegroepe kan bied. In hierdie tesis word 'n aardwaarneming beeldverwerkingsstelsel bekend gestel en geëvalueer. Hierdie stelsel beoog om die verkryging van inligting van aardwaarnemingsbeelde te vergemaklik deur verbruikersinteraksie te minimaliseer, sonder om die kwaliteit van die resultate te beïnvloed. Die stelsel is ontwerp vir geografiese voorwerp anomalie opsporing en is as 'n sagteware program geïmplementeer. Die program kombineer onlangse navorsing in die gebruik van evolusionêre soek-algoritmes om outomaties goeie beeldsegmente te verkry en parameters te vind, sowel as om kenmerke vir 'n statistiese klassifikasie van beeld segmente te selekteer. Verkennende navorsing is gedoen op die benutting van 'n rand metriek as 'n passings funksie in 'n evolusionêre soek heuristiek om outomaties goeie parameters te vind vir 'n streeks kombinering beeld segmentasie algoritme met ses beheer parameters. Hierdie rand metriek word vergelyk met 'n area metriek vir so 'n toepassing. Die nut van atribuut substel seleksie in samewerking met 'n vrye parameter steller vir 'n een klas steun vektor masjien (SVM) klassifiseerder is ondersoek op hoë dimensionele objek georiënteerde data. Vir algemene aardwaarneming anomalie opsporings probleme met 'n tipiese segment kenmerk versameling, het so 'n stelsel beduidend beter resultate as 'n eksklusiewe vrye parameter stel stelsel gelewer in sommige uiterste gevalle. As gevolg van die stogastiese aard van die soek algoritme het die eksklusiewe vrye parameter stel strategie effens beter resultate gelewer. Die stelsel is getoets in 'n gevallestudie waar 'n enkele klas op 'n 22.5 x 22.5km substel van 'n SPOT 5 beeld geïdentifiseer word. Die voorgestelde stelsel, wat slegs monsters van die gekose klas gebruik het, het beter klassifikasie akkuraathede genereer as die multi klas klassifiseerder.
Byrne, Evan Michael. "Sparse Multinomial Logistic Regression via Approximate Message Passing." The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1437416281.
Full textSteiger, Edgar [Verfasser]. "Efficient Sparse-Group Bayesian Feature Selection for Gene Network Reconstruction / Edgar Steiger." Berlin : Freie Universität Berlin, 2018. http://d-nb.info/1170876633/34.
Full textZeng, Yaohui. "Scalable sparse machine learning methods for big data." Diss., University of Iowa, 2017. https://ir.uiowa.edu/etd/6021.
Full textReese, Randall D. "Feature Screening of Ultrahigh Dimensional Feature Spaces With Applications in Interaction Screening." DigitalCommons@USU, 2018. https://digitalcommons.usu.edu/etd/7231.
Full textPighin, Daniele. "Greedy Feature Selection in Tree Kernel Spaces." Doctoral thesis, Università degli studi di Trento, 2010. https://hdl.handle.net/11572/368779.
Full textPighin, Daniele. "Greedy Feature Selection in Tree Kernel Spaces." Doctoral thesis, University of Trento, 2010. http://eprints-phd.biblio.unitn.it/359/1/thesis.pdf.
Full textSanchez, Merchante Luis Francisco. "Learning algorithms for sparse classification." Phd thesis, Université de Technologie de Compiègne, 2013. http://tel.archives-ouvertes.fr/tel-00868847.
Full textHjelmare, Fredrik, and Jonas Rangsjö. "Simultaneous Localization And Mapping Using a Kinect in a Sparse Feature Indoor Environment." Thesis, Linköpings universitet, Reglerteknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-81140.
Full textDonini, Michele. "Exploiting the structure of feature spaces in kernel learning." Doctoral thesis, Università degli studi di Padova, 2016. http://hdl.handle.net/11577/3424320.
Full textIl problema dell'apprendimento della reppresentazione ottima per un task specifico è divenuto un importante argomento nella comunità dell'apprendimento automatico. In questo campo, le architetture di tipo deep sono attualmente le più avanzate tra i possibili algoritmi di apprendimento automatico. Esse generano modelli che utilizzando alti gradi di astrazione e sono in grado di scoprire strutture complicate in dataset anche molto ampi. I kernel e le Deep Neural Network (DNN) sono i principali metodi per apprendere una rappresentazione di un problema in modo ricco (cioè deep). Le DNN sfruttano il famoso algoritmo di back-propagation migliorando le prestazioni degli algoritmi allo stato dell'arte in diverse applicazioni reali, come per esempio il riconoscimento vocale, il riconoscimento di oggetti o l'elaborazione di segnali. Tuttavia, gli algoritmi DNN hanno anche delle problematiche, ereditate dalle classiche reti neurali e derivanti dal fatto che esse non sono completamente comprese teoricamente. I problemi principali sono: la complessità della struttura della soluzione, la non chiara separazione tra la fase di apprendimento della rappresentazione ottimale e del modello, i lunghi tempi di training e la convergenza a soluzioni ottime solo localmente (a causa dei minimi locali e del vanishing gradient). Per questi motivi, in questa tesi, proponiamo nuove idee per ottenere rapprensetazioni ottimali sfruttando la teoria dei kernel. I metodi kernel hanno un elegante framework che separa l'algoritmo di apprendimento dalla rappresentazione delle informazioni. D'altro canto, anche i kernel hanno alcune debolezze, per esempio essi non scalano e, per come sono solitamente utilizzati, portano con loro una rappresentazione poco ricca (shallow). In questa tesi, proponiamo nuovi risultati teorici e nuovi algoritmi per cercare di risolvere questi problemi e rendere l'apprendimento dei kernel in grado di generare rappresentazioni più ricche (deeper) ed essere più scalabili. Verrà quindi presentato un nuovo algoritmo in grado di combinare migliaia di kernel deboli con un basso costo computazionale e di memoria. Questa procedura, chiamata EasyMKL, supera i metodi attualmente allo stato dell'arte combinando frammenti di informazione e creando in questo modo il kernel ottimale per uno specifico task. Perseguendo l'idea di creare una famiglia di kernel deboli ottimale, abbiamo creato una nuova misura di valutazione dell'espressività dei kernel, chiamata Spectral Complexity. Sfruttando questa misura siamo in grado di generare famiglia di kernel deboli con una struttura gerarchica nelle feature definendo una nuova proprietà riguardante la monotonicità della Spectral Complexity. Mostriamo la qualità dei nostri kernel deboli sviluppando una nuova metologia per il Multiple Kernel Learning (MKL). In primo luogo, siamo in grado di creare una famiglia ottimale di kernel deboli sfruttando la proprietà di monotinicità della Spectral Complexity; combiniamo quindi la famiglia di kernel deboli ottimale sfruttando EasyMKL e ottenendo un nuovo kernel, specifico per il singolo task; infine, siamo in grado di generare un modello sfruttando il nuovo kernel e kernel machine (per esempio una SVM). Inoltre, in questa tesi sottolineiamo le connessioni tra Distance Metric Learning, Feature Larning e Kernel Learning proponendo un metodo per apprendere la famiglia ottimale di kernel deboli per un algoritmo MKL in un contesto differente, in cui la regola di combinazione è il prodotto componente per componente delle matrici kernel. Questo algoritmo è in grado di generare i parametri ottimali per un kernel RBF anisotropico. Di conseguenza, si crea un naturale collegamento tra il Feature Weighting, le combinazioni dei kernel e l'apprendimento della metrica ottimale per il task. Infine, l'importanza della rappresentazione è anche presa in considerazione in tre task reali, dove affrontiamo differenti problematiche, tra cui: il rumore nei dati, le applicazioni in tempo reale e le grandi moli di dati (Big Data)
Chen, Youqing. "Observation and analysis on features of microcracks and pore spaces in rocks." Kyoto University, 2002. http://hdl.handle.net/2433/150150.
Full textCirujeda, Santolaria Pol. "Covariance-based descriptors for pattern recognition in multiple feature spaces." Doctoral thesis, Universitat Pompeu Fabra, 2015. http://hdl.handle.net/10803/350033.
Full textThis dissertation explores the use of covariance-based descriptors in order to translate feature observations within regions of interest to a descriptor space using the feature covariance matrices as discriminative signatures. This space constitutes the particular manifold of symmetric positive definite matrices, with its own metric and analytical considerations, in which we can develop several machine learning algorithms for pattern recognition. Regardless of the feature domain, whether they are 2D image visual cues, 3D unstructured point cloud shape features, gesture and motion measurements from depth image sequences, or 3D tissue information in medical images, the covariance descriptor space acts as a unifying step in the task of keeping a common framework for several applications.
Boone, Gary Noel. "Extreme dimensionality reduction for text learning : cluster-generated feature spaces." Diss., Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/8139.
Full textVan, Dyk Hendrik Oostewald. "Classification in high dimensional feature spaces / by H.O. van Dyk." Thesis, North-West University, 2009. http://hdl.handle.net/10394/4091.
Full textThesis (M.Ing. (Computer Engineering))--North-West University, Potchefstroom Campus, 2009.
Pathical, Santhosh P. "Classification in High Dimensional Feature Spaces through Random Subspace Ensembles." University of Toledo / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1290024890.
Full textDe, Deuge Mark. "Manifold Learning Approaches to Compressing Latent Spaces of Unsupervised Feature Hierarchies." Thesis, The University of Sydney, 2015. http://hdl.handle.net/2123/14551.
Full textOcloo, Isaac Xoese. "Energy Distance Correlation with Extended Bayesian Information Criteria for feature selection in high dimensional models." Bowling Green State University / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1625238661031258.
Full textShealy, Elizabeth Carlisle. "Designing outdoor spaces to support older adult dog walkers: A multi-method approach to identify and prioritize features in the built environment." Diss., Virginia Tech, 2021. http://hdl.handle.net/10919/102931.
Full textDoctor of Philosophy
Associations between the built environment and walking are well understood among the general population, but less is known about how features in the built environment influence older adults. As compared to other age groups, older adults are more likely to experience declines in physical activity and social interaction. Animal companionship can provide motivation to stay physically active and help them mitigate feelings of isolation. Built environments that align with the needs of older adults and their animal companions, like dogs, can encourage and help sustain walking habits. My research identified and prioritized features within the built environment pertinent to older adult dog walkers. I implemented an iterative three round study to gain consensus among expert panelists and guided walks and interviews with older adult dog walkers. Among expert panelists, safety from motorized traffic, crime, unleashed dogs, and personal injury was paramount. Experts also saw the value of dog supportive features within the built environment, like dog waste stations. Older adults also believed safety was important. They saw their dog as a protective safety factor against walking deterrents like aggressive dogs. The feature that resonated most with older adult in this study was nature. They described the pleasure of observing seasons change and the connection with nature that came from the tree canopy cocooning the walking path. Path design is also a necessary consideration. Older adults emphasized the importance of having options between paved and unpaved walking paths. Those who plan, develop, and maintain spaces that support older adults can prioritize the features I identified in my research. Incorporating these features into outdoor spaces has the potential to translate into increased walking and opportunities to socialize, contributing to mental and physical health.
Klement, Sascha [Verfasser]. "The support feature machine : an odyssey in high-dimensional spaces / Sascha Klement." Lübeck : Zentrale Hochschulbibliothek Lübeck, 2014. http://d-nb.info/1046751751/34.
Full textMohapatra, Prateeti. "Deriving Novel Posterior Feature Spaces For Conditional Random Field - Based Phone Recognition." The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1236784133.
Full textCalarco, Francesca Maria Assunta. "Soundscape design of water features used in outdoor spaces where road traffic noise is audible." Thesis, Heriot-Watt University, 2015. http://hdl.handle.net/10399/3084.
Full textFu, Huanzhang. "Contributions to generic visual object categorization." Phd thesis, Ecole Centrale de Lyon, 2010. http://tel.archives-ouvertes.fr/tel-00599713.
Full textWinkler, Roland [Verfasser], and Rudolf [Akademischer Betreuer] Kruse. "Prototype based clustering in high-dimensional feature spaces / Roland Winkler. Betreuer: Rudolf Kruse." Magdeburg : Universitätsbibliothek, 2015. http://d-nb.info/1080560882/34.
Full textWinkler, Roland Verfasser], and Rudolf [Akademischer Betreuer] [Kruse. "Prototype based clustering in high-dimensional feature spaces / Roland Winkler. Betreuer: Rudolf Kruse." Magdeburg : Universitätsbibliothek, 2015. http://nbn-resolving.de/urn:nbn:de:gbv:ma9:1-7159.
Full textTran, Antoine. "Object representation in local feature spaces : application to real-time tracking and detection." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLY010/document.
Full textVisual representation is a fundamental problem in computer vision. The aim is to reduce the information to the strict necessary for a query task. Many types of representation exist, like color features (histograms, color attributes...), shape ones (derivatives, keypoints...) or filterbanks.Low-level (and local) features are fast to compute. Their power of representation are limited, but their genericity have an interest for autonomous or multi-task systems, as higher level ones derivate from them. We aim to build, then study impact of low-level and local feature spaces (color and derivatives only) for two tasks: generic object tracking, requiring features robust to object and environment's aspect changes over the time; object detection, for which the representation should describe object class and cope with intra-class variations.Then, rather than using global object descriptors, we use entirely local features and statisticals mecanisms to estimate their distribution (histograms) and their co-occurrences (Generalized Hough Transform).The Generalized Hough Transform (GHT), created for detection of any shape, consists in building a codebook, originally indexed by gradient orientation, then to diverse features, modeling an object, a class. As we work on local features, we aim to remain close to the original GHT.In tracking, after presenting preliminary works combining the GHT with a particle filter (using color histograms), we present a lighter and fast (100 fps) tracker, more accurate and robust.We present a qualitative evaluation and study the impact of used features (color space, spatial derivative formulation).In detection, we used Gall's Hough Forest. We aim to reduce Gall's feature space and discard HOG features, to keep only derivatives and color ones.To compensate the reduction, we enhanced two steps: the support of local descriptors (patches) are partially chosen using a geometrical measure, and node training is done by using a specific probability map based on patches used at this step.With reduced feature space, the detector is less accurate than with Gall's feature space, but for the same training time, our works lead to identical results, but with higher stability and then better repeatability
Van, der Walt Christiaan Maarten. "Maximum-likelihood kernel density estimation in high-dimensional feature spaces /| C.M. van der Walt." Thesis, North-West University, 2014. http://hdl.handle.net/10394/10635.
Full textPhD (Information Technology), North-West University, Vaal Triangle Campus, 2014
Baychev, Todor. "Pore space structure effects on flow in porous media." Thesis, University of Manchester, 2018. https://www.research.manchester.ac.uk/portal/en/theses/pore-space-structure-effects-on-flow-in-porous-media(5542173d-d6d1-4768-9f38-4b41254fa194).html.
Full textLeeds, Daniel Demeny. "Assisted auscultation : creation and visualization of high dimensional feature spaces for the detection of mitral regurgitation." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/36806.
Full text"May 2006."
Includes bibliographical references (p. 83-84).
Cardiac auscultation, listening to the heart using a stethoscope, often constitutes the first step in detection of common heart problems. Unfortunately, primary care physicians, who perform this initial screening, often lack the experience to correctly evaluate what they hear. False referrals are frequent, costing hundreds of dollars and hours of time for many patients. We report on a system we have built to aid medical practitioners in diagnosing Mitral Regurgitation (MR) based on heart sounds. Our work builds on the "prototypical beat" introduced by Syed in [17] to extract two different feature sets characterizing systolic acoustic activity. One feature set is derived from current medical knowledge. The other is based on unsupervised learning of systolic shapes, using component Analysis. Our system employs self-organizing maps (SOMs) to depict the distribution of patients in each feature space as labels within a two-dimensional colored grid. A user screens new patients by viewing their projections onto the SOM, and determining whether they are closer in space, and thus more similar, to patients with or without MR. We evaluated our system on 46 patients. Using a combination of the two feature sets, SOM-based diagnosis classified patients with accuracy similar to that of a cardiologist.
by Daniel Demeny Leeds.
M.Eng.
Bernard, Anne. "Développement de méthodes statistiques nécessaires à l'analyse de données génomiques : application à l'influence du polymorphisme génétique sur les caractéristiques cutanées individuelles et l'expression du vieillissement cutané." Phd thesis, Conservatoire national des arts et metiers - CNAM, 2013. http://tel.archives-ouvertes.fr/tel-00925074.
Full textMamani, Gladys Marleny Hilasaca. "Empregando técnicas de projeção multidimensional para transformação interativa de espaços de características." Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-20022013-163023/.
Full textAlthough the current technology allows storing large volumes of data, their exploration and understanding remains as challenges not only due to the size of the produced datasets but also their complexity. In this sense, the information visualization has proven to be an extremely powerful instrument to help users to interpret and extract useful information from this universe of data. Among the existing approaches, multidimensional projection techniques are emerging as an important visualization tool in applications involving visual analysis of high dimensional data due to the analytical power that these techniques oer in the exploitation of similarity relations and abstract data correlation. However, the results obtained by these techniques are closely tied to the quality of the feature space which describes the data being processed. If the space is well formed and reflect the similarity relations expected by an user, the nal results will be satisfactory. Otherwise, little utility will have the created visual representations. In this master\'s project, multidimensional projections techniques are employed not only to explore multidimensional data sets, but also to serve as a guide in a process that aims to \"mold\" features spaces. The proposed approach is based on the combination of projections of samples and local mappings, allowing the user to interactively transform the data attributes by modifying these projections. Specifically, the new similarity relations created by the user in manipulating the projections of the samples are propagated to the feature space that describes the data, transforming it into a new space that reflects these relationships, i.e., the point of view of the user about the similarities and dierences in the data. Experimental results show that the approach developed in this project can successfully transform feature spaces based on the manipulation of projections of small samples, improving the cohesion and separation of groups. Based on the created framework, a content-based image retrieval system is suggested, showing that the developed approach can be very useful in this type of application
Truong, Hoang Vinh. "Multi color space LBP-based feature selection for texture classification." Thesis, Littoral, 2018. http://www.theses.fr/2018DUNK0468/document.
Full textTexture analysis has been extensively studied and a wide variety of description approaches have been proposed. Among them, Local Binary Pattern (LBP) takes an essential part of most of color image analysis and pattern recognition applications. Usually, devices acquire images and code them in the RBG color space. However, there are many color spaces for texture classification, each one having specific properties. In order to avoid the difficulty of choosing a relevant space, the multi color space strategy allows using the properties of several spaces simultaneously. However, this strategy leads to increase the number of features extracted from LBP applied to color images. This work is focused on the dimensionality reduction of LBP-based feature selection methods. In this framework, we consider the LBP histogram and bin selection approaches for supervised texture classification. Extensive experiments are conducted on several benchmark color texture databases. They demonstrate that the proposed approaches can improve the state-of-the-art results